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Abstract
This paper presents a novel discriminative Few-shot learning architecture based on batch compact loss. Currently,
Convolutional Neural Network (CNN) has achieved reasonably good performance in image recognition. Most existing
CNN methods facilitate classifiers to learn discriminating patterns to identify existing categories trained with large samples.
However, learning to recognize novel categories from a few examples is a challenging task. To address this, we propose
the Residual Compact Network to train a deep neural network to learn hierarchical nonlinear transformations to project
image pairs into the same latent feature space, under which the distance of each positive pair is reduced. To better use
the commonality of class-level features for category recognition, we develop a batch compact loss to form robust feature
representations relevant to a category. The proposed methods are evaluated on several datasets. Experimental evaluations
show that our proposed method achieves acceptable results in Few-shot learning.

Keywords Few-shot contrastive learning · Partial residual embedding module · Batch compact loss · Insulator identification

1 Introduction

Deep learning has remarkable performance in feature
extraction and promising results in automobile self-driving
[1], medical image analysis [2], and semantic segmentation
[3]. In the wake of superior performance in feature
extraction and representation, deep learning has also been
introduced into image recognition [4, 5]. Mussina et al.
[6] consider integrating multimodal information fusion for
classifying possible situations by a fully connected network.
Jiang et al. [7] propose multi-level perception to capture
global and local representative features. Then, bounding
box voting is utilized to generate the predictions. Liu et al.
[8] segment images by Mask R-CNN network. Most image
recognition methods heavily rely on a large volume of
annotated datasets. Standard deep learning cannot identify
the categories that do not appear in the train set. The model
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needs to be trained from scratch again to recognize a novel
category. Besides, collecting enough labeled samples is
generally time-consuming and laborious in deep learning.

Inspired by human beings′ remarkable ability to recog-
nize novel objects after seeing only a handful of examples,
Few-Shot Learning is proposed to tackle these problems.
FSL can rapidly generalize to new tasks containing only
a few samples with supervised information using prior
knowledge. The core motivation of FSL is to learn to
classify the instances from the training dataset correctly.
Then the learned ability is applied to distinguish the novel
instances of the test dataset. The data augmentation meth-
ods are used to maintain the consistency prediction of the
instances [9, 10]. Through self-augmentation, knowledge
forces each branch not to be over-confident in its predic-
tions and improves the generalization ability. Owing to the
knowledge learned from the source domain would be trans-
ferred to the target domain, the few-shot transfer learning
framework is applied for machine fault diagnosis [11] and
text classification [12].

Here we focus on the case of few-shot classification,
where the given classification problem is assumed to contain
only a handful of labeled examples per class. Few-shot
classification usually involves a train set with base classes
and a test set of novel classes. During training, K labeled
samples for each of C unique classes from the train dataset
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being loaded into the model in one batch is defined as C-
way K-shot FSL problem. For the C-way K-shot setting,
any query feature needs to be compared with several
representative features during training. Hence, it is essential
to learn effectively from a small number of samples.

The hypothesis that the training data must be independent
and identically distributed with the test data motivates
us to use the correspondence between salient features
and category information. As one of the main Overhead
Catenary System (OCS) suspension structures, insulators
realize electrical isolation and take on the mechanical
loads. Therefore, enough attention should be paid to the
maintenance of insulators. Because the working conditions
of insulators are complex and changeable, the insulator
states do not follow a specific expected pattern. The
identification of insulator states improves the efficiency of
prognostics and health management. Analyzing the cause
of different states and potential tendency leads cleaning the
pollution flashover regularly and setting the replacement
plan for the low-value insulators intelligently. Since the
Few-Shot Learning method can make full use of the same
or different class sample pairs, it can also recognize the
few test samples from the classes by comparing the feature
similarities between different categories instead of just
directly mapping features to a specific category.

The model should extract both the salient generalized
features and the particular subtle features to enhance the
generalization on the few-shot classification. Compared to
the previous settings [13, 14], we further extend the query
features to compare with both the sample features and
other query features during training. With more features
from the different categories, the model learns to construct
better the discriminant subspace based on the class-level
feature similarities. Compared with the class-level feature
similarities, the query sample category is determined by the
class label of the highest similarity. Secondly, we propose
a novel deep learning architecture to extract representative
features. Although residual learning addresses such an issue
by introducing shortcut connections and identity mapping,
shallow layers make sense in the training period instead
of carrying gradients to all layers. Therefore, we preserve
the shallow layer features which have high resolution to
represent fine details of objects. The simple neural network
is usually used in FSL to maintain the generalization.
Previously most methods [13, 14]utilize four convolutional
blocks for embedding modules. We extend to map the
shallow layer features to the deep layers by the residual
structure. The residual architecture is introduced to avoid
degradation and consistently enhance the feature expression
by extracting more practical features.

