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Abstract
In group decision making (GDM), to facilitate an acceptable consensus among the experts from different fields, time and
resources are paid for persuading experts to modify their opinions. Thus, consensus costs are important for the GDM process.
Notwithstanding, the unit costs in the common linear cost functions are always fixed, yet experts will generally express more
resistance if they have to make more compromises. In this study, we use the quadratic cost functions, the marginal costs of which
increase with the opinion changes. Aggregation operators are also considered to expand the applications of the consensus
methods. Moreover, this paper further analyzes the minimum cost consensus models under the weighted average (WA) operator
and the ordered weighted average (OWA) operators, respectively. Corresponding approaches are developed based on strictly
convex quadratic programming and some desirable properties are also provided. Finally, some examples and comparative
analyses are furnished to illustrate the validity of the proposed models.

Keywords Aggregation operator . Group decisionmaking .Minimum cost consensusmodel

1 Introduction

Group decision making (GDM) requires the opinions pro-
vided by a group of experts (or individuals) to address
unstructured problems, such as negotiations and conflict
resolutions [1]. In GDM, experts often represent different
interest groups, and their opinions may differ substantially
even with the same interests and knowledge backgrounds
[2–5]. However, in the real-life decision environments, the
consent of all or most of experts to the collective option is
very crucial [6–14].

Generally, solving GDM problems comprises two process-
es, the consensus process and the selection process. The

former is dedicated to maximize the degree of consensus or
agreement among experts [2, 3, 15–20]. Usually, the consen-
sus process is coordinated by a moderator who has strong
team leadership qualities and communication skills [21]. The
selection process yields the final alternative according to the
experts’ knowledge, which includes two different steps: ag-
gregation of individual opinions and exploitation of group
opinion [22, 23].

In general, the consensus process is complex and re-
source-consuming, during which moderator needs to con-
vince experts to modify and change their opinions by
spending time and resources [2]. Thus, cost is a signifi-
cant issue in GDM [15, 24, 25]. For a moderator, what
he/she concerns is not only the final consensus result,
but also the cost in compensation for experts’ opinion
change. To this end, this paper intends to develop a
consensus approach, though which moderator can assist
experts in reaching consensus at the minimum cost. The
concept of minimum cost consensus was initiated by
Ben-Arieh and Easton [24] and Ben-Arieh, Easton and
Evans [15], based on which different minimum cost con-
sensus models have been proposed for various GDM
situations.

Although notable progress has beenmade in the research of
minimum-cost consensus, there are some issues worth noting.
(1) In real life, an expert generally expresses more resistance
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when the required opinion change rises, and the utility func-
tion of his/her opinion could be nonlinear [26, 27]. However,
most existing methods are constructed under the linear cost
functions, in which the unit adjustment cost of an expert is
always fixed no matter how much the opinion is adjusted.
Apparently, these studies did not consider the psychological
changes of experts during the negotiation process. (2)
Furthermore, in GDM problems, different aggregation opera-
tors are frequently used to aggregate individual opinions into a
group collective opinion, according to their specific meanings
and inherent relationships in a particular context. In order to
expand the applications of minimum cost consensus theory,
aggregation operators are necessary to be taken into account.
(3) Finally, for the GDMproblem, a unique optimal solution is
more explicit and efficient than multiple solutions, which
would lead to conflicts among experts once again.
Therefore, another issue is how to design a minimum cost
consensus approach that can obtain a unique optimal solution
directly.

To the best of our knowledge, no study has addressed the
above three issues simultaneously, thereby, this paper de-
velops a kind of minimum quadratic-cost consensus models
with aggregation operators. The proposed models have the
following features: (1) Consensus costs are measured by qua-
dratic cost functions, the unit costs of which are monotonically
increasing with the magnitude of opinion change, showing the
rising resistance of experts when more modifications are re-
quired. Compared with the linear costs, quadratic costs are
closer to the real-life consensus costs of a moderator.
Furthermore, under quadratic costs, the unique optimal solu-
tions to the proposed consensus models are obtained by using
strictly convex quadratic programming, avoiding the case of
multiple solutions. (2) Aggregation operators are used to build
the relationship between individual opinions and the group
opinion. The importance of each expert’s opinion can also
be intuitively reflected through the allocation of weights. (3)
The order positions of the experts’ original opinions will not
be changed by the proposed method, when the unit costs are
uniform and the ordered weighted average (OWA) operators
are used. This feature is called the property of order preserva-
tion in this paper.

The remainder of this paper is organized as follows.
Section 2 introduces the related works and the basic knowl-
edge with respect to the aggregation operators and the mini-
mum cost consensus models. Section 3 constructs the mini-
mum quadratic cost consensus model under aggregation op-
erators, which will reduce to the model of Ben-Arieh, Easton
and Evans [15], when the adjusted individual opinions are
equal to each other. Further, this section focuses on the con-
sensus models based on the weighted average (WA) operator
and OWA operators. The corresponding properties of the pro-
posed models under the different aggregation operators are

explored in Sect. 4. In Sect. 5, three numerical examples are
employed to manifest the validity of the proposedmodels, and
a comparative analysis is also provided. Finally, concluding
remarks are presented in Sect. 6.

2 Preliminaries and related works

This section introduces the basic knowledge of aggregation
operators and related works on minimum cost consensus
models.

2.1 Aggregation operators

To obtain a collective opinion from individual ones, aggrega-
tion operators are substantially used in the GDM process.
They reveal the inherent relationships between individual
opinions and the group collective opinion in specific GDM
problems. Let {o1, o2,…, on} be a set of opinions to
aggregate. An aggregation operator is a function that derives
the collective opinion o grounded on the individuals’ one

o ¼ F o1; o2;…; onð Þ:

Here we mainly introduce two typical aggregation opera-
tors: the WA operator and the OWA operator [28]. The WA
operator is a simple additive weighting approach considering
the importance degree of each expert’s opinion. Let {o1, o2,
…, on} be as above. The WA operator is defined as

WAw o1; o2;…; onð Þ ¼ ∑
n

i¼1
wioi;

where w = (w1,w2,…,wn)
T is an associated weight vector,

such that wi ∈ [0, 1] and ∑n
i¼1wi ¼ 1.

The OWAoperator aggregates the individuals’ opinions by
assigning appropriate weights to the reordered elements. Let
{o1, o2,…, on} and w = (w1, w2,…, wn)

T be as above. The
OWA operator is defined as [28]

OWAw o1; o2;…; onð Þ ¼ ∑
n

i¼1
wioσ ið Þ;

where {σ(1), σ(2),…, σ(n)} is a permutation of {1, 2,…,
n} such that oσ(i − 1) ≥ oσ(i) for i = 2, 3,…, n. Since Yager [28]
introduced the OWA operator in 1988, notable progress has
been made in developing OWA operators, especially the cor-
responding weight generation methods (see reference [29]).
Recently, Chen, Yu, Chin and Martinez [30] proposed an
enhanced approach to OWA weight generation based on the
interweaving method.
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2.2 Minimum cost consensus models

Suppose that there are n experts E = {e1, e2,…, en} and oi ∈ R
(i = 1, 2,…, n) denotes expert i’s initial opinion. Let oi and o
be the adjusted individual opinion and collective opinion, re-
spectively. Besides, ci denotes the cost of moving expert i’s
opinion one unit, then the linear cost paid to expert i is formu-
lated as ci oi−oij j. Ben-Arieh and Easton [24] first proposed
the minimum cost consensus model as follows

min
o

∑n
i¼1ci o−oi

��� ���
s:t:oi ¼ o; i ¼ 1; 2;…; n

ðM� 1Þ

where O ¼ o∈R o > 0jf g is a set of all possible consensus
opinions. Particularly, when the adjusted opinion oi is identi-
cal to the collective opinion o, expert i is recognized as
reaching consensus. This full and unanimous consensus is
generally called as “hard” consensus.

Besides, Ben-Arieh and Easton [24] introduced the concept
of ε consensus, which allows individuals’ opinions to ap-
proach the group opinion adequately. Compared with hard
consensus, this kind of consensus is less strict and can be
achieved in a more flexible way, which we call “soft” consen-
sus [13]. The tolerated deviation threshold is denoted as ε.
Thus, all adjusted opinions fitting into consensus should be
within the interval o−ε; oþ ε½ �. Obviously, only the opinions
outside the interval need to be modified. Thus, the minimum
cost consensus model with ε threshold is constructed as:

min
o

∑
i:oi<o−ε

ci o−ε−oi
� �

þ ∑
i:oi>oþε

ci oi−o−ε
� �� �

s:t: oi−o
��� ���≤ε; i ¼ 1; 2;…; n

ðM� 2Þ
Under the nonlinear opinion elasticity, Ben-Arieh, Easton

and Evans [15] formulated quadratic cost function

f i ¼ ci o−oið Þ2, then the unanimous consensus at the minimum
quadratic cost (CMQC) is obtained by the followingmodel [15]:

min
o

∑
n

i¼1
ci o−oi
� �2

s:t:oi ¼ o; i ¼ 1; 2;…; n

ðM� 3Þ

A natural extension to CMQC is the ε consensus allowing
all experts’ opinions within the given distance of group opin-
ion (ε CMQC). The consensus model for ε CMQC is con-
structed as:

min
o

∑
i:oi<o−ε

ci o−ε−oi
� �2

þ ∑
i:oi>oþε

ci oþ ε−oi
� �2

� �

s:t: oi−o
��� ���≤ε; i ¼ 1; 2;…; n

ðM� 4Þ

In addition, Ben-Arieh, Easton and Evans [15] also
proposed the algorithm to yield the maximum number

of experts that satisfy the consensus under a given bud-
get B. The method to find the quadratic maximum expert
consensus (QMEC) is presented as below:

max
o

∑n
i¼1zi

s:t:

∑n
i¼1ci oi−oi

� �2
≤B

zi ¼ 1; if oi ¼ o
0; else

(
; i ¼ 1; 2;…; n

8>><
>>:

ðM� 5Þ

where only when the opinion of an expert is the same as
the group opinion (i.e., oi ¼ o ), is the expert confirmed
as a member of consensus group (zi=1).

It is worth noting that, although methods in references [15,
24] are groundbreaking and effective, but neither of them
considered aggregation operators, and ignored the internal re-
lationships between the individual opinions and the group
one. Thus, only in some special cases are the above methods
able to be used. Motivated by this, Zhang, Dong, Xu and Li
[31] incorporated aggregation operators into the minimum-
cost consensus methods and furnished corresponding linear-
programming approaches. By using aggregation operator F
o1; o2;…; onð Þ is derived from the adjusted experts’ opinions.
The minimum cost consensus model under aggregation oper-
ators is constructed as:

min
oi

∑n
i¼1cijoi−oij

s:t:
oi−o
��� ���≤ε; i ¼ 1; 2;…; n

o ¼ F o1; o2;…; on
� �

8<
:

ðM� 6Þ

where oi−oj jmeasures the deviation of expert i’s opinion from
the consensus opinion and ε ≥ is the consensus threshold.
When ε (i.e., o1 ¼ o2 ¼ … ¼ on ¼ o ), model (M-6) reduces
to (M-1). It should be noted that, (M-6) can be solved based on
linear-programming models, so there may be multiple solu-
tions in some cases (please see Example 2) and the uniqueness
of optimal solutions can’t be guaranteed.

