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Abstract
Clustering analysis is essential for obtaining valuable information from a predetermined dataset. However, traditional
clustering methods suffer from falling into local optima and an overdependence on the quality of the initial solution. Given
these defects, a novel clustering method called gradient-based elephant herding optimization for cluster analysis (GBEHO)
is proposed. A well-defined set of heuristics is introduced to select the initial centroids instead of selecting random initial
points. Specifically, the elephant optimization algorithm (EHO) is combined with the gradient-based algorithm GBO for
assigning initial cluster centers across the search space. Second, to overcome the imbalance between the original EHO
exploration and exploitation, the initialized population is improved by introducing Gaussian chaos mapping. In addition, two
operators, i.e., random wandering and variation operators, are set to adjust the location update strategy of the agents. Nine
datasets from synthetic and real-world datasets are adopted to evaluate the effectiveness of the proposed algorithm and the
other metaheuristic algorithms. The results show that the proposed algorithm ranks first among the 10 algorithms. It is also
extensively compared with state-of-the-art techniques, and four evaluation criteria of accuracy rate, specificity, detection
rate, and F-measure are used. The obtained results clearly indicate the excellent performance of GBEHO, while the stability
is also more prominent.

Keywords Cluster analysis · Metaheuristic algorithm · Elephant herding optimization · Real-world datasets

1 Introduction

Machine learning can be divided into supervised and unsu-
pervised learning, depending on whether the examples are
trained with or without labels [1]. Supervised learning
focuses on prediction, mainly by considering the model
complexity as well as the variance and bias between sam-
ples. The main task is to obtain the corresponding response
variables when observations are made on the predictor
variables. In contrast, unsupervised learning focuses on
observation. Unlike supervised learning, response variables
are not available in unsupervised learning. Consequently,
the chief task is to determine the underlying characteristics
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of the input variables. Specifically, a cluster analysis is a
representative technique used in unsupervised learning.

1.1 Literature review

The concept of a cluster analysis was first introduced
by Driver and Kroeber in 1932 [2]. Later, Zubin and
Tryon brought it to the field of psychology. Clustering
techniques are currently widely used in many fields, such
as data mining [3], image segmentation [4], wireless
communication [5], outlier detection [6], agricultural
production [7], and e-commerce [8]. Different from
classification techniques, the classes to be divided in
clustering are unknown. The correlation, distribution, and
variability among the data need to be analyzed from
the sample data. In other words, the process divides the
samples into different groups by weighing the similarity
measures between them, where each group is called a
cluster [9]. Homogeneity and separability are two important
metrics used in cluster analyses. The former indicates the
similarity between objects in the same cluster, and the
latter implies the difference of objects between different
clusters. The purpose of clustering is to maximize the

/ Published online: 28 January 2022

Applied Intelligence (2021) 52:11606–11637

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-03020-y&domain=pdf
mailto: polpxin@163.com


homogeneity of the same cluster and the heterogeneity
of different clusters [10]. Driven by these two concepts,
various types of clustering methods have been introduced.
Interestingly, different conclusions can be drawn depending
on the method used.

Clustering algorithms can be broadly classified into two
categories, namely, hierarchical and partitional methods
[11]. Hierarchical clustering methods assume a hierarchical
structure between clusters and recursively find nested
clusters. Their advantage lies in that the entire clustering
process can be completed at once without requiring a priori
knowledge. However, this approach is computationally
intensive. The main methods include DIANA, BIRCH,
CURE, and CHAMELEON. The partitional method, on
the other hand, simulates the lookup of all clusters as a
partition of the data instead of imposing a hierarchical
structure [12]. Specifically, the dataset is divided into a
fixed number of clusters based on a specific criterion. These
clusters are disjointed, i.e., each object belongs to only one
cluster. This type of method is characterized by insensitivity
to the input dataset and is easy to operate. In addition,
it is computationally simple. However, the scalability is
poor, and most methods fall into local optima when the
dimensions of the data objects increase [13].

Due to the ease of implementation, simplicity, and
efficiency, k-means clustering has become one of the
most widely used clustering methods [14]. It separates
all samples into the closest clusters by minimizing the
sum of squared errors to find the approximate solution
in a greedy manner. However, due to the nature of the
gradient descent, k-means often converges to a local
minimum of the objective function. For the same reason,
the quality of k-means for solving clustering problems
depends heavily on the initial solution [15]. If not chosen
properly, the algorithm can converge slowly, and may
produce empty clusters. Under this circumstance, the
probability of falling into a local optimum will increase
[16]. With further research, many k-means variants have
emerged to overcome this problem. For example, Bortoloti
et al. [17] proposed supervised kernel-density-estimation k-
means, called SKDEKMeans. The kernel destiny was used
to estimate a better representation of the distribution so
that the balance between majority and minority clusters was
achieved. A k-centroid initialization algorithm (PkCIA) was
then proposed by Manochandar et al. [18]. The eigenvector
of the new matrix was adopted as an index for computing
initial cluster centroids. On this basis, the problem that the
original algorithm is highly sensitive to the initial solution
can be solved. An I-k-means-plus was proposed by Hassan
[19]. According to his philosophy, the quality of the solution
can be improved by removing or splitting the class clusters
in each iteration. It was experimentally demonstrated that
the clustering process was accelerated with a relatively