In this work, a novel Few-shot contrastive learning is
proposed, and we apply the framework to identify insulator
states. The main contributions are listed as follows:

1. To avoid degradation and consistently enhance the
feature expression, we introduce the residual structure
to map the shallow layer features to deep layers
for refined image-level feature representation. By
extracting more discriminative features, the framework
better recognizes image-level images.

2. Unlike existing approaches [15, 16], we further
consider more samples within a batch. Under the
constraint of the loss function, we achieve the class-
level feature representations. More samples contribute
to constructing a more discriminative feature space
where the relations are used to identify whether the
selected samples are from the same category in every
batch.

3. Extensive experiments on several datasets show the
effectiveness of our proposed model for Few-Shot
Learning.

The rest of the paper are described as follows. In
Section 2, we review existing insulator identification, Few-
Shot Learning, contrastive learning and metric learning.
In Section 3, we describe our main algorithm and its
implementation details. In Section 4, the experimental
results are discussed and analyzed. In Section 5, we
conclude the paper.

2 Related works

2.1 Insulator identification

As one of the main OCS suspension structures, insulators
realize electrical isolation and take on the mechanical
loads. Therefore, periodic inspection should be paid to
the maintenance of insulators. Recently, deep learning
has been introduced into insulator detection. The existing
insulator detection methods have been successfully applied
to the detection of insulator pollution degrees [4], insulator
hydrophobicity degrees [17], and insulator icing degrees
[18]. The ordinary methods collect samples of various
categories and divide them into the train set, validation
set, and the test set. The trained model can distinguish the
existing categories well and conduct multiple classification
of the samples to be tested in the test set. With more
discriminative features and practical strategies, the insulator
detection methods recognize insulators precisely.

However, the standard methods [19–21] require hundreds
of samples per class to identify the existing categories.
The limitation of samples makes it difficult to construct an
accurate feature mapping network, leading to insufficient
generalization. Since the Few-Shot Learning method can
make full use of the same or different class sample pairs,
it can also recognize the few test samples from the classes
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by comparing the feature similarities between different
categories instead of just directly mapping features to a
specific category [22, 23].

2.2 Few-shot learning

Deep learning has remarkable performance in feature
extraction and promising applications in automobile self-
driving [1], medical image analysis [2], and fault diagnosis
[3]. However, most deep learning algorithms heavily rely on
a large volume of annotated sets. Collecting enough labeled
samples is generally time-consuming and laborious in deep
learning.

Inspired by human beings′ remarkable ability to recog-
nize novel objects after seeing only a handful of examples,
Few-Shot Learning (FSL) is proposed to tackle these prob-
lems. FSL is the complementation and expansion of deep
learning. It mainly focuses on the feature representation
and model structure efficient usage when the labeled data
is limited. Unlike imbalanced classification, FSL trains and
tests only with a few samples instead of all samples for
a class. Previous outlier classification [24, 25] algorithms
distinguish the similarities between samples and train sam-
ples, while FSL aims to distinguish samples between novel
classes. FSL can quickly generalize to new tasks containing
only a few samples with supervision class labels or semantic
information using acquired knowledge or learning ability.

Currently, FSL can be categorized into three groups:
transfer learning-based, optimization-based, and meta
learning-based. Based on the assumption that the source
domain will help the similar target domain, the trans-
fer learning-based methods [26] take a pre-trained related
model as a good initialization and adapt to a new task with
a few iterations. Transferring well-trained source hypothe-
ses in terms of parameters to learn the target hypothesis
may be harmful to the target hypothesis. Larger weights
are assigned to higher class-wise relevance instances [27]
to alleviate negative transfer. Alternatively, only instances
contributing to the target hypothesis are learned to revise
the source hypothesis [28]. Both approaches focus on effec-
tive data selection. Such transfer learning methods have
been applied in rotating machinery intelligent diagnosis [11]
and new plant leaf and disease classification [29]. Most of
them are only developed for a specific model. Thus, these
methods lack the adaptation to various application scenes.
Transductive learning [30] enhances the model generaliza-
tion by unifying the representation of several classical intel-
ligent models. The optimization-based methods [21] learn
another neural network classifier that directly captures an
optimization algorithm′s ability to have good generalization
performance given only a set number of updates. Chelsea
et al. [32] train good initial parameters for meta-learner to
have good generalization on a new classification task. Based

on [32], low-dimensional class-specific latent embeddings
are decoded to generate the actual initial parameters [33].
The meta-learning methods learn a good metric or network
in which the measurement of the target sets can be opti-
mized continuously. Most of the researches focus on the
similar measure of the samples in the metric space. By cal-
culating the similarities between the samples [15, 34] or the
similarities between the samples and class prototypes [16],
the query images from new classes can be classified with-
out further updating the network. The similarities between
features can also be calculated by the feature direction in
the feature space [35]. Then, it learns to combine these
directions to obtain the principal direction for each novel
class.