Besides, Cheng, Zhou, Cheng, Zhou and Xie [32] inves-
tigated the minimum cost consensus model with directional
constraints in the asymmetric cost context. Gong, Zhang,
Forrest, Li and Xu [2] and Gong, Xu, Zhang, Ozturk,
Herrera-Viedma and Xu [33] constructed minimum cost con-
sensus models and maximum return consensus models to
balance the interests of both the moderator and the experts.
Further, Zhang, Kou and Peng [23] proposed the soft mini-
mum cost consensus models with a consensus level function
and a generalized aggregation operator. Zhang, Liang, Gao
and Zhang [34] developed a minimum cost consensus model
with incomplete linguistic distribution assessments.
Recently, Lu, Xu, Herrera-Viedma and Han [35] furnished
a minimum cost consensus model based on robust optimiza-
tion for the large-scale group decision making in social
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network. Wu, Dai, Chiclana, Fujita and Herrera-Viedma [36]
proposed a minimum adjustment cost based feedback mech-
anism for network social GDM with distributed linguistic
trust. Wu, Yang, Tu and Chen [37] devised multi-stage opti-
mization models with interval additive preference relations.
A comparison between the above related works in the
existing literatures and the proposed method in this paper is
presented in Table 1.

3 Minimum quadratic cost consensus models
under aggregation operators

3.1 The proposed model

In various scenarios, different aggregation operators are em-
ployed to aggregate experts’ opinions into a collective one.
Furthermore, utilizing different aggregation operators also im-
pacts the consensus level. Thus, aggregation operators are
pivotal to consensus methods.

For an expert, every number denoting his/her opinion
has a specific utility value [27]. In the practical decision-
making contexts, the utility functions do not just monoton-
ically increase or decrease as experts’ opinions change.
Instead, the utility functions generally show nonlinear
trends, such as parabolic and S-shaped utility functions
[26, 27]. In order to convince experts to adjust their orig-
inal opinions, a moderator compensates experts for the
utility they sacrifice by paying consensus costs.
Generally, individuals are willing to cooperate with the
moderator if the required opinion adjustments are relatively
small, while they would show more resistance if the ad-
justments grow. Considering this psychological factor, this
paper herein uses the quadratic cost functions [15], which
embody the experts’ emotion changes. Although existing
literatures mainly adopt the linear consensus cost functions,
but they ignored the psychological changes of the experts,
which leads to some limitations in practical application.

Additionally, the quadratic cost function f i ¼ ci oi−oið Þ2
also results in distinct approaches and model properties.
Thus, this paper proposes a generalized consensus model

with aggregation operators which aims at minimizing the
quadratic costs, i.e.,

min
oi

∑
n

i¼1
ci oi−oi
� �2

:

At the same time, the group consensus is fulfilled under the
constraint that each expert’s opinion is close enough to the
collective opinion, that is

oi−oj j≤ε, i = 1, 2, …, n

where o is the adjusted group opinion in (M-6).
In this way, a generalized consensus model for minimum

quadratic cost is constructed as follows:

min
oi

∑n
i¼1ci oi−oi

� �2

s:t:
oi−o
��� ���≤ε; i ¼ 1; 2;…; n

o ¼ F o1; o2;…; on
� �

8<
:

ðM� 7Þ

Obviously, model (M-7) reduces to (M-3) when oi ¼ o for
i = 1,2,...,n. In addition, it’s proved that (M-7) can degrade into
(M-4), when utilizing the OWA operator with weight vector
(1/2, 0, ..., 0, 1/2)T [31]. Thus, model (M-7) is a generalized
version of the consensus method of Ben-Arieh, Easton and
Evans [15]. The flowchart of the proposed method is de-
scribed in Fig. 1.

3.2 Minimum cost consensus models under some
common operators

It’s clear that the proposed consensus model varies according
to the aggregation operator. Since the WA operator and the
OWA operators [28] are the most common and basic aggre-
gation operators, this section further analyzes (M-7) under
these two kinds of operators with quadratic programming
models.

(1) WA operator

Table 1 Comparisons between
different minimum cost
consensus models

References Cost function Aggregation operators Considers unique solution Consensus measured

This paper Quadratic Used Yes Soft consensus

[23, 31, 35] Linear Used No Soft consensus

[36] Linear Used No Soft consensus

[2, 24, 32, 33] Linear Not used No Hard consensus

[34] Linear Not used No Soft consensus

[15] Quadratic Not used Yes Hard consensus

[37] Linear Not used Yes Soft consensus
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Using WAw operator to derive the collective opinion
from individual opinions, model (M-7) can be described
as:

Using WAw operator to derive the collective opinion from
individual opinions,

min
oi

∑n
i¼1ci oi−oi

� �2

s:t:
oi−o
��� ���≤ε; i ¼ 1; 2;…; n

o ¼ ∑n
i¼1wioi

8<
:

ðM� 8Þ

Denote Ω8 as the feasible set to (M-8).

Theorem 1. Let xi ¼ oi, then (M-8) can be described as the
following strictly convex quadratic programming model:

min
xi

∑n
i¼1ci xi−oið Þ2

s:t:
xi−∑n

i¼1wixi≤ε; i ¼ 1; 2;…; n

∑n
i¼1wixi−xi≤ε; i ¼ 1; 2;…; n

(
ðM� 9Þ

Proof. The constraints in (M-9) guarantee that o ¼ ∑n
i¼1wi

oi and oi−oj j≤ε. Thus, (M-8) can be transformed into

(M-9). Let f xð Þ ¼ min
xi

∑n
i¼1ci xi−oið Þ2. Since f(x) is the

sum of strictly convex functions, it is itself strictly con-
vex. Moreover, the constraints of (M-9) are linear.
Hence, (M-8) can be transformed into the strictly convex
quadratic programming model. This completes the proof
of Theorem 1.

(2) OWA operator

When OWAw operator is used to aggregate the individual
opinions, (M-7) is presented as follows:

min
oi

∑n
i¼1ci oi−oi

� �2

s:t:
oi−o
��� ���≤ε; i ¼ 1; 2;…; n

o ¼ OWAw o1; o2;…; on
� �

8<
:

ðM� 10Þ

Let Ω10 be the feasible set to (M-10). Given the nonlinear
constraint condition o ¼ OWAw o1; o2;…; onð Þ, model (M-
10) can’t be straightly transformed into a quadratic program-
ming model. Thus, two specific cases of (M-10) are intro-
duced below.

Case A: The unit adjustment costs of all expert are iden-
tical to each other, which means that c1 = c2=… = cn = c. In
order to minimize the consensus cost, we hope the modifi-
cations to the individual opinions are as small as possible.
The consensus model in this case is constructed as model
(M-11).

Case B: In many competitions, a frequently used scor-
ing rule is to remove the highest and lowest scores of
participants first, and then calculate the average of the
remaining scores to obtain the collective evaluation. It’s
clear that this practice utilizes the OWAw1 operator with
weight vector w1 = (0, 1/(n − 2), … , 1/(n − 2), 0)T .
Considering that some judges may deliberately express
extreme opinions for their own or alliance benefits [38],
this scoring format can prevent them from undermining
the equity of the competition. The corresponding consen-
sus models are shown below.

Real opinions
Temporal collective

opinion

Aggregation 

operator

A group of

experts

No

Suggestions to

modify opinions

Consensus 

reaching (M-7)
Yes

Temporal collective opinion

is the final group opinion

Unit costs

Consensus 

measure

Fig. 1 The process of the
quadratic cost consensus methods
under aggregation operators
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1) Case A: With the uniform unit cost of each expert, model
(M-10) is equivalent to:

min
xi

∑n
i¼1 xi−oið Þ2

s:t:
oi−o
��� ���≤ε; i ¼ 1; 2;…; n

o ¼ OWAw o1; o2;…; on
� �

8<
:

ðM� 11Þ

Denote Ω11 the feasible set corresponding to (M-11). Let xi
¼ oi and σ(1), σ(2),…, σ(n) be a permutation of {1, 2,…, n}
such that oσ(i− 1) ≥ oσ(i) for all i= 2, 3, …, n (i.e., oσ(i) is the ith
largest value in {o1, o2,…, on}). Let {τ(1), τ(2),…, τ(n)} be an-
other permutation of {1, 2,…, n} such that xτ(i− 1) ≥ xτ(i) for all i
= 2, 3,...,n. (M-11) can be transformed into the following model:

min
xi

∑n
i¼1 xi−oið Þ2

s:t:
xi−∑n

i¼1wixτ ið Þ≤ε; i ¼ 1; 2;…; n

∑n
i¼1wixτ ið Þ−xi≤ε; i ¼ 1; 2;…; n

(
ðM� 12Þ

DenoteΩ12 as the feasible set to (M-12). Before presenting
the approach to solve (M-12), we introduce a new model:

min
xi

∑n
i¼1 xi−oið Þ2

s:t:

xi−∑n
i¼1wixτ ið Þ≤ε; i ¼ 1; 2;…; n

∑n
i¼1wixτ ið Þ−xi≤ε; i ¼ 1; 2;…; n

xσ ið Þ−xσ i−1ð Þ≤0; i ¼ 2; 3;…; n

8><
>:

ðM� 13Þ

The constraint conditions xσ(i) − xσ(i − 1) ≤ 0 (i = 2, 3, …, n)
guarantee that τ(i) = σ(i). Consequently,

OWAw x1; x2;…; xnð Þ ¼ ∑n
i¼1wixτ ið Þ ¼ ∑n

i¼1wixσ ið Þ:

Based on this, model (M-13) is equivalent to the following
model:

min
xi

∑n
i¼1 xi−oið Þ2

s:t:

xi−∑n
i¼1wixσ ið Þ≤ε; i ¼ 1; 2;…; n

∑n
i¼1wixσ ið Þ−xi≤ε; i ¼ 1; 2;…; n

xσ ið Þ−xσ i−1ð Þ≤0; i ¼ 2; 3;…; n

8>><
>>:

ðM� 14Þ

Let f 1 xð Þ ¼ min
xi

∑n
i¼1 xi−oið Þ2: We prove that f1(x) is a

strictly convex function. Besides, σ(i) is definite according
to {o1, o2,…, on}, so the constraints in (M-14) are

Dong, Xu, Li and Feng [39] proposed an OWA-based con-
sensus operator under the continuous linguistic model, finding
that the initial opinions of experts can be optimally preserved
by their consensus model. The optimal solution to Dong

et al.’s [39] model is obtained by strictly convex quadratic
programming. Based on the idea of Dong, Xu, Li and Feng
[39], this paper introduces Lemma 1 and Lemma 2 to study
the relationship between (M-12) and (M-14).

