Skip to main content
Log in

Generation and verification of learned stochastic automata using k-NN and statistical model checking

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Deriving an accurate behavior model from historical data of a black box for verification and feature forecasting is seen by industry as a challenging issue especially for a large featured dataset. This paper focuses on an alternative approach where stochastic automata can be learned from time-series observations captured from a set of deployed sensors. The main advantage offered by such techniques is that they enable analysis and forecasting from a formal model instead of traditional learning methods. We perform statistical model checking to analyze the learned automata by expressing temporal properties. For this purpose, we consider a critical water infrastructure that provides a scenario based on a set of input and output values of heterogeneous sensors to regulate the dam spill gates. The method derives a consistent approximate model with traces collected over thirty years. The experiments show that the model provides not only an approximation of the desired output of a feature value but, also, forecasts the ebb and flow of the sensed data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Listing 1
Listing 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Sistema Integral del Ciclo del Agua (Integral System of Water Cycle)

  2. http://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html

  3. http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en

References

  1. Agha G, Palmskog K (2018) A survey of statistical model checking. ACM Trans Model Comput Simul 28(1):6:1–6:39. https://doi.org/10.1145/3158668

    Article  MathSciNet  Google Scholar 

  2. Aichernig B, Tappler M (2019) Probabilistic black-box reachability checking (extended version). Formal Methods Syst Des 54. https://doi.org/10.1007/s10703-019-00333-0

  3. Augasta G, Kathirvalavakumar T (2013) An empirical comparison of discretization methods for neural classifier. In: Prasath R, Kathirvalavakumar T (eds) Mining intelligence and knowledge exploration. Springer International Publishing, Cham, pp 38–49

  4. Azodi C B, Tang J, Shiu S H (2020) Opening the black box: Interpretable machine learning for geneticists. Trends Gen 36(6):442–455

  5. Baouya A, Chehida S, Bensalem S, Bozga M (2020a) Formal modeling and verification of blockchain consensus protocol for iot systems. In: Fujita H, Selamat A, Omatu S (eds) Knowledge Innovation Through Intelligent Software Methodologies, Tools and Techniques - Proceedings of the 19th International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques, SoMeT 2020. https://doi.org/10.3233/FAIA200578, vol 327. IOS Press, Frontiers in Artificial Intelligence and Applications, Kitakyushu, pp 330–342

  6. Baouya A, Chehida S, Cantero M, Millet M, Bensalem S, Bozga M (2020b) Formal modeling and simulation of collaborative intelligent robots. In: Advances in Service-Oriented and Cloud Computing - International Workshops of ESOCC 2020, Revised Selected Papers, vol 1360. Springer, Communications in Computer and Information Science, Heraklion, pp 41–52. https://doi.org/10.1007/978-3-030-71906-7_4

  7. Baouya A, Mohamed OA, Ouchani S, Bennouar D (2021) Reliability-driven automotive software deployment based on a parametrizable probabilistic model checking. Expert Syst Appl 174:114572. https://doi.org/10.1016/j.eswa.2021.114572, https://www.sciencedirect.com/science/article/pii/S0957417421000130

  8. Abdelhakim B (2021a) Bip model for water flow estimation. https://github.com/hakimuga/classification-and-smc/tree/main/BIPModel/Models

  9. Abdelhakim B (2021b) Decision tree classifier implementation. https://github.com/hakimuga/classification-and-smc/tree/main/decisiontreeclassifier

  10. Abdelhakim B (2021c) Discretizazed values. https://github.com/hakimuga/classification-and-smc/tree/main/discritization

  11. Abdelhakim B (2021d) Logistic regression classifier implementation. https://github.com/hakimuga/classification-and-smc/tree/main/logisticregression

  12. Abdelhakim B (2021e) Naïve bayes classifier implementation. https://github.com/hakimuga/classification-and-smc/tree/main/gaussiannb

  13. Abdelhakim B (2021f) Statistical model checking results. https://github.com/hakimuga/classification-and-smc/tree/main/Results

  14. Bishop C (1995) Neural networks for pattern recognition. Oxford University Press, Inc., New York

  15. Bu F, Wang X (2019) A smart agriculture iot system based on deep reinforcement learning. Fut Gener Comput Syst 99:500–507

  16. Calderoni L, Magnani A, Maio D (2019) Iot manager: an open-source iot framework for smart cities. J Syst Arch 98:413–423

  17. Calisi D, Censi A, Iocchi L, Nardi D (2008) Openrdk: A modular framework for robotic software development. pp 1872–1877. https://doi.org/10.1109/IROS.2008.4651213

  18. Cheon H, Ryu J, Ryou J, Park C, Han YS (2021) Ared: automata-based runtime estimation for distributed systems using deep learning. Clust Comput. 1–13. https://doi.org/10.1007/s10586-021-03272-w