The designed neural network learns to distinguish
between image pairs through similarity inference by con-
structing a meta-learning framework. Under the constraints
of FSL, the number of input samples for each class is
smaller than standard deep learning requirement. In each
training iteration, we randomly select C classes from the
train set with K labeled samples from each of the C classes
to act as the sample set. The rest of those C classes′ samples
act as the query set. For the 5-way 5-shot setting [13], the
number of images from the sample set is 25 and the num-
ber of images from the query set is 50. All the query images
need to calculate the similarities among the sample images.
The similarity metric space will be further adjusted based
on the similarities and category information.

The current FSL setting ignores the relationships within
the sample set itself and the relationships within the query
set itself. We propose to fully utilize the input samples and
the additional structures during training.

2.3 contrastive learning

Contrastive learning focuses on the representation of
features by comparing between different samples. The
contrastive learning is designed with the original contrastive
pair loss for discriminative architecture to gain enough
consistent features to recognize and verify specified issues.

The contrastive pair loss aims at learning a discriminative
feature space to measure the feature similarities among
the input samples. Recently, contrastive learning has been
introduced into predictions on unseen COVID-19 CT
images [36, 37], scene text detection [38] and facial
expression recognition [39]. Unlike simply mapping from
features to a category, contrastive learning increases inter-
class dispersion and intra-class compactness under different
granularities. Through similarity learning constraints, the
model can learn effective class-specific information for
guiding more robust feature learning. It makes sure
that samples from the same class have similar feature
representations. On the contrary, feature representations
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of different classes are far away in feature space. Most
of the works focus on the positive pairs [37, 39, 40].
Few works focus on the negative pairs [41]. Indeed, the
contrastive hard negative samples mining strategy enforces
features embedded in a more discriminative feature space.
The intra-class distance between the hard negative and
the easy negative samples should be closer, and the inter-
class distance between the hard negative and the positive
samples should be increased during model updating. Most
of the works classify the samples under the constraints
of contrastive learning. Particularly, the original image, its
augmented image and the rest of the images in the batch
act as an anchor, a positive sample, and negative samples,
respectively.

However, the contrastive learning methods mentioned
above cannot be applied to FSL directly. Unlike standard
contrastive learning, we take other samples of the same
category in the same batch as positive samples and samples
of other categories in the same batch as negative samples.

2.4 metric learning

Metric learning aims to learn a similarity metric that
calculates the similarities of samples. A similarity metric
is used to map similar samples closer and diverse samples
far from each other. We can compare samples based on
the underlying difference or the similarities of the images.
The essence of metric learning is to obtain a transformation
that can reflect the structural information of sample space
or semantic constraint information so that the feature
space and semantic space remain consistent. Therefore,
metric learning has outstanding performance in judging the
distance between data and classifying data. The content
for metric learning can either be the distance [42] or the
similarities [43, 44] between samples.

For image classification, metric learning optimizes the
metric to make the distance of the sample pairs from the
same category smaller than the distance between samples
from different categories by using label information or
image pair relation constraints. Metric learning methods
generally use a linear projection, which subjects to solving
real-world nonlinear characteristic problems. In recent
years, deep metric learning, which provides a better solution
for nonlinear data through activation functions, has attracted
researchers′ attention in many areas.

To learning from raw data, deep metric learning
[45] develops problem-based solutions through nonlinear
subspace. The resigned trade-off factor is proposed to
address the class-imbalance problem [46]. The positive
pairs of small distances and negative pairs of large distances
are simultaneously removed to improve learning efficiency
and prediction accuracy. Generated semantically similar
data [47] based on Linear Discriminant Analysis strengthen

the feature representations in the metric space. For selecting
different models, a discriminative stacked autoencoder [48]
is applied to new features. Afterward, the model is fine-
tuned by optimizing a new objective function. The nearest-
neighbor search model [49] is proposed for searching
different optimal nearest-neighbor numbers for different
training instances. The success of these studies indicates the
advantages of working in metric space.

The discriminative metric space is better constrained by
increasing the size of data [50, 51]. Inspired by metric
learning, the increased number of positives and negatives
contributes to more discriminative boundaries. Thus, we use
metric learning to construct the class-level feature space.

3Methodology

3.1 FSL classificationmodel

The meta-learning model learns to measure the similarities
among different image pairs in the training period. The
extracted representative features for one class should be
distinct from other classes′ features. Since additional
structural information can improve the model performance,
the compact group takes group similarity instead of
pair or triplet similarity. Therefore, the proposed FSL
framework for image classification is named Residual
Compact Network (RCNet). The input is all samples to be
compared, and the outputs are the similarity scores of the
given sample pairs.

The whole structure contains two main components:
1) the partial residual embedding module and 2) the
relation module. The partial residual embedding module
extracts distinctive features for each class under the batch
compact loss constraint. The relation module measures
the similarities among samples. With the help of the first
module, each sample in the query set needs to be compared
with samples in the sample set. Then, a similarity score
represents the pair similarity. In this way, the representations
and loss function complement the work with each other.
Figure 1 represents the structure of the proposed Residual
Compact Network.