Lemma 1. Let op, oq ∈ {o1, o2,…, on} and o*1; o
*
2;…; o*n; o

*
� �

be the optimal solution to (M-12). Then, o*p≥o*q for op > oq

Proof.Using reduction to absurdity, suppose that o*q > o*p. Let
a set of values be

::
o1;

::
o2;…;

::
on;

::
of g, where.

::
oi ¼

oq
*; i ¼ p

op
*; i ¼ q

oi
*; i≠p; q

8><
>: :

Since
::
o ¼ OWAw

::
o1;

::
o2;…;

::
onð Þ ¼ OWAw o*1; o

*
2;…; o*n

	 

¼ o* we have that maxi

::
oi−

::
oj j ¼ maxi o*i −o

*
�� ��≤ε holds for all

i = 1,2, ...,n, so
::
o1;

::
o2;…;

::
on;

::
of g∈Ω12. Furthermore,

∑
n

i¼1
oi
*−oi

� �2
− ∑

n

i¼1

::
oi−oi
	 
2

¼ op
*−op

� �2
þ oq

*−oq
� �2

−
::
op−op
	 
2− ::

oq−oq
	 
2

¼ op
*−op

� �2
þ oq

*−oq
� �2

− oq
*−op

� �2
− op

*−oq
� �2

¼ 2 op
*−oq

*
� �

oq−op
	 


> 0;

which contradicts the fact that o*1; o
*
2;…; o*n; o

*
� �

is the op-
timal solution to (M-12). This completes the proof of Lemma 1.

Lemma 2. Let op, oq ∈ {o1, o2,…, on} and op = oq. If
o*1; o

*
2;…; o*n; o

*
� �

is the optimal solution to (M-12), then
::
o1;

::
o2;…;

::
on;

::
of g is also the optimal solution to (M-12),

where

::
oi ¼

oq
*; i ¼ p

op
*; i ¼ q

oi
*; i≠p; q

8><
>: :

Proof. Based on the proof of Lemma 1, we get that
::
o1;

::
o2;…;

::
on;

::
of g∈Ω12 and ∑n

i¼1

::
oi−oið Þ2 ¼ ∑n

i¼1 o*i −oi
	 
2

:

Consequently,
::
o1;

::
o2;…;

::
on;

::
of g is also the optimal solution

to (M-12). This completes the proof of Lemma 2.

Remark 1. Lemma 1 shows the property of order preservation,
i.e., if a value is large in the original set, then its adjusted value is
still large in the optimal solution. Lemma 2 shows that if a set of
values is the solution of (M-12), when two values of the set are
interchanged, the interchanged set is still the solution of (M-12).

Based on Lemmas 1 and 2, the following Theorem 2 is
obtained.
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Theorem 2. If o*1; o
*
2;…; o*n; o

*
� �

is the optimal solution to
(M-14), then o*1; o

*
2;…; o*n; o

*
� �

is the optimal solution to
(M-12).

Proof. Let o*1; o
*
2;…; o*n; o

*
n o

be an optimal solution to (M-
12) and Ω14 ⊆ Ω12 denotes the feasible set to (M-14). Since

Ω14, ∑n
i¼1 o*i −oi

	 
2≥∑n
i¼1 o*i −oi

� �2
is obtained.

Here, we consider the following two cases:

a) oi ≠ oj for any oi, oj ∈ {o1, o2,…, on}. Based on Lemma 1,

we have that o*σ i−1ð Þ≥o
*
σ ið Þ, so o*1; o

*
2;…; o*n; o

*
n o

∈Ω14.

Consequently,

∑n
i¼1 oi*−oi

� �2
≤∑n

i¼1 o
¼*
i −oi

� �2

which means that ∑n
i¼1 o*i −oi

	 
2 ¼ ∑n
i¼1 o*i −oi

� �2
. Given

that the optimal solution to (M-14) exists and is unique,

o*1; o
*
2;…; o*n; o

*
n o

¼ o*1; o
*
2;…; o*n; o

*
� �

.

b) Let op, oq ∈ {o1, o2,…, on} and op = oq. Without loss
of generality, we suppose that oi ≠ oj for any oi, o-
j ∈ {o1, o2,…, on}/{op}. Lemma 2 guarantees that

::
o*1;

::
o*2;…;

::
o*n;

::
o*

n o
is also the optimal solution to (M-

12), where

::
o*i ¼

o��q
*; i ¼ p

o��p
*; i ¼ q

o��i
*; i≠p; q

8<
: :

Based on Lemma 1, we can know that if oi ∈ {o1, o2,…, on}/

{op, oq} is the kth largest variable in {o1, o2,…, on}, o
*
i =

::
o*i is

still the kth largest variable in o*1; o
*
2;…; o*n

n o
=

::
o*1;

::
o*2;…;

::
o*n

n o
.

Therefore, either o*1; o
*
2;…; o*n; o

*
n o

or
::
o*1;

::
o*2;…;

::
o*n;

::
o*

n o
is the feasible solution to (M-14). Without loss of gene-

rality, assume that
::
o*1;

::
o*2;…;

::
o*n;

::
o*

n o
∈Ω14. Similar to case

a),
::
o*1;

::
o*2;…;

::
o*n;

::
o*

n o
¼ o*1; o

*
2;…; o*n; o

*
� �

can be obtained.

This completes the proof of Theorem 2.
Theorem 2 guarantees the optimal solution to (M-12) can be

obtained through a strictly convex quadratic programmingmodel.
2) Case B: This case utilizes an OWA operator with weight

vector w1 = (0, 1/(n − 2),…, 1/(n − 2), 0)T. The corresponding
model under OWAw1 is presented as follows:

min
oi

∑n
i¼1ci oi−oi

� �2

s:t:
oi−o
��� ���≤ε; i ¼ 1; 2;…; n

o ¼ 1

n−2
∑n

i¼1oi−max
i

oi
n o

−min
i

oi
n o� �

8><
>:

ðM� 15Þ

Denote Ω15 as the feasible set corresponding to (M-15).
Before solving (M-15), Lemma 3 is introduced.

Lemma 3. If om ¼ mini oif g and oh ¼ maxi oif g (m, h ∈ {1, 2,
…, n}), (M-15) can be described as:

min
oi

∑n
i¼1ci oi−oi

� �2

s:t:

oi−o
��� ���≤ε; i ¼ 1; 2;⋯; n

o ¼ 1

n−2
∑n

i¼1oi−om−oh
� �

om≤oi; i ¼ 1; 2;⋯; n
oi≤oh; i ¼ 1; 2;⋯; n

8>>>>><
>>>>>:

M om; oh
� �

Proof. In model M(om; oh), the constraints om≤oi (i =
1, 2, …, n) and oh≥oi (i = 1, 2, …, n) guarantee that
om ¼ mini oif g and oh ¼ maxi oif g, respectively. Hence,
o ¼ 1

n−2 ∑n
i¼1oi−maxi oif g−mini oif g	 


is identical to o ¼ 1
n−2 ∑n

i¼1oi−oh−om
	 


.
Consequently, (M-15) can be equivalently described as
M(om; oh), when om ¼ mini oif g and oh ¼ maxi oif g. This com-
pletes the proof of Lemma 3.

Let xi ¼ oi, thenM(om; oh) (m = 1, 2,…, n and h = 1, 2,…,
n) can be similarly transformed into the strictly convex qua-
dratic programming models. The relationship between (M-15)
and M(om; oh) is embodied in Theorem 3. LetΩ15 and Ωmh be
the feasible sets corresponding to (M-15) and M(om; oh ), re-
spectively. Naturally,Ωmh ⊆Ω15 holds for allm, h ∈ {1, 2,…,
n}.

Theorem 3. Let omh1 ; omh2 ;…; omhn ; omh
� �

be the optimal solu-

tion to M(om; oh) andPmh ¼ ∑n
i¼1ci oi−o

mh
i

	 
2
. If Pjk =

min {Pmh|m, h = 1, 2,…, n} (j, k ∈ {1, 2,…, n}), the corre-

sponding optimal solution ojk1 ; o
jk
2 ;…; ojkn ; o

jk
n o

to M(oj; ok)

is the optimal solution to (M-15).

Proof. Let oe1; o
e
2;…; oen; o

e� �
be an optimal solution to (M-

15). Since Ωmh ⊆Ω15 holds for any m, h ∈ {1, 2,…, n}, we

have that ∑n
i¼1ci oi−ojki

� �2
≥∑n

i¼1ci oi−o
e
i

	 
2
.

Simultaneously, the minimum and maximum values (om
and oh ) of oe1; o

e
2;…; oen

� �
are known, so

oe1; o
e
2;…; oen; o

e� �
is also a feasible solution to M(om; oh).

Thus, ∑n
i¼1ci oi−ojki

� �2
≤∑n

i¼1ci oi−o
e
i

	 
2
.
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Consequently, Pjk ¼ ∑n
i¼1ci oi−ojki

� �2
¼ ∑n

i¼1ci oi−o
e
i

	 
2
.

Therefore, the corresponding optimal solution

ojk1 ; o
jk
2 ;…; ojkn ; o

jk
n o

to M(oj; ok) is also an optimal solution

to (M-15). This completes the proof of Theorem 3.

Remark 2. Theorem 3 shows that (M-15) can be solved
through n(n − 1)/2 quadratic programming models (i.e.,
M(om; oh ) , where m , h ∈ {1, 2, … , n} and m ≠ h ) .
Similarly, n(n − 1)/2 linear programming models can be em-
ployed to solve the linear cost version of (M-15) in Zhang,
Dong, Xu and Li [31]. It should be noted that, when all ci
(i = 1, 2, …, n) are equal, only one quadratic programming
model needs to be solved. In this case, (M-15) is classified
as Case A of (M-10) where the order preservation property
mentioned in Remark 1 holds. Furthermore, we speculate
that this property still holds for (M-15) when the differences
among ci (i = 1, 2, …, n) are relatively small, yet this con-
jecture hasn’t been proved.

Remark 3. As known to all, there are many classical methods
such as Lemke algorithm to solve strictly convex quadratic
programming. In this paper, we employ the function
“quadprog” of software MATLAB to solve the proposed con-
sensus models so that the optimal solutions can be efficiently
obtained.

4 Properties of the models

Section 3 constructs the consensus models for minimum qua-
dratic cost under the WA and OWA operators and reveals the
property of order preservation in (M-12).More interesting and
desired properties will be shown in this section, which em-
body the characteristics of the proposed models under the
different aggregation operators.

Lemma 4. Let {o1, o2,…, on} and o*1; o
*
2;…; o*n

� �
be the orig-

inal opinions and the modified opinions corresponding to (M-8)
or (M-10), respectively. Then, we get that mini fo*i g � mini f
oig and maxi fo*i g � maxi foig.