higher accuracy. Huang et al. [20] developed a robust deep
k-means model to learn the hidden attributes. The objective
function is derived to a more trackable form to tackle the
optimization problem more easily while obtaining the final
robust results. An entropy-based initialization algorithm
was proposed by Chowdhury et al. [21]. In their method,
an entropy-based objective function was defined to finish
the initialization process. Meanwhile, by using a number
of cluster validity indexes, the proper number of clusters
for different datasets can be calculated. Therefore, the
performance of the proposed algorithm was enhanced. Zhao
et al. [22] proposed another novel variant of k-means to
perform top-down hierarchical clustering. It exhibited a
faster speed while maintaining a lower clustering error.

Data clustering has been widely used in the real world
for mining valuable information. It has long been applied
in such areas such as object detection and segmentation
patterns, medical risk assessment, energy exploration and
development, IoT applications and anomaly detection [23].

In the real world, datasets are mostly vague, complex,
and large. Meanwhile, their labels and attributes are
often difficult to access smoothly. In particular, it is
almost impossible to cluster the data with varied shapes,
sizes, and densities [24]. In this case, an accurate and
efficient estimation of the initial centroids without a priori
information is urgently required [25].

Since the aims of clustering are to maximize the
similarity within the same cluster and dissimilarity across
clusters, it can be considered an optimization problem [26].
In optimization problems, it is often necessary to maximize
or minimize some objective function (the function used
to evaluate the quality of the solution). In the entire
process, various difficulties, such as constraints, multiple
objectives, uncertainties, and local optimum traps, need
to be solved. Optimization algorithms are one of the
most powerful tools to address these problems. These
methods treat the problem as a black box and search
for the best solution through predefined steps. Traditional
optimization methods include the dynamic programming
algorithm (DPA), stochastic search, steepest descent, and
Newton’s method [27]. The drawback of these methods is
that they are usually limited by the size of a particular
problem and the given dataset.

Inspired by natural phenomena and biological evolu-
tionary behaviors, many simple and easy-to-implement
metaheuristic algorithms have emerged in recent years for
solving global optimization problems, such as Monarch
Butterfly Optimization (MBO) [28], Slime Mould Algo-
rithm (SMA) [29], Moth Search Algorithm (MSA) [30],
Hunger Games Search (HGS) [31], Harris Hawks Opti-
mization (HHO) [32], and others. The recent emergence of
metaheuristic algorithms has developed a simple yet pow-
erful data abstraction and analysis tool for researchers [33].
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Currently, the popular research trend is to combine cluster-
ing algorithms with metaheuristics, thus ensuring a greater
probability of achieving optimal clustering [34]. Chen et al.
[35] proposed a new algorithm called QALO-K. k-means
was optimized with a quantum-inspired ant lion to enhance
the clustering performance and reach the global optimum.
In addition, three clustering algorithms, GA-PFKM, PSO-
PFKM, and SCA-PFKM, were proposed by Kuo et al. [36]
to address the problem where fuzzy k-mode algorithms are
sensitive to the initial solution. Nayak et al. [37] combined
fuzzy c-means (FCM) with chemical reaction optimiza-
tion (CRO) to achieve the global best solution. Aggarwal
and Singh [38] introduced a nature-inspired algorithm for
optimizing the k-means++ algorithm, aimed at overcom-
ing the tendency to fall into local optima. Lakshmi et al.
[39] mixed the crow search algorithm (CSA) with k-means,
and the quality of the solutions obtained on the benchmark
dataset was significantly improved. Due to the defect that
traditional clustering methods usually perform poorly when
dealing with high-dimensional optimization problems, Yang
and Sutrisno [40] proposed a clustering-based SOS (CSOS)
algorithm. The combination of local and global searches
was achieved through cross-cluster interactions between
elite individuals, thus enhancing the clustering efficiency.
Note that Fuzzy C-means (FCM) tends to fall into local
minima when facing complex problems. Verma et al. [41]
proposed hybrid FCM and particle swarm optimization
(PSO) algorithms (Hybrid FCM- PSO), while the global
optimization property of PSO is used to search for clus-
ter centers. In [42], an Automatic Clustering Local Search
HMS (ACLSHMS) algorithm was proposed for image seg-
mentation, incorporating a local search operator in the
algorithm aimed at optimizing the cluster configuration of
the clusters. In addition, given the effectiveness of unsu-
pervised learning for medical image diagnosis, Mittal et
al. [43] proposed a novel k-means-based improved gravita-
tional search algorithm clustering (KIGSA-C) method for
diagnosing medical images of coronavirus (COVID-19).