The RCNet consists of supervised information and batch
compact loss for few-shot image classification. According
to the previous step, the RCNet aims to extract distinctive
features of different classes and achieve similarity scores
among given samples. The RCNet is a neural network
designed for FSL. Therefore, its training method is different
from those employed in standard deep learning. Instead of
dividing the dataset into the train set, validation set, and test
set, the dataset for FSL comprises the train set, support set,
and query set. The train set has its own label space, and this
space has no common intersection with the other two label
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Fig. 1 Residual Compact
Network
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spaces. The support set and query set share the same label
space. Since the query categories have no same category as
the train categories, the performance of the trained classifier
cannot be satisfactory. An effective way [13] is proposed
to realize training via episode training. The strategy is
choosing C classes with total KC samples randomly as a
sample set and the rest of the samples in C classes as
query set from the train set. Therefore, the corresponding
mapping relationships learned from the train set can further
fit in the query set. The partial residual embedding module
f (x) takes in sample xi and xj . Then, it produces feature
maps f (xi) and f (xj ), respectively. After concatenating
the feature maps, the relation module g will produce the
similarity score ri,j from 0 to 1 between sample xi and
xj sequentially. For K shot setting, the class-level feature
map is calculated with the element-wise sum of all samples
from each class. We suppose that a similarity score should
be higher if images are from the same class. Therefore,
we use mean square error, shown in (1), to evaluate the
relationships between similarity scores and class labels:
images from same class should have a score of 1 and other
conditions should have 0.

(1)

3.2 Partial residual embeddingmodule

Both the completeness and uniqueness of the features are
contributed by the feature extraction module in which
the module must extract enough features belonging to a
specified class. Computer vision has long been understood
to follow a hierarchical process from the analysis of
simple to complex features. Shallow layers in the neural
network are sensitive to basic visual features while deeper
layers capture basic shapes. With increasing depth [49], the
network performs better at learning discriminative features

and generalization on train data. However, the model
performs worse as the network gets wider at a specific
depth. Thus, it is necessary to choose the appropriate
architecture for the different applications. The standard
neural networks process inputs from low-level features up to
task-specific high-level features. However, simply stacking
more layers in the architecture may result in gradient
vanishing or gradient exploding. Although these phenomena
can be addressed by normalized initialization and nonlinear
activation, adding more layers to an appropriate architecture
will lead to the degradation of model performance. He
et al. [52] propose residual learning to address such an
issue by introducing shortcut connections and identity
mapping. By splitting the residual network apart into several
paths, although the residual network improves the model
performance, it is shallow layers [53] making sense in the
training period instead of carrying gradients to all layers.
Therefore, the preservation of shallow layer representations
may be vital in deep learning.

Inspired by [52, 53], we design the partial residual
embedding module as a feature extraction architecture. In
this module, we preserve the shallow layer representations
and design shortcut connections in deep layers. The
architecture is shown in Fig. 2, and more detailed
specifications of the partial residual embedding module can
be found in Table 1.

In the partial residual embedding module, every Con-
vBlock comprises a convolutional layer and a batch normal-
ization layer. Due to the hierarchical structure, we preserve
shallow layer feature maps which contain relative high-
resolution natural information to describe the object better.
Considering the character [54], we do not add ReLU activate
function to all layers in the partial residual embedding mod-
ule except the first layer. The input images are forwarded
through the convolutional layer and the batch normaliza-
tion layer sequentially. The ShortBlock is used as a shortcut
connection that takes the feature maps from output of the

Fig. 2 Partial residual
embedding module
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Table 1 Specifications of the partial residual embedding module

Layers Layer name type Depth Stride Padding

1 ConvBlock1 3 × 3Conv+BN+ReLU 64 1 1

2 ConvBlock2 3 × 3Conv+BN 64 1 1

3 × 3Conv+BN 64 1 1

3 ConvBlock3 3 × 3Conv+BN 128 2 1

3 × 3Conv+BN 128 1 1

ShortBlock1 1 × 1Conv+BN 128 2 0

4 ConvBlock4 3 × 3Conv+BN 256 2 1

3 × 3Conv+BN 256 1 1

ShortBlock2 1 × 1Conv+BN 256 2 0

5 Feature Vectors Pooling

last layer and adds the current ConvBlock output as the
final output. The feature vectors contain two parts: m × m

feature map and its corresponding one-dimension represen-
tative vector. The m × m feature map is achieved after the
ConvBlock4. The m × m feature map is adaptive pooling
into a one-dimension vector to compare similarities among
samples.

3.3 supervised contrastive learning

Our investigation is based on supervised contrastive
learning [55], and we present this loss clearly before our
batch compact loss.

3.3.1 supervised contrastive loss

For any network, based on the features extracted by its
encoder module f (x), the supervised contrastive loss for a
positive pair of images (xi, xj ) is defined as:

(2)

where fN(xi) is the normalization of the extracted feature
f (xi). fN(xi) · fN(xk) is the similarity between f (xi) and

f (xj ) measured by cosine similarity. is an indicator

function evaluation to 1 if image xj has the same class
label to image xi . Ns is the number of the total calculated
pairs within a batch. We assume that the similarity score
of the two similar images should be high. Minimizing the
loss in (2) will increase the similarities among the similar
representations. The τ denotes the predefined temperature
scale parameter.