Proof. The statement mini o*i
� �

≥mini oif g is first proved
through reduction to absurdity. Assuming that ∃Q ⊆ {1, 2,

…, n} and Q ¼ qjo*q < min oif g
n o

. Let
::
o1;

::
o2;…;

::
on;

::
of g

be a set of values, where

::
oi ¼

mini oif g; i∈Q
oi*; i∉Q



and
::
o represents the aggregated group opinion. Since

::
o−maxi

::
oif gj j≤ε and ::

o−mini
::
oif gj j≤ε, then ::

o1;
::
o2;…;

::
on;

::
of g

∈Ω8=Ω10 holds. Moreover,

∑
n

i¼1
ci oi−

::
oi

	 
2− ∑
n

i¼1
ci oi−oi

*
� �2

¼ ∑i∈Qci 2oi−mini oif g−oi*
� �

o
*
i −mini oif g

� �
< 0;

which contradicts the fact that o*1; o
*
2;…; o*n; o

*
� �

is
the optimal solution to model (M-8) or (M-10). Thus,
the statement mini oif g≤mini oi*f g holds. Likewise, we
have maxi oi*f g≤maxi oif g. This completes the proof of
Lemma 4.

Remark 4. Lemma 4 indicates that the adjusted optimal values
are among the minimum and maximum values of the original
values.

Corollary 1. maxi o*i
� �

−mini o*i
� ��� ��≤ maxi oif g−mini oif gj j.

Property 1. Let o*1; o
*
2;…; o*n; o

*
� �

be the optimal solution to
(M-8) or (M-10), then

mini oif g≤o
*
≤maxi oif g:

Proof. Since o* ¼ WAw o*1; o
*
2;…; o*n

	 

in model (M-8) and o*

¼ OWAw o*1; o
*
2;…; o*n

	 

in model (M-10), mini o*i

� �
≤o*≤

maxi o*i
� �

holds for both models. Based on Lemma 4, we

can obtain that mini oif g≤o*≤maxi oif g. This completes the
proof of of Property 1.

Property 2. Let n = 2 and o*1; o
*
2; o

*
� �

be the optimal solution
to (M-8) or (M-10). Then, o*2≥o*1 for o2 > o1.

Proof.We first approve the property of (M-8). Using reduction
to absurdity, we assume that o2 > o1 and o*1; o

*
2; o

*
� �

is the

optimal solution to (M-8), where o*1 > o*2. Let
::
o1 ¼ o*2 and

::
o2 ¼ o*1, we find that

::
o1−

::
oj j ¼ w2 o*1−o

*
2

	 
�� �� ¼ o*1−o
*

�� ��≤ε and
::
o2−

::
oj j ¼ w1 o*2−o*1

	 
�� �� ¼ o*2−o*
�� ��≤ε.

Hence,
::
o1;

::
o2;

::
of g∈Ω8. By Lemma 4, we obtain that 2o1−

o*2−o*1 < 0 and 2o2−o*1−o*2 > 0, therefore

∑
2

i¼1
ci oi−

::
oi

	 
2− ∑
2

i¼1
ci oi−oi

*
� �2

¼ c1 2o1−o2
*−o1

*
� �

o1
*−o2

*
� �

þ c2 2o2−o1
*−o2

*
� �

o2
*−o1

*
� �

< 0;

which contradicts the assumption that o*1; o
*
2; o

*
� �

is the op-
timal solution to (M-8). Likewise, we validate Property 2
holds for (M-10). This completes the proof of Property 2.
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Remark 5. When n ≥ 3, the ranking of oi in o*1; o
*
2;…; o*n

� �
may be different from that of oi in {o1, o2,…, on}. Thus,
Property 2 is valid only when n = 2.

Property 3. Let o*1; o
*
2;…; o*n; o

*
� �

be the optimal solution to
(M-10), oh ∈ {o1, o2,…, on} such that oq =mini{oi} < oh < op =
maxi{oi}, ch ≤ cp and ch ≤ cq. Then, o*q≤o*h≤o*p.

Proof.We first approve that o*h≤o
*
p. Using reduction to absur-

dity, we assume that o*h > o*p. Let a feasible solution be
::
o1;

::
o2;…;

::
on;

::
of g, where

::
oi ¼

oh
*; i ¼ p

op
*; i ¼ h

oi
*; i≠h; p

8><
>: ;

we find that

∑
n

i¼1
ci oi−

::
oi

	 
2− ∑
n

i¼1
ci oi−oi

*
� �2

¼ ch oh−
::
oh

	 
2 þ cp op−
::
op

	 
2−ch oh−oh
*

� �2
−cp op−op

*
� �2

¼ op
*−oh

*
� �

cp 2op−oh
*−op

*
� �

−ch 2oh−oh
*−op

*
� �h i

Let cp = ch +Δc and Δc ≥ 0, then we have.

op
*−oh

*
� �

cp 2op−oh
*−op

*
� �

−ch 2oh−oh
*−op

*
� �h i

¼ op
*−oh

*
� �

Δc 2op−oh
*−op

*
� �

þ 2ch op−oh
	 
h i

< 0;

which contradicts the fact that o*1; o
*
2;…; o*n; o

*
� �

is the opti-
mal solution to (M-10).

Therefore, o*h≤o
*
p. Likewise, we prove that o*q≤o

*
h holds.

This completes the proof of Property 3.

Corollary 2. Let {o1, o2, o3} be the original opinions such that
o1 < o2 < o3 and c2 = mini{ci}. Then, o*1≤o*2≤o*3. In this case,
(M-10) can be transform into a strictly convex programming
model.

Property 4. In (M-10), let op, oq ∈ {o1, o2,…, on} and
o*1; o

*
2;…; o*n; o

*
� �

be the optimal solution to (M-10). Then,
when cp = cq,

(1) if op > oq, o*p≥o
*
q;

(2) if op = oq,
::
o1;

::
o2;…;

::
on;

::
of g is also the optimal solution

to (M-10), where

::
oi ¼

oq
*; i ¼ p

op
*; i ¼ q

oi
*; i≠p; q

8><
>: :

Proof. Using reduction to absurdity, we first prove part (1).

Assuming o*p < o*q and o
0
1; o

0
2;…; o

0
n; o

0� �
is a feasible solu-

tion to (M-10), where

o
0
i ¼

oq
*; i ¼ p

op
*; i ¼ q

oi
*; i≠p; q

8><
>: :

Then we have that ∑n
i�1ci oi−o

0
i

	 
2−∑n
i�1ci oi−o*i

	 
2 ¼
2cp o*p−o

*
q

� �
op−oq
	 


< 0, which is contrary to the assumption

that o*1; o
*
2;…; o*n; o

*
� �

is the optimal solution to (M-10).
Therefore, part (1) is valid and it is straightforward to prove part
(2). This completes the proof of Property 4.

Property 5. Monotonicity. For model (M-8) and (M-10), let
{o1, o2} be a set of original opinions and let {v1, v2} be a
second set of original opinions, such that oi > vi, for i = 1, 2.
Then, o*i ≥v

*
i , for i = 1, 2.

Proof. Without loss of generality, we assume that o2 > o1 and
v2 > v1. Using reduction to absurdity, let o*1 < v*1 or o

*
2 < v*2.

We consider the following three cases:
Case A: o*1 < v*1 and o*2 < v*2. In this case,

∑
2

i¼1
ci oi−oi

*
� �2

− ∑
2

i¼1
ci oi−vi

*
� �2

¼ c1 2o1−o1
*−v*1

� �
v1
*−o1

*
� �

þ c2 2o2−o2
*−v2

*
� �

v2
*−o2

*
� �

> c1 2v1−o1
*−v1

*
� �

v1
*−o1

*
� �

þ c2 2v2−o2
*−v2

*
� �

v2
*−o2

*
� �

¼ ∑
2

i¼1
ci vi−oi

*
� �2

− ∑
2

i¼1
ci vi−vi

*
� �2

≥0;

which contradicts the fact that o*1; o
*
2; o

*
� �

is the optimal ad-
justed opinions corresponding to {o1, o2}, when using (M-8)
or (M-10).

Case B: o*1 < v*1 and o
*
2≥v*2. Under the circumstance, let v

0
1

¼ o*1 and v
0
2 ¼ min o*2; v2

� �
. Then, v

0
1; v

0
2; v

0� �
∈Ω8=Ω10 and

∑2
i¼1ci vi−v

0
i

	 
2
< ∑2

i¼1ci vi−v*i
	 
2

hold, which is contrary to

that v*1; v
*
2; v

� �
is the optimal solution corresponding to {v1,

v2}, when using (M-8) or (M-10).

Case C: o*1≥v*1 and o*2 < v*2. Let o
0
1 ¼ max o1; v*1

� �
and

o
0
2 ¼ v*2. We prove that o

0
1; o

0
2; o

0� �
∈Ω8=Ω10 and ∑2

i¼1ci oi−o
0
i

	 
2
< ∑2

i¼1ci oi−o
*
i

	 
2, which contradicts the fact that o*1; o
*
2; o

*
� �

is the optimal solution corresponding to {o1, o2}, when using
(M-8) or (M-10).

Based on the above three cases, we get that o*1≥v*1 and

o*2≥v*2. This completes the proof of Property 5.

Remark 6. This paper argues that Property 5 holds when n > 2,
while it’s still an open problem when n ≥ 3.
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Property 6. Let{d1, d2,…, dn} and {o1, o2,…, on} be two sets

of experts’ initial opinions, d
*
1; d

*
2;…; d

*
n; d

*
n o

and

o*1; o
*
2;…; o*n; o

*
� �

be the corresponding optimal solutions in
model (M-10). If cp = cq, then

∑n
i¼1ci oi−o*i

	 
2 ¼ ∑n
i¼1ci di−d

*
i

� �2
,

where

di ¼
oq; i ¼ p
op; i ¼ q
oi; i≠p; q

8<
: and d

*
i ¼

o*q; i ¼ p
o*p; i ¼ q
o*i ; i≠p; q

8><
>: .

Corollary 3. Commutativity. Let {d1, d2,…, dn} be a permuta-

tion of {o1, o2,…, on} in (M-11). Then d
* ¼ o*.

Property 7. Let {o1, o2,…, on} be a set of original opinions
and {l1, l2,…, ln} be a second set of original opinions. Denote

o*1; o
*
2;…; o*n; o

*
� �

and l
*
1; l

*
2;…; l

*
n; l

*
n o

as the correspond-

ing optimal solutions in (M-8). If oi + li =C (C is a constant)

for all i = 1, 2,…, n, then o* þ l
* ¼ C and o*i þ l

*
i ¼ C for all

i = 1, 2, …, n.

Proof. Denote the corresponding feasible sets of {o1, o2,…,
on} and {l1, l2,…, ln} asΩ8o andΩ8l, respectively. Let

::
li ¼ C

−o*i for all i = 1, 2, …, n, then we can get that

::
li−

::
l

�� �� ¼ oi
*−o*

��� ���≤ε:
Thus

::
l1;

::
l2;…;

::
ln;

::
lf g∈Ω8l and

∑
n

i¼1
ci li−l

*

i

� �2

≤ ∑
n

i¼1
ci li−

::
li

	 
2 ¼ ∑
n

i¼1
ci oi−oi

*
� �2

:

Similarly, let
::
oi ¼ C−l*i for all i = 1, 2, …, n. Thus,

::
o1;

::
o2;…;

::
on;

::
of g∈Ω8o holds and

∑
n

i¼1
ci oi−oi

*
� �2

≤ ∑
n

i¼1
ci oi−

::
o*i

� �2
¼ ∑

n

i¼1
ci li−l

*

i

� �2

:

Consequently, ∑n
i¼1ci li−l

*
i

� �2
¼ ∑n

i¼1ci oi−o
*
i

	 
2
. Thus,

o*i þ l
*
i ¼ C for all i = 1, 2,…, n and o* þ l

* ¼ C. This com-
pletes the proof of Property 7.