  19. Simonds D (2017) PRISM statistical model checker. http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking

  20. David A, Larsen KG, Legay A, Mikučionis M, Poulsen DB (2015) Uppaal smc tutorial. Int J Softw Tools Technol Transfer 17(4):397–415

    Article  Google Scholar 

  21. Doerr B, Doerr C, Ebel F (2015) From black-box complexity to designing new genetic algorithms. Theor Comput Sci 567:87–104

  22. Erdogdu U, Tan M, Alhajj R, Polat F, Demetrick D, Rokne J (2011) Employing machine learning techniques for data enrichment: Increasing the number of samples for effective gene expression data analysis. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine, pp 238–242

  23. Fitzpatrick P, Metta G, Natale L (2008) Towards long-lived robot genes. Robot Auton Syst 56(1):29–45. https://doi.org/10.1016/j.robot.2007.09.014, https://www.sciencedirect.com/science/article/pii/S0921889007001364, human Technologies: ”Know-how”

  24. Franco JM, Correia F, Barbosa R, Zenha-Rela M, Schmerl B, Garlan D (2016) Improving self-adaptation planning through software architecture-based stochastic modeling. J Syst Softw 115:42–60

  25. García S, Luengo J, Sáez JA, López V, Herrera F (2013) A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Trans Knowl Data Eng 25(4):734–750

    Article  Google Scholar 

  26. Giles C, Lawrence S (2001) Noisy time series prediction using recurrent neural networks and grammatical inference. Mach Learn 44:161–183

    Article  Google Scholar 

  27. Gudla S, Kuda NR (2021) Learning automata based energy efficient and reliable data delivery routing mechanism in wireless sensor networks. J King Saud Univ - Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2021.04.006, https://www.sciencedirect.com/science/article/pii/S1319157821000926

  28. Hasan M, Islam MM, Zarif MII, Hashem M (2019) Attack and anomaly detection in iot sensors in iot sites using machine learning approaches. Internet Things 7:100059. https://doi.org/10.1016/j.iot.2019.100059, http://www.sciencedirect.com/science/article/pii/S2542660519300241

  29. Hastie T, Tibshirani R, Friedman J (2013) The elements of statistical learning: Data mining, inference and prediction, Springer Series in Statistics. Springer, New York

  30. Hérault T, Lassaigne R, Magniette F, Peyronnet S (2004) Approximate probabilistic model checking. In: Verification, model checking, and abstract interpretation. Springer, Berlin, pp 73–84

  31. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  32. Holzmann G (2003) Spin Model Checker, the: Primer and Reference Manual, 1st edn. Addison-Wesley Professional

  33. Jin D, Shi S, Zhang Y, Abbas H, Goh T T (2019) A complex event processing framework for an adaptive language learning system. Fut Gener Comput Syst 92:857–867

  34. Kang W, Kim D (2018) Poster abstract: Deeprt: A predictable deep learning inference framework for iot devices. In: 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI), pp 279–280

  35. Khalili A, Narizzano M, Natale L, Tacchella A (2017) Learning middleware models for verification of distributed control programs. Robot Auton Syst 92:139–151. https://doi.org/10.1016/j.robot.2017.01.016, https://www.sciencedirect.com/science/article/pii/S0921889016300380

  36. Kıraç F, Aktemur B, Sözer H, Şahin Gebizli C (2019) Automatically learning usage behavior and generating event sequences for black-box testing of reactive systems. Softw Qual J 27. https://doi.org/10.1007/s11219-018-9439-1

  37. Kwiatkowska M, Norman G, Parker D (2006) Controller dependability analysis by probabilistic model checking. Control Eng Pract 15(11):1427–1434

    Article  Google Scholar 

  38. Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of probabilistic real-time systems. In: Proc. 23rd International Conference on Computer Aided Verification (CAV’11), vol 6806. Springer, LNCS, pp 585–591

  39. Larsen K, Legay A (2016) Statistical model checking: Past, present, and future. vol 9952, pp 3–15. https://doi.org/10.1007/978-3-319-47166-2_1

  40. Larsen KG, Pettersson P, Yi W (1997) Uppaal in a nutshell. Int J Softw Tools Technol Transf 1(1–2):134–152

    Article  Google Scholar 

  41. Ledesma S, Ibarra-Manzano MA, Cabal-Yepez E, Almanza-Ojeda DL, Avina-Cervantes JG (2018) Analysis of data sets with learning conflicts for machine learning. IEEE Access 6:45062–45070

    Article  Google Scholar 

  42. Lyu Y, Chen J, Song Z (2019) Image-based process monitoring using deep learning framework. Chem Intell Lab Syst 189:8–17

  43. Mahdavinejad M S, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth A P (2018) Machine learning for internet of things data analysis: a survey. Digit Commun Netw 4(3):161–175