3.3.2 batch compact loss

Integrating problem-specific information and class labels
in contrastive learning improves the effectiveness of the
resulting supervised learning process and impact perfor-
mance gains in downstream tasks. As mentioned before,
the designed neural network learns to map similar features
closer. The supervised contrastive loss encourages class-
level representations to be similar for similar images. We
further extend image-level representations to representa-
tions with this motivation. We propose this strategy that
encourages the partial residual embedding module to extract
general class-level representations within a batch. Using the
batch compact loss between similar images from the same
class is highly effective in learning the rich representations.
The batch compact loss is shown in Fig. 3.

For a given image, this loss incentivizes the representa-
tions from other images of the same class to be similar. The
batch compact loss for a set of given batch images is defined

Fig. 3 Batch compact loss

Desired representationsOriginal representations
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as:

Lcf =
N∑

a=1

Lcf
a (3)

(4)

In (4), Lcf
a is defined similarity between the image xi

and any image xj from the same class in the ith batch.
fN(xi) is the normalization of the extracted feature f (xi)

. fN(xi) · fN(xj ) is the similarity between f (xi) and

f (xj ) measured by cosine similarity. is an indicator
function evaluation to 1 if image xj has the same class label
to image xi . τ denotes to a predefined temperature scale
parameter. The batch compact loss considers all positive
pairs both (xi, xj ) and (xj , xi) in one batch and all the

negative pairs in the same structures. is an indicator
function evaluation to 1 if compared image pair is not the
same pair. Nt is the number of the total calculated pairs
within a batch. The loss encourages the partial residual
embedding module to give closely aligned representations
to all entries from the same class in each instance of (4). For
any anchor per batch in the 5-way 5-shot setting, the number
of positives is 14 and the number of negatives is 60. In
the standard supervised contrastive loss setting for FSL, the
number of positives is 6 and the number of negatives is 8 for
any anchor. The batch compact loss preserves the intention
by adding more samples in both the positives and negatives
under the FSL settings. With the increasing number of
positives and negatives, the model can distinguish similar
samples with better intra-class boundaries. The model
trains with such a strategy can map similar features closer
progressively.

3.3.3 metric loss functions

To evaluate the efficiency and validity of our proposed
batch compact loss, we compare several commonly used
loss functions in metric learning. Let x be the input feature
vector, and y be its label. Let f be an encoder network
mapping the input space to the embedding space and let
z = f (x) be the embedding vector.

L(za, zp, zn) = max(0, |za − zp|2 + |za − zn|2 + m) (5)

The triplet loss [56] has been used to generate robust
representations, which can only handle one positive and
negative at a time. As shown in (5), za , zp, zn are the anchor
vector, positive vector, and the negative vector, respectively.
The parameter m is a margin parameter, and we set m to
1. The triplet loss pushes the negative sample outside of

the boundary by the margin and keeps the positive sample
within the boundary.

(6)

The N-pair loss [57] is a generalization of triplet loss.
It identifies a positive sample by comparing more than
one negative sample, as shown in (6). zi , zj , zk are
the anchor vector, negative vectors, and positive vector,
respectively. The N-pair loss pushes 2N-1 negative samples
away simultaneously instead of one at a time.

To evaluate the efficiency of the proposed loss function,
we experiment on several loss functions. Fashion-MNIST
is commonly used to evaluate the efficiency of the
loss function [58]. We conduct experiments to visualize
the performance. Fashion-MNIST consists of 60000 train
instances and 10000 test instances. Each example is a 28 ×
28 grayscale image associated with a label from 10 classes.
The result is shown in Fig. 4.

Based on the loss definition mentioned above, different
loss functions extract meaningful features by different data
structures. Both the n-pairs loss function and triplet loss
function are based on a simple pair of samples. In contrast,
the supervised contrastive loss and batch compact loss are
based on complex pairs of samples. Both the supervised
contrastive loss and batch compact loss construct the metric
space through multiple sample samples. Unlike the first two
loss functions, there are more positive samples to constrain
the similarities in each iteration. We set the batch size
for batch compact loss to 75 and other loss functions to
50. This setting is to stimulate data usage in the FSL.
Model benefits from more structural features and larger
batch size. The contrastive loss and the batch compact loss
have better performance than the other loss functions. The
batch compact loss performs better than the supervised
contrastive loss at the first several epochs by a little margin.
In the whole training period, we can observe a slight
margin at the twentieth epoch. With more training epochs,
more informative samples are extracted to construct the
discriminative metric space.