Property 8. Let {o1, o2,…, on} be a set of original opinions and
{d1, d2,…, dn} be a second set of original opinions. Denote

o*1; o
*
2;…; o*n; o

*
� �

and d
*
1; d

*
2;…; d

*
n; d

*
n o

as the as the cor-

responding optimal solutions in (M-14). If wi =wn + 1 − i and

oi + di =C (C is a constant.) for all i = 1, 2,…, n, then o* þ d
*

¼ C and o*i þ d
*
i ¼ C for all i = 1, 2, …, n.

Proof: Denote the corresponding feasible sets of {o1, o2,…,
on} and {d1, d2,…, dn} as Ω14o and Ω14d in (M-14). Let
::
di ¼ C−o*i for all i = 1, 2, …, n, then we can derive that

::
di−

::
d

�� �� ¼ oi
*− ∑

n

i¼1
wnþ1−ioσ* ið Þ

� �����
���� ¼ oi

*−o*
��� ���≤ε:

Thus,
::
d1;

::
d2;…;

::
dn;

::
df g∈Ω14d and

∑
n

i¼1
ci di−di*
� �2

≤ ∑
n

i¼1
ci di−

::
di

	 
2 ¼ ∑
n

i¼1
ci oi−o

*

i

� �2

:

Similarly, let
::
oi ¼ C−d*i . We prove that

::
o1;

::
o2;…;

::
on;

::
of g

∈Ω14o and

∑
n

i¼1
ci oi−oi*
� �2

≤ ∑
n

i¼1
ci oi−

::
oi

	 
2 ¼ ∑
n

i¼1
ci di−di*
� �2

:

Then we get that ∑n
i¼1ci di−d

*
i

� �2
¼ ∑n

i¼1ci oi−o*i
	 
2

.

Therefore o*i þ d
*
i ¼ C for all i = 1, 2, …, n and

o* þ d
* ¼ C. This completes the proof of Property 8. In the

same way, we can prove that
::
d1;

::
d2;…;

::
dn;

::
df g is also the

optimal solution to (M-15).

5 Illustrative examples and comparative
analyses

In this section, we will offer three illustrative examples to
demonstrate how the proposed models work in practice. In
order to make a comparison with the methods in Ben-Arieh,
Easton and Evans [15], Ben-Arieh and Easton [24], and
Zhang, Dong, Xu and Li [31], this paper sets the same param-
eters and thresholds.

(1) In Example 1, we apply the proposed methods to
develop the government’s subsidy strategies for en-
couraging migrants to stay local during Spring
Festival. Additionally, the results of CMQC, ε
CMQC, and QMEC in Ben-Arieh, Easton and
Evans [15] and the proposed methods are also numer-
ically compared.

(2) In Example 2, we mainly make a comparison with the
existing linear cost consensus methods introduced by
Ben-Arieh and Easton [24] and Zhang, Dong, Xu and
Li [31].
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(3) The last example involves the GDM problem of house
purchase, the data of which is from Zhang, Dong, Xu and
Li [31].

5.1 Example 1

In January 2020, COVID-19 broke out in Wuhan, and then
swept across the whole country with unprecedented hit to
Chinese industries. Since April 29, 2020, the positive momen-
tum in COVID-19 control has been locked in, and nationwide
virus control in China is now being conducted on an ongoing
basis.

Faced with the approaching Spring Festival in 2021,
many places released rules for homecomings and persuad-
ed employees to stay where they work during the holiday
to reduce personnel flow and risks of epidemic prevention
and control. In response to the call of the state, many
people chose to stay put during Spring Festival. Yet they
had to sacrifice the annual rights of family gathering.
Thus, the subsidy policies introduced by the localities
could be vital help in guaranteeing workers' welfare and
enterprises’ production. Every migrant might expect dif-
ferent subsidy according to their own conditions, such as
the affordability of tenancy in large cities, the willingness
to work during the holiday and so forth. Thus, a govern-
ment needs to negotiate with the workers in advance so as
to provide reasonable subsidy strategies that satisfy the
migrants’ expectation.

In the negotiation process, the local government plays the
role of a moderator while employees who expect different
levels of subsidies are the decision makers with divergent
opinions. Suppose that the government could provide the ba-
sic allowance of at least 800 (Unit: RMB) to every migrant
and there are mainly four different levels of expectations on
the subsidy, denoted as e1, e2, e3, and e4. Compared with the
basic allowance, the extra subsidies expected by the four types
are: {o1, o2, o3, o4} = {0, 3, 6, 10} (Unit: %), and the corre-
sponding weights are w1 = 0.3, w2 = 0.1, w3 = 0.4, and w4 =
0.2, respectively. Suppose the unit adjustment costs of e1, e2,
e3, and e4 are c1 = 1, c2 = 2, c3 = 3, and c4 = 1 (Unit: 10RMB),
respectively. To mitigate the difference among subsidy levels
{o1, o2, o3, o4}, set the consensus threshold ε = 0.8 (Unit: %)
Namely, the maximum deviation between any level of subsidy
and the collective one is no more than 0.008 × 800 = 6.4
(RMB).

(1) Let the final collective opinion and individual opinions
after adjustments be o* and o*i (i ¼ 1; 2; 3; 4 ), respectively. If
we use theWA operator to assemble the employees’ opinions,

according to Theorem 1, (M-8) is equivalent to the following
quadratic programming model:

min f ¼ x21 þ 2 x2−3ð Þ2 þ 3 x3−6ð Þ2 þ x4−10ð Þ2

s:t:

0:7x1 −0:1x2 −0:4x3 −0:2x4 ≤0:8
−0:3x1 þ0:9x2 −0:4x3 −0:2x4 ≤0:8
−0:3x1 −0:1x2 þ0:6x3 −0:2x4 ≤0:8
−0:3x1 −0:1x2 −0:4x3 þ0:8x4 ≤0:8
−0:7x1 þ0:1x2 þ0:4x3 þ0:2x4 ≤0:8
0:3x1 −0:9x2 þ0:4x3 þ0:2x4 ≤0:8
0:3x1 þ0:1x2 −0:6x3 þ0:2x4 ≤0:8
0:3x1 þ0:1x2 þ0:4x3 −0:8x4 ≤0:8

8>>>>>>>>><
>>>>>>>>>:

ðM� 16Þ

The unique optimal solution to (M-16) is X∗ = (4.11,
4.11, 5.31, 5.71)T and the optimal value of the objective
function is 39.19. Thus, for the government, the final
subsidy policy provided to {e1, e2, e3, e4} is {833, 833,
842, 846} (Unit: RMB) and the minimum consensus cost
is 391.9 RMB. Meanwhile, since the group consensus
opinion is o* ¼ 0:3; 0:1; 0:4; 0:2ð ÞX * ¼ 4:91%, the collec-
tive subsidy standard is 839 RMB per person.

Let ε = 0.8. Under the different unit cost vectors (c1,
c2, c3, c4), the final opinions of the employees and the
minimum consensus costs in (M-8) are summarized in
Table 2.

(2) If the OWA operator with weight vector w = (0.4,
0.3, 0.2, 0.1)T is used to aggregate the dispersive original
opinions, (M-10) can be applied to achieve consensus. In
(M-10), the group collective opinion is the ordered weight-
ed average of the individual opinions sorted in descending
order and assigned with importance weights of 0.4, 0.3,
0.2, and 0.1, respectively. If ε = 0.8, then grounded on,
then grounded on (M-10), we have that

min f ¼ x21 þ 2 x2−3ð Þ2 þ 3 x3−6ð Þ2 þ x4−10ð Þ2

s:t:

0:6xτ 1ð Þ −0:3xτ 2ð Þ −0:2xτ 3ð Þ −0:1xτ 4ð Þ ≤0:8
−0:4xτ 1ð Þ þ0:7xτ 2ð Þ −0:2xτ 3ð Þ −0:1xτ 4ð Þ ≤0:8
−0:4xτ 1ð Þ −0:3xτ 2ð Þ þ0:8xτ 3ð Þ −0:1xτ 4ð Þ ≤0:8
−0:4xτ 1ð Þ −0:3xτ 2ð Þ −0:2xτ 3ð Þ þ0:9xτ 4ð Þ ≤0:8
−0:6xτ 1ð Þ þ0:3xτ 2ð Þ þ0:2xτ 3ð Þ þ0:1xτ 4ð Þ ≤0:8
0:4xτ 1ð Þ −0:7xτ 2ð Þ þ0:2xτ 3ð Þ þ0:1xτ 4ð Þ ≤0:8
0:4xτ 1ð Þ þ0:3xτ 2ð Þ −0:8xτ 3ð Þ þ0:1xτ 4ð Þ ≤0:8
0:4xτ 1ð Þ þ0:3xτ 2ð Þ þ0:2xτ 3ð Þ −0:9xτ 4ð Þ ≤0:8

xτ 2ð Þ−xτ 1ð Þ≤0
xτ 3ð Þ−xτ 2ð Þ≤0
xτ 4ð Þ−xτ 3ð Þ≤0

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ðM� 17Þ
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The constraint conditions xτ(i) − xτ(i − 1) ≤ 0, (i = 2, 3, 4)
guarantee that xτ(i) is the ith largest value in the adjusted
opinions {x1, x2, x3, x4} (i.e., o1; o2; o3; o4f g ). Given that
the real rankings of the opinions are unknown after being
modified by (M-17), we need to consider all probable cases
of order positions. Let P indicate the set of all the permu-
tations on f1; 2; 3; 4g, then Pj j ¼ 24. By inputting every
possible permutation into (M-17) and comparing the corre-
sponding optimal values, (M-17) is solved. We get that the

unique optimal solution is X* ¼ ð4:38; 4:38; 4:98; 5:92ÞT
and the optimal value is fc ¼ 42:68. Thus, during the whole
consensus process, the subsidies paid by the government
should increase by o*1 ¼ 4:38%, o*2 ¼ 4:38%, o*3 ¼ 4:98%,

and o*4 ¼ 5:92%, respectively. Consequently, the optimal
subsidies paid to e1, e2, e3, and e4 are 835, 835, 840, and
847 RMB, respectively. In addition, since the final group
opinion is o* ¼ ð0:4; 0:3; 0:2; 0:1ÞX * ¼ 5:18%, the collec-
tive subsidy for every employees equal to 841 RMB.

If we only transform the unit costs and preserve the
remaining arguments, the unique optimal opinions pro-
vided by (M-10) can also be obtained, as shown in
Table 3.

