Skip to main content
Log in

Parameter identification of robot manipulators with unknown payloads using an improved chaotic sparrow search algorithm

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Parameter identification is essential for the model-based high-accuracy control of robot manipulators. The objective of this work is to develop a swarm intelligence-based technique to estimate distinct system parameters and to promote the control accuracy of robot manipulators. For this purpose, an improved chaotic sparrow search algorithm (ICSSA) integrated with Kent chaotic mapping, Student’s t-distribution, and the Lévy flight strategy is implemented based on the basic sparrow search algorithm (SSA). Benefitting from the unique advantages in local and global optimization of the ICSSA, the inertial and friction parameters of a two-link robot manipulator with unknown payloads are estimated via simulation experiments. The estimated parameters are analyzed and compared with other popular advanced optimization methods and the classic least square method. The results demonstrate that the ICSSA provides more competitive results over other popular optimization algorithms. It might offer another promising approach of high-level accuracy for advanced control techniques in industry robot manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atkeson CG, An CH, Hollerbach JM (1986) Estimation of inertial parameters of manipulator loads and links. Int J Robot Res 5(3):101–119

  2. Cao F, Liu J (2017) Vibration Control for a Rigid-Flexible Manipulator with Full State Constraints via Barrier Lyapunov Function. J Sound Vib 406:237–252

    Article  Google Scholar 

  3. Slotine, Jean-Jacques, R, et al (1987) On the adaptive control of robot manipulators. Int J Robot Res 6 (3):49–59

  4. Dutkiewicz P, Kozlowski K R, Wroblewski W S (1993) Experimental identification of load parameters. In IEEE International Symposium on Industrial Electronics Conference Proceedings, Budapest, Hungary. pp 361–366

  5. Gautier M, Khalil W (1992)  Exciting trajectories for the identification of base inertial parameters of robots. Int J Robot Res 11(4):362–375

  6. Bingül Z, Karahan O (2011) Dynamic identification of Staubli RX-60 robot using PSO and LS methods. Expert Syst Appl 38(4):4136–4149

    Article  Google Scholar 

  7. Roger MC, Javier MV (2018) Experimental parameter identification of flexible joint robot manipulators. Robotica 36(03):313–332

    Article  Google Scholar 

  8. Swevers J, Ganseman C (1997) Optimal robot excitation and identification. IEEE Trans Robot Autom 13(5):730–740

    Article  Google Scholar 

  9. Olsen MM, Petersen HG (2001) A new method for estimating parameters of a dynamic robot model. IEEE Trans Robot Autom 17(1):95–100

    Article  Google Scholar 

  10. Olsen MM, Swevers J, Verdonck W (2002) Maximum likelihood identification of a dynamic robot model: Implementation issues. Int J Robot Res 21(2):89–96

    Article  Google Scholar 

  11. Sun X, Gu J, Sun H (2021) Research progress of zero-shot learning. Appl Intell 51:3600–3614

    Article  Google Scholar 

  12. Takagi T, Sugeno M (1993) Fuzzy identification of systems and its applications to modeling and control. Readings in Fuzzy Sets for Intelligent Systems 15(1):387–403

    Article  Google Scholar 

  13. Yu D, Xu Z, Hamido F (2019) Bibliometric analysis on the evolution of applied intelligence. Appl Intell 49:449–462

    Article  Google Scholar 

  14. Mohammadi B, Guan Y, Moazenzadeh R, et al (2021) Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena 198(105024)

  15. Bassimir B, Schmitt M, Wanka R (2020) Self-adaptive potential-based stopping criteria for particle swarm optimization with forced moves. Swarm Intell 14:285–311

    Article  Google Scholar 

  16. Storn R, Price K (1997) Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  17. Iwasaki M, Miwa M, Matsui N (2005) GA-based evolutionary identification algorithm for unknown structured mechatronic systems. IEEE Trans Industr Electron 52(1):300–305

    Article  Google Scholar 

  18. Al-Dabbagh R D, Kinsheel A, Mekhilef S, et al (2014) System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm. Adv Eng Softw 78(dec.):60–66

  19. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67

    Article  Google Scholar 

  20. Liu Y, Passino KM (2002) Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors. J Optim Theory Appl 115(3):603–628

    Article  MathSciNet  Google Scholar 

  21. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst Appl 57(Sep.):192–203

  22. Yurtkuran A, Emel E (2015) An adaptive artificial bee colony algorithm for global optimization. Appl Math Comput 271:1004–1023

    MathSciNet  MATH  Google Scholar 

  23. Karaboga D, Mernik M et al (2015) On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation. Information Sciences: An International Journal 291:115–127

    Article  MathSciNet  Google Scholar 

  24. Dhiman G, Kumar V (2019) Seagull optimization algorithm: theory and its applications for large-scale industrial engineering problems. Knowl-Based Syst 165(FEB.1):169–196

  25. Seyedali M, Andrew L (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  26. Wang GG, Deb S, Cui Z (2019) Monarch butterfly optimization. Neural Comput Appl 31:1995–2014

    Article  Google Scholar 

  27. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  28. Bingul Z, Karahan O (2011) A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst Appl 38(1):1017–1031

    Article  Google Scholar 

  29. Mugdha, Bakhale, V, et al (2020) A dynamic inertia weight strategy in micro PSO for swarm robots. Wirel Pers Commun 110(2):573–592

  30. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science & Control Engineering An Open Access Journal 8(1):22–34

    Article  Google Scholar 

  31. Zhang C, Ding S (2021) A stochastic configuration network based on chaotic sparrow search algorithm. Knowl-Based Syst (10):106924

  32. Xing Z, Yi C, Lin J, et al (2021) Multi-component fault diagnosis of wheelset-bearing using shift-invariant impulsive dictionary matching pursuit and sparrow search algorithm. Measurement 178(4):109375

  33. Zhu Y, Yousefi N (2021) Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm. Int J Hydrog Energy 46(14)

  34. Yu Y, Gao S, Cheng S et al (2018) CBSO: a memetic brain storm optimization with chaotic local search. Memetic Computing 10(4):353–367

    Article  Google Scholar 

  35. Zhang L, Wang J, Chen J, et al (2019) Dynamic modeling for a 6-DOF robot manipulator based on a centrosymmetric static friction model and whale genetic optimization algorithm. Adv Eng Softw 135:102684

  36. Pennestrì E, Rossi V, Salvini P et al (2016) Review and comparison of dry friction force models. Nonlinear Dyn 83(4):1785–1801

    Article  Google Scholar 

  37. Jin J, Gans N (2015) Parameter identification for industrial robots with a fast and robust trajectory design approach. Robot Comput Integer Manuf 31:21–29

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (No. 51875266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinan Gu.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Gu, J., Sun, X. et al. Parameter identification of robot manipulators with unknown payloads using an improved chaotic sparrow search algorithm. Appl Intell 52, 10341–10351 (2022). https://doi.org/10.1007/s10489-021-02972-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02972-5

Keywords

Navigation