Single objective loss is just a degenerate case of
the multi-objective loss. A simple method is to form a
composite objective function as the weighted sum of the
objectives. The weight for an objective is proportional to
the preference factor assigned to that objective. Without
any knowledge of the potential trade-off solutions, this
is an even more difficult task. Standard multi-objective
optimization methods convert multiple objectives into a
single objective using a weighted-sum method. The strategy
scalarizes a set of objectives into a single objective by pre-
multiplying each objective with a user-supplied weight. The
procedure cannot be used to find Pareto-optimal solutions
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Fig. 4 Comparison of different
loss functions

that lie on the non-convex portion of the Pareto-optimal
front. Although there exist approaches addressing non-
convex objective problems, we split RCNet training into
two-stage training procedures. The details of the training
algorithm are shown in Tables 2 and 3.

Based on different FSL settings, the partial residual
embedding module is trained from scratch according to
Table 2. In this stage, class-level representations will be
more general iteratively. After the training is finished, the
partial residual embedding module weights are saved for the
next stage.

In the second stage, the relation module based on
MSE loss is updated to identify the similarities among

the samples iteratively. Unlike standard deep learning, the
proposed model learns to extract class-level representations
and measure the similarities between novel categories.

4 Experiments

To demonstrate the effectiveness of our method and inspect
the effects of using different C-way K-shot variants, we
extensively evaluate our proposed RCNet with three public
FSL datasets and one OCS insulator sub-dataset. In the
subsequent sections, we will present the datasets used,
experimental settings, and results with discussions.

Table 2 The first stage training
algorithm

Few-shot contrastive learning for image classification and its application... 6155



Table 3 The second stage
training algorithm

4.1 Dataset

We tested our method on three datasets: three public FSL
datasets and one OCS insulator sub-dataset.

4.1.1 Omniglot

The Omniglot dataset [59] is a handwritten character
dataset that contains 50 classes and the total number
is 1623 different characters drawn by 20 people. With
data augmentation, the existing data are augmentated
by 90, 180 and 270 degrees of rotation, the train set
contains 1200 original classes and their corresponding
augmentations. The remaining 423 classes and their
corresponding augmentations constitute the test set. All
images in Omniglot are resized to 28 × 28 pixels.

4.1.2 miniImagenet

The miniImagenet dataset is a subclass of the ILSVRC-12
dataset proposed by [13]. This dataset has 100 classes with
each having 600 images. All images are 84 × 84 pixels.
We follow [31] and split the dataset into 64, 16 and 20
classes for training, support and testing, respectively. These
separated datasets have no intersection.

4.1.3 tieredImagenet

The tieredImagenet dataset [60] is a larger subset of the
ILSVRC-12 dataset. The dataset is split into 20 train, 6
validation, and 8 test categories. Each category contains
between 10 and 30 classes. All images are 224 × 224
pixels. This dataset groups classes into broader categories

corresponding to higher-level nodes in the ImageNet
hierarchy. This division ensures that all the train classes are
sufficiently distinct from the test classes. Additionally, the
tiered structure of the tieredImagenet dataset may be helpful
for hierarchical relationships between classes.

4.1.4 OCS insulator

All the images in this dataset are obtained by the catenary
checking video monitor system of the Beijing-Ganzhou
high-speed rail line. The insulators are taken in different
illumination, angle of cameras. To avoid creating an
imbalanced dataset that may lead to ambiguous accuracies,
we build a balanced dataset by data augmentation method
[61]. We divide the insulators into five categories, as shown
in Fig. 5. Figure 5a-e shows the normal, umbrella petticoats
damaged and foreign body, polluted, and broken states of
insulators, respectively. Motivated by [22], we randomly
select 9 samples, 7 samples and 50 samples per class for
training, validation and testing, respectively. All images are
224 x 224 pixels.

4.2 Implementation details

Our method is implemented by Ubuntu 16.04, CUDA 10.1
and Pytorch 1.4. The hardware of the experiment is Intel
Xeon X5690, Nvidia GeForce GTX 1080ti and 32GB RAM.
For the whole network architecture, we train the model from
scratch without fine-tuning. Due to the limitation of the
GPU memory, we resize images in tieredImagenet and OCS
insulator sub-dataset to 84 × 84 pixels.

The first training stage aims at training the partial
residual embedding module based on the batch compact
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Fig. 5 States of different types
of insulators. a Normal. b
umbrella petticoats damaged. c
foreign body. d polluted. e
broken

loss. Due to the different C-way K-shot settings, the number
of query set varies. During training, the learning rate is 0.5
with a decay rate 0.1 of every 20k epochs. The model is
trained for 150k epochs. The optimization is Adam and this
step is optimized by batch compact loss. We set τ to 0.9.

The second stage aims at training the relation module
based on MSE loss. During training, the learning rate
is 0.001 and the learning decay rate is 0.5 of every

100k epochs. The model is trained for 500k epochs. The
optimization is Adam and this stage is optimized by MSE
loss. Using the same dataset in the first stage, the pre-
trained partial residual embedding module weight is loaded
and the RCNet framework is trained based on MSE loss
sequentially. After training in this stage, the RCNet predicts
the label of test samples according to the similarity scores.
The accuracy is calculated with 95% confidence intervals

Few-shot contrastive learning for image classification and its application... 6157



over test episodes according to different settings. We set the
test episode to 1000 for the Omniglot dataset and 600 for
the other datasets.