Results in Tables 1 and 2 validate Property 1 of (M-8) and
(M-10). That is, the adjusted collective opinion is always
within the scope of initial opinions. Based on Table 3, we
observe that the order positions of the adjusted opinions are
changed when ðc1; c2; c3; c4Þ ¼ ð6; 3; 4; 1Þ. Thus, the proper-
ty of order preservation is not valid for (M-10), when the unit
costs are not uniform among experts. Besides, the result of
(M-10) under ðc1; c2; c3; c4Þ ¼ ð1; 2; 3; 1Þ is consistent with
Property 4 (1). To be specific, for any two experts with iden-
tical unit costs, if an initial opinion is larger, it will still be the
larger one after being modified by (M-10).

(3) In this case, we use model (M-11), the first special case
of (M-10), where the unit cost of each expert modifying

his/her opinion is the same as each other. Let the associated
weight vector of the OWA operator in (M-11) be w = (0.3,
0.1, 0.4, 0.2)T and the deviation threshold ε = 0.8.
According to the property of order preservation, o4≥o3≥o2
≥o1 ho ld s , t hus o ¼ 0:3o4 þ 0:1o3 þ 0:4o2 þ 0:2o1.
Then, based on Theorem 2, we get the following quadratic
programming model:

min f ¼ x21 þ 2 x2−3ð Þ2 þ x3−6ð Þ2 þ x4−10ð Þ2

s:t:

0:8x1 −0:4x2 −0:1x3 −0:3x4 ≤0:8
−0:2x1 þ0:6x2 −0:1x3 −0:3x4 ≤0:8
−0:2x1 −0:4x2 þ0:9x3 −0:3x4 ≤0:8
−0:2x1 −0:4x2 −0:1x3 þ0:7x4 ≤0:8
−0:8x1 þ0:4x2 þ0:1x3 þ0:3x4 ≤0:8
0:2x1 −0:6x2 þ0:1x3 þ0:3x4 ≤0:8
0:2x1 þ0:4x2 −0:9x3 þ0:3x4 ≤0:8
0:2x1 þ0:4x2 þ0:1x3 −0:7x4 ≤0:8

x1−x2≤0
x2−x3≤0
x3−x4≤0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ðM� 18Þ

The unique optimal solution to (M-18) is X∗ = (3.85, 4.25,
5.45, 5.45)T and the optimal value is fc = 37.97.. Therefore, the
government could guide the employees to change their opin-
ions into o*1 ¼ 3:85%, o*2 ¼ 4:25%, o*3 ¼ 5:45%, and o*4 ¼ 5
:45% {e1, e2, e3, e4} can receive are {831, 834, 844, 844}
(Unit: RMB) and the collective level of allowance is 837
RMB based on o* ¼ 4:65%.

Table 4 lists the corresponding results obtained by (M-11)
under the different consensus thresholds. Obviously, the lower
the consensus degree is, the fewer opinion changes of experts
are, which means less consensus cost has to be paid. Thus, the
costs also have great impacts on the final individual consensus
values.

(4) Here we utilize model (M-15), another special case of
the consensus models under OWA operators, where the

Table 2 Optimal solutions to (M-
8) under different cost vectors (c1, c2, c3, c4) o*1 o*2 o*3 o*4 o* fc

(1, 2, 3, 1) 4.11 4.11 5.31 5.71 4.91 39.19

(1, 4, 3, 5) 5.26 5.26 6.46 6.86 6.06 98.03

(6, 3, 4, 1) 2.61 2.61 3.81 4.21 3.41 94.04

(3, 6, 4, 1) 3.26 3.26 4.46 4.86 4.06 68.19

Table 3 Optimal solutions to (M-
10) under different cost vectors (c1, c2, c3, c4) o*1 o*2 o*3 o*4 o* fc

(1, 2, 3, 1) 4.38 4.38 4.98 5.92 5.18 42.68

(1, 4, 3, 5) 5.42 5.42 5.95 7.02 6.22 97.21

(6, 3, 4, 1) 2.64 2.64 3.89 3.66 3.44 100.46

(3, 6, 4, 1) 3.31 3.31 4.45 4.45 4.11 73.79
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collective opinion is the arithmetic mean of the remaining
values after deleting the maximum and minimum of indi-
vidual opinions. Thus, the aggregation operator used by
(M-15) in this case is the OWA operator with weight vector
w = (0, 1/2, 1/2, 0)T. Suppose that x1 =maxi{xi}, and x2 =
mini{xi}, then (M-15) can be transformed into the follow-
ing model:

min f ¼ x21 þ 2 x2−3ð Þ2 þ 3 x3−6ð Þ2 þ x4−10ð Þ2

s:t:

x1−0:5x3−0:5x4≤0:8
x2−0:5x3−0:5x4≤0:8
0:5x3−0:5x4≤0:8

−0:5x3 þ 0:5x4≤0:8
−x1 þ 0:5x3 þ 0:5x4≤0:8
−x2 þ 0:5x3 þ 0:5x4≤0:8
−0:5x3 þ 0:5x4≤0:8
0:5x3−0:5x4≤0:8
−x1 þ xi≤0; i ¼ 2; 3; 4
x2−xi≤0; i ¼ 1; 3; 4

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðM� 19Þ

Based on Theorem 3, we need to solve another five
models which assume the index tuples of maxi{oi} and
mini{oi} to be (1, 3), (1, 4), (2, 3), (2, 4), and (3, 4),
respectively. Through comparing the optimal values of
the six models, we get that the optimal solution to (M-
19) is X*= (3.94, 3.94, 4.54, 4.54)T and the optimal
value is fc = 37.82. Thus, the local government would
provide the allowances of {832, 832, 836, 836} (RMB)
to {e1, e2, e3, e4} and pay the cost of 378.2 RMB to
convince the employees. In addition, the collective sub-
sidy obtained by (M-19) is 838 RMB under the adjusted
group opinion o*= 4.74%.

Using (M-15) to aggregate individual opinions under the
different unit costs ci (i = 1, 2, 3, 4), we get the corresponding
results as shown in Table 5. It’s observed that under these four
cost vectors, all the order positions of the adjusted opinions o*i
(i = 1, 2, 3, 4) in (M-15) coincide with the initial ones.
However, it’s still an open problem to figure out the particular
conditions under which the order preservation property holds
for (M-15).

(5) If the relevant importance of the employees is assumed
to be the same, then the group collective opinion is the
arithmetic mean of the four kinds of opinions. Obviously,
the aggregation operator used in this situation is the arith-
metical mean operator with weight vector w = (0.25, 0.25,
0.25, 0.25)T. According to (M-8), we have the following
quadratic programming model:

min f ¼ x21 þ 2 x2−3ð Þ2 þ 3 x3−6ð Þ2 þ x4−10ð Þ2

s:t:

0:75x1 −0:25x2 −0:25x3 −0:25x4 ≤0:8
−0:25x1 þ0:75x2 −0:25x3 −0:25x4 ≤0:8
−0:25x1 −0:25x2 þ0:75x3 −0:25x4 ≤0:8
−0:25x1 −0:25x2 −0:25x3 þ0:75x4 ≤0:8
−0:75x1 þ0:25x2 þ0:25x3 þ0:25x4 ≤0:8
0:25x1 −0:75x2 þ0:25x3 þ0:25x4 ≤0:8
0:25x1 þ0:25x2 −0:75x3 þ0:25x4 ≤0:8
0:25x1 þ0:25x2 þ0:25x3 −0:75x4 ≤0:8

8>>>>>>>>><
>>>>>>>>>:

ðM� 20Þ

We get that the optimal solution to (M-20) is X* = (3.94,
3.94, 5.54, 5.54)T and the optimal value is fc = 37.82.
Therefore, when the importance weight of each expert is uni-
form, e1, e2, e3, and e4 are suggested to change their opinions
to o*1 ¼ 3:94%, o*2 ¼ 3:94%, o*3 ¼ 5:54%, o*4 ¼ 5:54%, and

Table 4 Optimal solutions to (M-
11) under different consensus
thresholds

ɛ o*1 o*2 o*3 o*4 o* fc

0.5 4.19 4.44 5.19 5.19 4.69 43.42

0.6 4.08 4.38 5.28 5.28 4.68 41.35

0.7 3.96 4.31 5.36 5.36 4.66 39.34

0.8 3.85 4.25 5.45 5.45 4.65 37.39

Table 5 Optimal solutions to (M-
15) under different cost vectors (c1, c2, c3, c4) o*1 o*2 o*3 o*4 o* fc

(1, 2, 3, 1) 3.94 3.94 5.54 5.54 4.74 37.82

(1, 4, 3, 5) 5.17 5.17 6.77 6.77 5.97 99.51

(6, 3, 4, 1) 2.5 2.5 4.1 4.1 3.3 87.5

(3, 6, 4, 1) 3.14 3.14 4.74 4.74 3.94 63.71
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the final collective opinion o* is their arithmetical mean
4.74%. Under the collective allowance level of 838 RMB,
the government would finally provide the subsidies of {832,
832, 844, 844} (RMB) to {e1, e2, e3, e4} and pay the consen-
sus cost of 378.2 RMB.

Under the different unit adjustment costs, the unique opti-
mal solutions and minimum consensus costs in (M-20) are
summarized in Table 6.

Fig. 2 show the variation trends of optimal opinions of
employees and optimal group opinion in every model as the
deviation threshold grows, under the cost vector of (c1, c2, c3,
c4) = (1, 2, 3, 1). Fig. 3 shows the changes of the consensus
costs in the five models under the incremental deviation
thresholds.

Figure 3 shows that the consensus costs in (M-10) under
each value of ε are the highest, and the costs in models (M-15)
and (M-20) are completely uniform. It’s observed that the
distributions and variation trends of optimal opinions are

Table 6 Optimal solutions to (M-
20) under different cost vectors (c1, c2, c3, c4) o*1 o*2 o*3 o*4 o* fc

(1, 2, 3, 1) 3.94 3.94 5.54 5.54 4.74 37.82

(1, 4, 3, 5) 5.17 5.17 6.77 6.77 5.97 99.51

(6, 3, 4, 1) 2.5 2.5 4.1 4.1 3.30 87.5

(3, 6, 4, 1) 3.14 3.14 4.74 4.74 3.94 63.71

Fig. 2 In (a)-(e), the vertical axis
is the values of deviation
threshold ε, and the horizontal
axis shows the corresponding
optimal opinions in different
consensus models

Fig. 3 Changes of the total consensus costs of the five models under
different deviation thresholds
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influenced by the aggregation operators and deviation thresh-
olds. In the consensus process, the costs paid by a moderator
are closely related to the predefined consensus level. It’s no
doubt that the higher consensus degree requires devotingmore
resources to be accomplished, yet the lower one can be easily
achieved at a lower cost. Thus, the local government could
select a proper deviation threshold to maximize the consensus
degree under a given budget.