Considering the relevance of clustering methods to
most real-world problems, there is a need to modify the
current algorithms to improve the clustering performance
and expand the range of applications. Cluster analysis
is an open field. Researchers [2, 25, 44] encourage the
application of new metaheuristic algorithms in combination
with traditional clustering methods to efficiently solve
complex clustering problems.

Elephant herding optimization (EHO) [45] is a novel
metaheuristic algorithm proposed by Wang et al. in 2016.
The algorithm has a strong global optimization capability
and few control parameters [46]. Consequently, it is
simple and efficient for clustering. Unfortunately, EHO still
has defects, such as a lack of exploitation ability, slow
convergence, and an ease of falling into local optimality.

Li et al. [47] proposed an improved EHO algorithm
(IMEHO) that introduced a global speed strategy and a
novel learning strategy to update the speed and position
of search agents. Experiments showed that the algorithm
can find a better solution. Ismaeel et al. [48] proposed
three EHO variants, EEH015, EEH020, and EEH025,
based on the γ -value. The purpose was to overcome the
problem of an unreasonable convergence to the origin.
Huseyin [49] proposed a binary version of EHO. Mostafa
et al. [50] presented a study of parameters in EHO.
Three versions of EHO with cultural-based, alpha-tuning,
and biased initialization were proposed to ameliorate the
exploration and exploitation capabilities. However, none of
the above algorithms are involved in the field of clustering,
and their performance in clustering analysis has not been
verified.

According to the no free lunch (NFL) theorem, a meta-
heuristic algorithm that performs well on one specific pro-
blem cannot be adapted to all optimization problems [51]. This
allows researchers to add new modules and mechanisms to
enhance the performance of metaheuristic algorithms. It has
been determined that these hybrid algorithms can obtain a
global optimal solution more efficiently than a single meta-
heuristic algorithm [52]. In summary, the research in this paper
has a strong relevance. Inspired by this, a gradient-based ele-
phant herding optimization for cluster analysis (GBEHO) is
proposed in this paper for cluster analyses. EHO is combined
with a gradient-based optimizer (GBO) [53] to further im-
prove the convergence efficiency and exploitation capability.
In addition, random wandering and variational operators are
introduced to improve the ability of the algorithm to jump
out of the local optimum and increase the convergence accuracy.

1.2 Contribution and organization of the paper

Overall, although many researchers have made great
contributions to enhance the performance of clustering
algorithms, there are still limitations. The paper contributes
with six main aspects:

1. A novel hybrid metaheuristic algorithm, GBEHO,
is proposed for the cluster analysis, which can
automatically determine the best cluster centers.

2. Certain modifications are made to easily address the
problem of falling into the local optimum. First, Gaus-
sian chaotic mapping is introduced for initialization to
generate high-quality initial populations. Second, a ran-
dom wandering operator is designed to optimize the
update strategy of the patriarch position. Third, a muta-
tion operator is adopted to change the update strategy of
other agents in the EHO. This prevents premature con-
vergence and enhances the ability of the algorithm to
jump out of the local optimum.
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3. To prevent premature convergence and enhance the
balance between exploration and exploitation, EHO is
combined with GBO. A framework is developed to fuse
the advantages of both algorithms, and the resulting
clustering centers are evaluated using a greedy selection
strategy.

4. A set of ablation experiments are designed to verify
the effect of the variational probability PSR on the
performance of the algorithm. The experiments are
conducted on 23 recognized benchmark functions and
tested statistically. The results show that the newly
added operators are emphatic for the improvement of
EHO, and that the optimization is most effective when
PSR = 0.2.

5. The analysis for the different modules illustrates that
the combined strategy is effective. Experiments are car-
ried out on synthetic and real-world datasets. GBEHO
is compared with nine other metaheuristics and clus-
tering algorithms, including k-means, particle swarm
optimization (PSO), differential evolution (DE), genetic
algorithm (GA), cuckoo search algorithm (CS), grav-
itational search algorithm (GSA), bat algorithm (BA),
a quantum-inspired ant lion optimized hybrid k-means
algorithm (QALO-K), hybrid grey wolf optimizer and a
tabu search (GWOTS). The experimental results show
that GBEHO has a superior clustering accuracy and
higher stability.