4.3 Experimental results and analysis

4.3.1 Experiments on different structures

To select the appropriate network structure, we conduct
experiments on different structures before the actual
training. A group of comparative experiments is conducted
to analyze the effects of depth and convolution kernels.

Figure 6 shows the accuracy of different partial residual
modules. The abscissa represents the results of every five
thousand iterations, and the ordinate represents the accuracy
of the training process. We explore the performances of
different partial residual modules on the miniImagenet
dataset to select a generalized architecture. The specific
parameters for each dataset will be adjusted according
to the specific dataset. For all modules, the S7 module
outperforms others in training from scratch by a sufficient
margin. We apply the S7 module to our architecture, as
shown in Table 4. The detailed specifications of the different
partial residual modules can be found in Table 4. Layer 2
to layer 4 in Table 1 can be replaced with different partial
residual module settings in Table 4. In FSL, the shallow
module performs better than the deeper ones. In the same
depth, more convolution kernels are more helpful for the
network to extract useful features. The appropriate module
depth and convolution kernels can effectively improve the
model performance.

Table 4 Specifications of the partial residual embedding module

Name Framework Blocks

S1 Conv64|Conv64|Conv64|Conv64 4

S2 2×Conv64|2×Conv64|2×Conv64|2×Conv64 4

S3 Conv64|Conv128|Conv256|Conv512 4

S4 2×Conv64|2×Conv128|2×Conv256|2×Conv512 4

S5 Conv64|Conv64|Conv64 3

S6 2×Conv64|2×Conv64|2×Conv64 3

S7 Conv64|Conv128|Conv256 3

S8 2×Conv64|2×Conv128|2×Conv256 3

4.3.2 Experiments on different datasets

The first set of experiments is conducted on the Omniglot
dataset. Because of the limited written characters, we
evaluate our method both in 5-way and 20-way settings.
These results are reported in Table 5. Symbol ′-′ indicates
the unreported result. Our method achieves acceptable
performance among several algorithms. Specifically, our
method improves the 5-way 1-shot, the 20-way 5-shot
accuracy by 0.1%, and 20-way 1-shot accuracy by 0.4%.
However, comparing to the 5-way 5-shot settings, our
method falls behind by 0.1% to the best previously
published results. With batch compact loss, our method
improves the performance demonstrate that the increased
numbers of positives and negatives contribute to a
distinctive feature space under the FSL setting.

Fig. 6 Accuracy of different
residual modules
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Table 5 The accuracy on Omniglot dataset

Model FT 5-way Acc 20-way Acc

1-shot 5-shot 1-shot 5-shot

MANN [62] N 82.8% 94.9% - -

MATCHING NETS [13] N 98.1% 98.9% 93.8% 98.5%

MATCHING NETS [13] Y 97.9% 98.7% 93.5% 98.7%

CNAPS [63] Y 97.4±0.3% 99.4±0.1% 95.3±0.2% 98.4±0.1%

SIAMESE NETS WITH MEMORY [64] N 98.4% 99.6% 95.0% 98.6%

NEURAL STATISTICIAN [65] N 98.1% 99.5% 93.2% 98.1%

META NETS [66] N 99.0% - 97.0% -

PROTOTYPICAL NETS [16] N 98.8% 99.7% 96.0% 98.9%

MAML [32] Y 98.7±0.4% 99.9±0.1% 95.8±0.3% 98.9±0.2%

RELATION NET [15] N 99.6±0.2% 99.8±0.1% 97.6±0.2% 99.1±0.1%

RCNet N 99.6±0.2% 99.7±0.1% 97.7±0.2% 99.1±0.1%

RCNet with batch compact loss N 99.7±0.2% 99.8±0.1% 98.0±0.1% 99.2±0.1%

Considering the unknown accuracy distribution, we use
the Wilcoxon signed-rank test [67] to determine whether the
accuracy series come from the same distribution. The null
hypothesis is that the approaches to be compared are similar
in performance, and the alternative hypothesis is that the
approaches to be compared are not. A p-value of less than
0.05 indicates statistical significance between the compared
approaches. In the first set of experiments, the bold results
in the table are the best results with significant differences
to other approaches (only the coded methods are tested).