The above five cases match different types of scenes, re-
spectively. In Case (1) (i.e., (M-8)), each expert is assigned
with a settled importance weight according to his/her level of
expertise (e.g., knowledge, confidence, the ability of making
coherent assessments, etc.) with direct or indirect methods.
Contrasted with Case (1), implicit in Case (2) (i.e., (M-10))
is the assumption that all experts are of equal importance. The
OWA operators lie between the operators requiring all experts
and at least one expert to be satisfied. Sometimes, the desired
property of generalized commutativity also drives us to use
OWA operators instead of the simple WA operators [28]. It
should be noted that every importance weight assigned by
OWA operators is associated with a particular ordered position
rather than some decisionmaker. However, when the unit cost of
each expert is equal (i.e., Case (3)), the weights of all experts are
fixed. Case (4) aims at restraining deliberate manipulation in the
decision making process by deleting the extreme values among
individual opinions. In fact, Case (5) is also a special case of
Case (2) that assigns the fixed weight of 1 / n to each expert.

Ben-Arieh, Easton and Evans [15] devised the methods of
CMQC, ε CMQC, and QMEC. In the following, we compare

the proposed methods with three existing quadratic cost con-
sensus models using same indices.

We first compute the results of CMQC where adjusted
individual opinions have to be uniform (i.e., ε = 0) and aggre-
gation operators are not considered. Under the same cost vec-
tors, the unanimous consensus results derived by CMQC are
shown as Table 7.

Then we use the method of ε CMQC to assemble em-
ployees’ opinions. The optimal adjusted opinions under the
different cost vectors are summarized in Table 8.

QMEC aims to maximize the number of experts fitting
within consensus given a specified budget. Here we set the
unit cost of each expert as c1 = 1, c2 = 2, c3 = 3, c4 = 1 and
apply (M-5) to find the optimal adjustment alternatives under
descending budgets B (Unit: 10RMB), as shown in Table 9.

The consensus group is denoted as set E
0
. All members be-

longing to E
0
share the same group opinion o*, while the

original opinions of other experts are preserved.
From the results in Tables 2, 3, 4, 5, 6, 7, 8, and 9, we

make a comparative analysis of the proposed methods and
CMQC, ε CMQC, and QMEC in Ben-Arieh, Easton and
Evans [15]:

(1) Compared with the results in other methods, the total costs
of CMQC are always the highest. In CMQC, the adjusted
opinions of all experts need to be completely uniform.
Nevertheless, for the government, the unanimous consen-
sus might be too expensive to be acomplished efficiently.
Thus the consensus models acceptable for a proper

Table 9 Optimal solutions of
QMEC under given budgets B o*1 o*2 o*3 o*4 o* E' fc

60

30

4

4

4

4

4

4

10

10

4

4

e2, e3, e1
e2, e3, e1

30

30

15 2 2 6 10 2 e2, e1 6

Table 8 Optimal solutions of ɛ
CMQC under different cost
vectors

(c1, c2, c3, c4) o*1 o*2 o*3 o*4 o* fc

(1, 2, 3, 1) 3.94 3.94 5.54 5.54 4.74 37.82

(1, 4, 3, 5) 5.4 5.4 6 7 6.2 97.20

(6, 3, 4, 1) 2.36 3 3.96 3.96 3.16 86.55

(3, 6, 4, 1) 3.14 3.14 4.74 4.74 3.94 63.71

Table 7 Optimal solutions of
CMQC under different cost
vectors

(c1, c2, c3, c4) o*1 o*2 o*3 o*4 o* fc

(1, 2, 3, 1) 4.86 4.86 4.86 4.86 4.86 60.86

(1, 4, 3, 5) 6.15 6.15 6.15 6.15 6.15 151.69

(6, 3, 4, 1) 3.07 3.07 3.07 3.07 3.07 138.93

(3, 6, 4, 1) 3.71 3.71 3.71 3.71 3.71 104.86
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deviation between individual opinions and group opinion
are more feasible in operation.

(2) In terms of the consensus costs, the method of ε CMQC
is superior to the proposed methods considering aggre-
gation operators. It seems that ε CMQC doesn’t consid-
er the relationships between the individuals’ opinions
and the group one. However, we observe that the opti-
mal group collective opinions in ε CMQC are exactly
equal to the averages of the maximum and minimum
values of adjusted individuals’ opinions. In fact,
Zhang, Dong, Xu and Li [31] revealed that the inherent
aggregation operator of ε CMQC is the OWA operator
with weight vector (1/2, 0, ..., 0, 1/2)T. That is, εCMQC
only considers the extreme opinions rather than the ma-
jority of decision makers’ opinions in pursurance of the
minimum consensus cost. Apparently, the group opinion
derived by ε CMQC is not representative enough as a
result of overlooking the majority of views, especially
when there are many decision makers involved.
Therefore, compared with of εCMQC, methods proposed
in this paper havewider applications and can aggregate the
group opinion from individual ones more resonably.

(3) In Table 9, since the given budgets are lower than the
minimum cost of CMQC (i.e., 608.6 RMB), the maxi-
mum number of experts that meet consensus is certainly
no more than three. We find that in this caes, the method
of QMEC can only earn the agreement among e1, e2, and
e3 while e4 can never cross over into the consensus
group, when the budget B are within the interval
[30,60.86). Thus, every employee would receive the sub-
sidy of 832 RMB even if e4 is not satisfied with this
policy. This is mainly caused by the constraint of unan-
imous agreemnent. However, in the proposedmethods, ε
can be tuned to maximize the consensus levels among all
employees under the specified budgets, as shown in
Fig. 3. Therefore, utilizing the mehtods addressed in this

paper, the opinion of every employee would be consid-
ered, and the government could also optimize its re-
source allocations during the consensus process.

5.2 Example 2

In this example, we use the data from Zhang, Dong, Xu and Li
[31]. Assume that there are five experts, and their original
opinions are: o1 = 0.5, o2 = 1.0, o3 = 2.5, o4 = 3.0, and o5 =
6.0. Let fc denote the minimum consensus cost and the devi-
ation threshold ε be 0.8. In the following, we compare the
results of the existing linear cost consensus methods (i.e.,
(M-1), (M-2), and (M-6)) and the proposed methods under
WA and OWA operators.

(1) We first use (M-8) to rectify individual expert’s opinions,
where ε = 0.8 and the aggregation operator is the WA
operator with weight vector w = (0.375, 0.1875, 0.25,
0.0625, 0.125)T. Table 10 displays the corresponding
optimal individual and collective opinions and the min-
imum consensus costs obtained from (M-8) under the
different values of unit costs ci (i = 1, 2, …, 5).

(2) If the unit costs are uniform among experts, then (M-11)
can be used to aggregate the individuals’ opinions. Set
the associated weight vector of OWA operator be
w = (0.375, 0.1875, 0.25, 0.0625, 0.125)T. The corre-
sponding results are listed in Table 11, which shows that
under the different consensus thresholds, the magnitude
of experts’ opinion changes is different.

(3) Utilize (M-15) to facilitate consensus among experts
where ε = 0.8 and the OWA operator with weight vector
w = (0, 1/3, 1/3, 1/3, 0)T is used. Table 12 presents the
unique optimal solutions to (M-15) under varying cost
vectors, which preserve the rankings of original

Table 11 Optimal solutions to
(M-11) under different consensus
thresholds

ɛ o*1 o*2 o*3 o*4 o*5 o* fc

0.5 2.27 2.27 2.32 2.87 3.27 2.77 12.25

0.6 2.21 2.21 2.32 2.86 3.41 2.81 11.15

0.7

0.8

2.14

2.08

2.14

2.08

2.31

2.30

2.86

2.85

3.54

3.68

2.84

2.88

10.10

9.11

Table 10 Optimal solutions to (M-8) under different cost vectors

(c1, c2, c3, c4, c5) o*1 o*2 o*3 o*4 o*5 o* fc

(1, 4, 3, 5, 2) 2.16 1.63 2.87 3.06 3.23 2.43 20.13

(6, 3, 4, 1, 2) 1.15 1.65 2.74 2.74 2.74 1.94 25.37

(3, 4, 1, 6, 2) 1.68 1.44 3.02 3.02 3.02 2.22 22.96
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opinions. However, the initial order positions were
changed in Zhang, Dong, Xu and Li [31], when using
the linear consensus cost model (M-6) with the same
arguments and OWA operator.

This example was first investigated by Ben-Arieh and
Easton [24], where they used the linear cost consensus models
(M-1) and (M-2) to reach unanimous consensus and ε consen-
sus, respectively. Let ε = 0. Table 13 shows the optimal solu-
tions and the optimal values obtained by (M-1) under the
varying cost vectors.

If we set ε = 0.8, the shifted individual opinions and collec-
tive opinion and the minimum consensus costs in (M-2) are
shown in Table 14.

In Zhang, Dong, Xu and Li [31], (M-6) was also applied to
examine this example, where {c1, c2, c3, c4, c5}={3, 4, 1, 6,
2}, ε = 0.8, and F is a WA operator with weight vector
w = (0.375, 0.1875, 0.25, 0.0625, 0.125)T. It should be noted
that (M-6) may have multiple optimal solutions. Table 15

shows three of the optimal solutions (ȯ,
::
o and o ) to (M-6).

Both Ben-Arieh and Easton [24] and Zhang, Dong, Xu and
Li [31] constructed the consensus methods under the linear
cost functions. From Tables 13 and 15, it is obvious that the
consensus costs of (M-1) for the unanimous consensus are

substantially higher than those of (M-6) that considers consen-
sus degree. When complete agreement is not necessary, based
on Tables 14 and 15, it’s observed that method (M-2) pro-
posed by Ben-Arieh and Easton [24] has lower costs than
(M-6) by Zhang, Dong, Xu and Li [31]. However, Zhang,
Dong, Xu and Li [31] prove that when (M-6) uses the OWA
operator with weight vector w = (1/2, 0, ..., 0, 1/2)T, (M-6) is
equivalent to (M-2). Therefore, as we have pointed out in
Sect. 2.2, method in Zhang, Dong, Xu and Li [31] is an ex-
tension of Ben-Arieh and Easton [24]’s work.

The main difference between the method in Zhang, Dong,
Xu and Li [31] and the proposed method lies in the definition
of consensus cost. The first derivative of the quadratic cost
function increases as opinion adjustment rises, which reflects
the psychological changes of experts. In general, an expert
would show more resistance when he/she is required to make
more compromises. However, the first derivative of the linear
cost function is uniform no matter how much the individual
opinion is changed. Thus, the quadratic cost functions could
better characterize the consensus costs paid to the experts.
Apart from the cost functions, the solving approaches are also
distinct. The method in Zhang, Dong, Xu and Li [31] is based
on linear programming to obtain the optimal solution, while
the proposed methods are grounded on strictly convex qua-
dratic programming. It is widely known that the optimal

Table 12 Optimal solutions to
(M-15) under different cost
vectors

(c1, c2, c3, c4, c5) o*1 o*2 o*3 o*4 o*5 o* fc

(1, 4, 3, 5, 2) 1.72 1.72 2.71 3.13 3.32 2.52 18.14

(6, 3, 4, 1, 2) 1.39 1.39 2.44 2.75 2.99 2.19 23.41

(3, 4, 1, 6, 2) 1.58 1.58 2.55 3.01 3.18 2.38 20.75

Table 13 Optimal solutions to
(M-1) under different cost vectors (c1, c2, c3, c4, c5) o*1 o*2 o*3 o*4 o*5 o* fc

(1, 4, 3, 5, 2) 2.5 2.5 2.5 2.5 2.5 2.5 17.5

(6, 3, 4, 1, 2) 1 1 1 1 1 1 21

(3, 4, 1, 6, 2) 2.5 2.5 2.5 2.5 2.5 2.5 22

Table 14 Optimal solutions to
(M-2) under different cost vectors (c1, c2, c3, c4, c5) o*1 o*2 o*3 o*4 o*5 o* fc

(1, 4, 3, 5, 2) 1.4 1.4 2.5 3 3 2.2 8.5

(6, 3, 4, 1, 2) 0.9 1 2.5 2.5 2.5 1.7 9.9

(3, 4, 1, 6, 2) 1.4 1.4 2.5 3 3 2.2 10.3

Table 15 Optimal solutions to
(M-6) o*1 o*2 o*3 o*4 o*5 o* fc

ȯ 1.27 1 2.6 2.6 2.6 1.8 11.6
::
o 1.67 1.4 3 3 3 2.2 11.6

o 1.47 1.2 2.8 2.8 2.8 2 11.6
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solution to the strictly convex quadratic programming exists
and is unique. Thus, the proposed models are superior to
Zhang, Dong, Xu and Li [31]’s models with respect to the
uniqueness of optimal solution.