  44. Maimon O, Rokach L (2010) Data mining and knowledge discovery handbook. Series in Solid-State Sciences. Springer, US

  45. Mao H, Chen Y, Jaeger M, Nielsen T, Larsen K, Nielsen B (2016) Learning deterministic probabilistic automata from a model checking perspective. Mach Learn 105. https://doi.org/10.1007/s10994-016-5565-9

  46. Meinke K, Sindhu MA (2013) Lbtest: A learning-based testing tool for reactive systems. In: 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, pp 447–454. https://doi.org/10.1109/ICST.2013.62

  47. Mercaldo F, Martinelli F, Santone A (2019) Real-time scada attack detection by means of formal methods. In: 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp 231– 236

  48. Narayanan U, Unnikrishnan A, Paul V, Joseph S (2017) A survey on various supervised classification algorithms. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), pp 2118–2124

  49. Naskos A, Gounaris A, Mouratidis H, Katsaros P (2016) Online Analysis of security risks in elastic cloud applications. IEEE Cloud Comput 3(5):26–33

    Article  Google Scholar 

  50. Neto A, Subramanyan R, Vieira M, Travassos G (2007) A survey on model-based testing approaches: a systematic review, pp 31–36. https://doi.org/10.1145/1353673.1353681

  51. Nouri A, Mediouni BL, Bozga M, Combaz J, Bensalem S, Legay A (2018) Performance Evaluation of Stochastic Real-Time Systems with the SBIP Framework. Int J Crit Comput-Based Syst:1–33

  52. Onal AC, Berat Sezer O, Ozbayoglu M, Dogdu E (2017) Weather data analysis and sensor fault detection using an extended iot framework with semantics, big data, and machine learning. In: 2017 IEEE International Conference on Big Data (Big Data), pp 2037–2046

  53. Padilla F, Hernandez H, Juncosa R, Vellando P (2015) A numerical solution for the integrated analysis of water resources management: Application to the mero river watershed, la coruña, spain, vol 7

  54. Peled D, Vardi MY, Yannakakis M (2002) Black box checking. J Autom Lang Comb 7:225–246. https://doi.org/10.1007/978-0-387-35578-8_13

  55. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler R, Ng A (2009) Ros: an open-source robot operating system. vol 3

  56. Ren Y, Zhou Q, Wang Z, Wu T, Wu G, Choo KKR (2020) Query-efficient label-only attacks against black-box machine learning models. Comput Secur 90:101698

    Article  Google Scholar 

  57. Sammut C, Webb GI (2010a) Decision Trees For Regression. Springer, Boston, pp 267–267. https://doi.org/10.1007/978-0-387-30164-8_205

    Google Scholar 

  58. Sammut C, Webb GI (2010b) Logistic Regression. Springer, Boston, pp 631–631. https://doi.org/10.1007/978-0-387-30164-8_493

    Google Scholar 

  59. Sen K, Viswanathan M, Agha G (2004) Learning continuous time markov chains from sample executions. In: First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings., pp 146–155

  60. Sen PC, Hajra M, Ghosh M (2020) Supervised classification algorithms in machine learning: a survey and review. In: Mandal J K, Bhattacharya D (eds) Emerging technology in modelling and graphics. Springer Singapore, Singapore, pp 99–111

  61. Tsai CW, Lai CF, Chiang MC, Yang LT (2014) Data mining for internet of things: A survey. IEEE Commun Surv Tutorials 16(1):77–97

    Article  Google Scholar 

  62. Webb GI (2010) Naïve Bayes. Springer Boston, pp 713–714. https://doi.org/10.1007/978-0-387-30164-8_576

  63. Wei W, Wang B, Towsley D (2002) Continuous-time hidden markov models for network performance evaluation. Perform Eval 49(1):129–146. performance 2002

  64. Younes HLS, Simmons RG (2002) Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma E, Larsen KG (eds) Computer Aided Verification. Springer, Heidelberg, pp 223–235

  65. Zhang PG (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev) 30(4):451–462

    Article  Google Scholar 

  66. Zhang X, Wang Y, Li Z (2021) Interpreting the black box of supervised learning models: Visualizing the impacts of features on prediction. Appl Intell:1573–7497. https://doi.org/10.1007/s10489-021-02255-z

  67. Zhang Y, Lin Q, Wang J, Verwer S (2017) Car-following behavior model learning using timed automata. IFAC-PapersOnLine 50(1):2353–2358. 20th IFAC World Congress

Download references

Acknowledgements

The authors would like to thank EMALCSA Company for the data collected from the dam infrastructure.

Funding

The research leading to the presented results has been undertaken within the research profile Brain-IoT - model-Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems, funded by the European Union, grant number: 780089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim Baouya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baouya, A., Chehida, S., Ouchani, S. et al. Generation and verification of learned stochastic automata using k-NN and statistical model checking. Appl Intell 52, 8874–8894 (2022). https://doi.org/10.1007/s10489-021-02884-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02884-4

Keywords

Navigation