The second set of experiments is conducted on the
miniImagenet dataset. We evaluate our method both in
the 5-way 1-shot and the 5-way 5-shot. These results are
reported in Table 6. Symbol ′-′ indicates unreported result.
Specifically, our model improves the 5-way 1-shot accuracy
by 3.6% and the 5-way 5-shot accuracy by 0.7% to the best
previously published results. On the one hand, under the
batch compact loss constraint, the model learns to map the

similar features closer and construct better the discriminant
subspace based on the class-level feature similarities. On the
other hand, the partial residual embedding module preserves
the shallow layer features. With richer low-level features,
the RCNet better describes the object-level samples. Our
method, benefiting from the batch compact loss, further
improves the ability to recognize the novel categories based
on the similarities. Under the FSL settings, the class with
fewer samples in each category benefits more from the
batch compact loss. In this experiment, the p-value for all
comparisons is 0.002. Because the p-value is less than 0.05,
the null hypothesis is rejected. It means that our model is
better than other approaches (only the coded methods are
tested).

The third set of experiments is conducted on the
tieredImagenet dataset. We evaluate our method both in
the 5-way 1-shot and the 5-way 5-shot. These results are
reported in Table 7. Since the train classes are sufficiently

Table 6 The accuracy on miniImagenet dataset

Model FT 5-way Acc

1-shot 5-shot

MATCHING NETS [13] N 43.56±0.84% 55.31±0.73%

META-LEARN LSTM [31] N 43.44±0.77% 60.60±0.71%

MAML [32] Y 48.70±1.84% 63.11±0.92%

META NETS [66] N 49.21±0.96% -

PROTOTYPICAL NETS [16] N 49.42±0.78% 68.20±0.66%

RELATION NET [15] N 50.44±0.82% 65.32±0.70%

CovaMNet [68] N 51.19±0.76% 67.65±0.63%

RCNet N 51.33±0.86% 67.69±0.79%

RCNet with batch compact loss N 54.85±0.84% 68.92±0.77%
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Table 7 The accuracy on tieredImagenet dataset

Model FT 5-way Acc

1-shot 5-shot

MAML [32] Y 51.67±1.81% 70.30±1.75%

SSL [60] N 52.39±0.44% 69.88±0.22%

PROTOTYPICAL NETS [16] N 53.31±0.89% 72.69±0.74%

CovaMNet [68] N 54.07±0.91% 70.34±0.75%

RELATION NET [15] N 54.48±0.93% 71.31±0.78%

RCNet N 56.92±0.97% 73.41±0.80%

RCNet with batch compact loss N 58.42±0.96% 74.17±0.78%

distinct from the test classes, the methods perform better
on this dataset than the second experiment. Specifically,
our method improves the 5-way 1-shot accuracy by nearly
4% and the 5-way 5-shot accuracy by nearly 1.5% to the
best previously published results. The class-level features
obtained by the proposed architecture can effectively
construct the discriminative feature space. With the distinct
class-level boundaries, our method better distinguishes the
different novel categories. In this experiment, the p-value
for all comparisons is 0.002. Because the p-value is less than
0.05, the null hypothesis is rejected. Therefore, we conclude
that our model performs better than other approaches (only
the coded methods are tested).

The fourth set of experiments is conducted on the OCS
insulator sub-dataset. Considering the limited categories
and samples in this dataset, we apply data augmentation
including randomly crop all the images into 84 × 84 and
color transformation to ease the overfitting. We evaluate
these models both in the 5-way 1-shot and the 5-way 5-
shot settings. Based on FSL, all the models identify the
different insulator states even with only one or few samples
per class. We only train the model for 30 epochs in the

Table 8 The accuracy on OCS insulator sub-dataset

Model
FT

5-way Acc

1-shot 5-shot

MAML [32] N 81.44±1.24% 88.93±0.68%

MATCHING NETS [13] N 82.12±0.62% 86.79±0.23%

META-LEARN LSTM [31] N 84.16±0.19% 87.80±0.13%

CovaMNet [68] N 84.93±0.91% 87.81±0.33%

PROTOTYPICAL NETS [16] N 83.77±0.14% 86.69±0.11%

RELATION NET [15] N 84.31±0.43% 89.11±0.28%

RCNet N 85.21±0.65% 89.59±0.36%

RCNet with batch compact loss N 85.45±0.57% 89.68±0.33%

first stage to avoid falling into a local optimum. Then,
we train our model for 30K epochs. All other models
are trained for 30K epochs. These results are reported in
Table 8. Specifically, our method improves the 5-way 1-
shot accuracy by 0.52% and the 5-way 5-shot accuracy by
0.57% to the other methods applied in this dataset. The p-
value for all comparisons is 0.002. Because the p-value is
less than 0.05, the null hypothesis is rejected. It means that
our approach outperforms other approaches not by accident.

5 Conclusion

In this paper, we focus on the challenge of the few-shot
image classification problem via comparing discriminative
class-level features from a few labeled examples. The partial
residual embedding module and batch compact loss are our
two contributions. The partial residual embedding module
utilizes low-level features and shortcut connections to
generate discriminative features. The shortcut connections
preserve the shallow layer features and transfer them to the
high layers. For few-shot image classification, we manage to
learn a more robust class-level feature extractor through the
training period. The batch compact loss exploits the features
within one batch fully. Extensive experiments on several
datasets show the effectiveness of our proposed model for
FSL.
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