5.3 Example 3

Suppose there is a family consisting of four members ej (j = 1,
2, 3, 4) choosing an apartment from five alternatives Ai (i = 1,
2,…, 5). Denote oij the preference of ej on Ai. The stronger the
preference of member ej for apartment Ai, the higher oij will
be. The preference information of the four members is pre-
sented in Table 16.

We observe that e1, e2, e3, and e4 prefer A3, A2, A4, and A1,
respectively. To this end, minimum cost consensus models are
applied to reach consensus among the family members.
Denote o*ij as the optimal adjusted opinions of ej on Ai and

o*i the collective evaluation on Ai.

(1) Model (M-8) is first applied to aggregate the original
opinions, where {c1, c2, c3, c4} = {1, 2, 1, 1}, ε = 1, and
the weight vector of WA operator is w = (0.2, 0.3, 0.25,
0.25)T. Table 17 lists the adjusted individual opinions o*ij
and collective opinions o*i derived from (M-8).

(2) Assume that the unit cost of each member is uniform, the
weight vector of OWA operator is w = (0.2, 0.3, 0.25,
0.25)T and ε = 1, then (M-11) is employed to adjust the
original individual opinions. Table 18 shows the corre-
sponding results derived from (M-11).

(3) Suppose {c1, c2, c3, c4} = {1, 2, 1, 1} and ε = 1, then un-
der the OWA operator with weight vector w = (0, 1/3, 1/
3, 1/3, 0)T, model (M-15) is used to facilitate consensus

among the family members. The evaluations adjusted by
(M-15) are presented in Table 19.

(4) When ε = 0 and {c1, c2, c3, c4} = {1, 2, 1, 1}, the pro-
posed method in this paper reduces to CMQC developed
by Ben-Arieh, Easton and Evans [15]. CMQC is the
quadratic cost consensus method to achieve completely
unanimous agreement. The corresponding consensus re-
sults are shown in Table 20.

(5) If we use the OWA operator with weight vector w = (1/
2, 0, 0, 0, 1/2)T in (M-10), then the proposed model is
equivalent to the model of ε CMQC. Table 21 shows
the optimal solutions in ε CMQC.

Table 16 Values of oij
j = 1 j = 2 j = 3 j = 4

i = 1 1 3 1 5

i = 2 3 5 3 2

i = 3 4 1 2 1

i = 4 2 3 5 1

i = 5 2 4 2 3

Table 17 Values of o*ij and o
* obtained by (M-8)

o*i1 o*i2 o*i3 o*i4 o*i

i = 1 1.53 3.2 1.53 3.53 2.53

i = 2 3.29 4.45 3.37 2.45 3.45

i = 3 2.86 1.21 2.35 1.35 1.86

i = 4 2.19 3.14 3.76 1.76 2.76

i = 5 2.07 3.87 2.09 3.09 2.87

Table 18 Values of o*ij and o
* obtained by (M-11)

o*i1 o*i2 o*i3 o*i4 o*i

i = 1 1.5 3.5 1.5 3.5 2.5

i = 2 3.25 4.20 3.30 2.25 3.20

i = 3 2.97 1.32 2.39 1.32 1.97

i = 4 2.25 3.30 3.73 1.73 2.73

i = 5 2.09 3.72 2.09 3.11 2.72

Table 19 Values of o*ij and o
* obtained by (M-15)

o*i1 o*i2 o*i3 o*i4 o*i

i = 1 1.57 3.29 1.43 3.43 2.43

i = 2 3.4 4.4 3.4 2.4 3.4

i = 3 3 1 2.5 1.5 2

i = 4 2.29 3.14 3.71 1.71 2.71

i = 5 2 3.75 2.25 3.25 2.75

Table 20 Values of o*ij and o
* obtained by CMQC

o*i1 o*i2 o*i3 o*i4 o*i

i = 1 2.6 2.6 2.6 2.6 2.6

i = 2 3.6 3.6 3.6 3.6 3.6

i = 3 1.8 1.8 1.8 1.8 1.8

i = 4 2.8 2.8 2.8 2.8 2.8

i = 5 3 3 3 3 3

Table 21 Values of o*ij and o
* obtained by ε CMQC

o*i1 o*i2 o*i3 o*i4 o*i

i = 1 1.8 3 1.8 3.4 2.6

i = 2 3 3.93 2.33 2.33 3.13

i = 3 2.95 1.35 2 1.35 2.15

i = 4 2.13 3 3.73 2.13 2.93

i = 5 2.2 3.8 3 2.2 3
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(6) When the quadratic cost function of CMQC is swapped
for the linear one, (M-1) addressed by Ben-Arieh and
Easton [24] can also be used to achieve complete agree-
ment among family members. We still set {c1, c2, c3,
c4} = {1, 2, 1, 1}, then the optimal solutions obtained
by (M-1) are presented in Table 22.

(7) In practice, it’s generally expensive and time-wasting to
achieve the full and unanimous agreement. Thus, we set
ε = 1 and {c1, c2, c3, c4} = {1, 2, 1, 1}. The linear cost
model (M-2) is used to aggregate family members’ opin-
ions and the adjusted opinions are shown in Table 23.

(8) Furthermore, incorporating aggregation operators into (M-
2), model (M-6) can be applied to attain consensus on the
house purchase. Let the aggregation operatorF in (M-6) be
the WA operator with weight vector w = (0.2, 0.3, 0.25,
0.25)T, {c1, c2, c3, c4} = {1, 2, 1, 1}, and ε = 1. Table 24
lists the evaluations after being adjusted by (M-6).

According to the optimal collective opinions after modify-
ing, we can obtain the ranking of Ai (i = 1, 2, …, 5). In
Tables 17, 19, 20, 21 and 24, the ranking is: A2 ≻A5 ≻A4 ≻
A1 ≻A3. In Table 18, the ranking is: A2 ≻A4 ≻A5 ≻A1 ≻A3. In
Tables 22 and 23, the rankings are A1 ∼A2 ∼A4 ∼A5 ≻A3 and
A2 ≻A4 ∼A5 ≻A1 ∼A3, respectively. Although the priorities of
Ai are not exactly the same, each table shows that
o*2 ¼ maxi o*i

� �
. Hence, A2 is the optimal alternative for the

family. Particularly, the prioritization between alternatives A4

and A5 is changed under the diverse aggregation operators,
which shows the importance of aggregation operators in GDM.

The above numerical comparative analyses reveal the va-
lidity and usability of the proposed models. Compared with
the consensus methods in Ben-Arieh, Easton and Evans [15],
the consensus models proposed in this paper are not onlymore

feasible and efficient in terms of practical applications, but are
also more flexble when applied to different scenarios.
Moreover, different form refrences [24, 31], this paper also
employs quadratic cost functions to capture experts’ psycho-
logical changes in negotiation process and could provide
unique optimal solutions for GDM problems.

6 Conclusions

In GDM, aggregation operators can be applied to reveal the
inherent relationships between individuals’ opinions and the
collective opinion. In the existing minimum cost consensus
models, the objective functions are usually assumed to be
linear cost functions and the optimal solutions are attained
by linear programming. However, there may be infinite opti-
mal solutions to a linear programming model, which may
escalate the complexity of GDM problems. Additionally, the
unit adjustment costs in the linear cost functions are constant,
which ignores the impact on unit costs made by the opinion
adjustments. In order to overcome the shortages, this paper
develops an extended minimum cost consensus model with
quadratic costs under aggregation operators. The proposed
model reduces to the consensus model of Ben-Arieh, Easton
and Evans [15] when the adjusted individual opinions are
equal to the consensus opinion.

In addition, this paper closely examines the proposed
models under the WA operator and OWA operators.
Corresponding approaches are provided based on strictly con-
vex quadratic programming, the optimal solution of which
exists and is unique. Furthermore, these models are in line
with some ideal properties.

Fuzzy information is often applied to denote the preference
information of experts over a set of alternatives [33, 40–42]
when experts’ opinions are vague. Both individual consisten-
cy and consensus level measures are essential for a rational
GDM problem [40]. Thus, how to extend this model to a
certain degree of individual consistency under reciprocal
fuzzy preference relations is one of our future research topics.
In addition, many other operators such as Bonferroni mean
[43, 44], Maclaurin symmetric mean [45, 46], etc. are as ef-
fective as the WA and OWA operators in decision making
problems. Hence, how to apply the proposed model to other

Table 22 Values of o*ij and o
*

obtained by (M-1) o*i1 o*i2 o*i3 o*i4 o*i

i = 1 3 3 3 3 3

i = 2 3 3 3 3 3

i = 3 1 1 1 1 1

i = 4 3 3 3 3 3

i = 5 3 3 3 3 3

Table 23 Values of o*ij and o
*

obtained by (M-2) o*i1 o*i2 o*i3 o*i4 o*i

i = 1 1 3 1 3 2

i = 2 3 5 3 3 4

i = 3 3 1 2 1 2

i = 4 2 3 4 2 3

i = 5 2 4 2 3 3

Table 24 Values of o*ij and o
* obtained by (M-6)

o*i1 o*i2 o*i3 o*i4 o*i

i = 1 1.33 3 1.33 3.33 2.33

i = 2 3 4.11 3 2.11 3.11

i = 3 2.56 1 2 1 1.56

i = 4 2 3 3.6 1.6 2.6

i = 5 2 3.79 2 3 2.79
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aggregation operators will be also discussed in the future.
With great prosperity in information technology, a large spec-
trum of decision makers could simultaneously participate in
decision making processes, such as e-democracy and social
networks. Recently, the large-scale group decision making
(LSGDM) has become a hotspot among researchers [47–49].
Thus, how to employ the proposed method to practical
LSGDMproblems, like high-speed rail passenger requirement
management [50, 51], systemic risk management of food sup-
ply chains [52] and so forth.
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