6. Comparative experiments are conducted with four other
state-of-the-art techniques on five datasets, including
CSOS, Hybrid FCM-PSO, ACLSHMS, and KIGSA-
C. A variety of measures, namely, accuracy rate,
specificity, detection rate, and F-measure, are adopted
to evaluate the clustering effect. The experiments
proved that GBEHO is an effective algorithm for
clustering analysis.

The structure of this paper is shown as follows: Section 2
briefly introduces the principles of cluster analysis, EHO,
and GBO. Section 3 provides a specific description of the
novel concepts and design process. Section 4 conducts the
experiment and analyzes the results. Discussions are given
in Section 5. Finally, conclusions are summarized, and
future research directions are proposed in Section 6.

2 The basic theory

2.1 Principle of clustering

Clustering is the process of organizing datasets and objects
into different clusters based on certain rules [54]. In short,
all data points are clustered into different clusters by
comparing their similarity. Suppose there exists a set of

objects U = {x1, x2, . . . . . . , xn} in an argument space
U , where U ∈ Rn∗m. The hard assignment follows
the principle of dividing objects into K clusters C =
{C1, C2, . . . . . . , CK}. No intersection is allowed between
any two clusters. This can be expressed as follows:

Ci �= ∅, i = 1, 2, . . . . . . , K (1)

Ci ∩ Cj = ∅, i, j = 1, 2, . . . . . . K, i �= j (2)

∪K
i=1Ci = {x1, x2, . . . . . . xn} (3)

sim(X1, X2)>sim(X1, Y1), X1, X2 ∈ Ci and Y1 ∈ Cj , i �= j (4)

During this process, the similarity between objects in
a cluster plays the most significant role in the clustering
result [55]. The main way to measure the similarity in
clusters is to calculate the distance between data points,
such as the Mahalanobis distance [56], cosine distance [57],
Pearson correlation measure [58], Jaccard measure [59],
or Dice coefficient measure [60]. The most common is
the Euclidean distance [61]. For two data points xi =
{xi1, xi2, . . . . . . xim} and xj = {xj1, xj2, . . . . . . xjm} in m

dimensions, the Euclidean distance is shown as follows:

d(xi, xj ) =
√
√
√
√

m
∑

n=1

(xin − xjn)
2 (5)

Generally, the smaller the intracluster distance or the
larger the intercluster distance, the better the clustering
performance [62]. In this paper, the sum of squared errors
(SSE) is chosen as the objective function. SSE should be
minimized in each iteration, which can be expressed as
follows:

min SSE =
k

∑

i=1

∑

x∈ci

d(x, gi)
2 where gi =

∑

x∈ci

x

|ci |
(6)

where d(x, gi)
2 denotes the squared distance from the

sample point x to the center of mass gi of cluster ci .

2.2 EHO

EHO is a population-based algorithm proposed to simulate
the nomadic life characteristics of elephants. In EHO, three
principles are followed. (i) The population of all agents is
divided into a specific number of clans. (ii) Each clan is led
by a female individual, called a matriarch, representing the
best-positioned agent in each iteration. (iii) The worst agent
in each iteration represents the male elephant, who, once
reaching adulthood, leaves its clan to live alone. EHO sets
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up the clan operator and the separation operator to model
the above behavior.

2.2.1 The clan operator

For the search agent j in clan ci, its position must be
modified according to the relationship with the clan leader,
which can be expressed by:

xnew,ci,j = xci,j + α × (xbest,ci − xci,j ) × rand (7)

where xbest,ci is the position of the best agent in clan ci,
xci,j and xnew,ci,j are the current and new positions of the
search agent j in clan ci, respectively, and α and rand are
both random numbers between [0,1]. Unlike other member
position updates, the position of the clan leader is adjusted
based on the current position of all agents in the clan. This
can be modeled by (8).

xnew,ci,j = β × xcenter,ci (8)

where xcenter,ci
denotes the central position of all agents in

clan ci, which is calculated by:

xcenter,ci = 1

nci

×
nci∑

j=1

xci,j (9)

where β affects the extent to which xcenter,ci acts on
xnew,ci,j , β ∈ [0, 1], and nci is the number of all agents in
clan ci.

2.2.2 Separating operator

The separating operator imitates the life characteristics of
male elephants. When adults, male elephants leave their
current clan, represented by the following equation:

xworst,ci = xmin + (xmax − xmin + 1) × rand (10)

where r is a random number between [0,1], and xmax and
xmin are the upper and lower bounds of the individual
position, respectively.

2.2.3 Elitism strategy

To protect the best elephant individuals from being ruined,
EHO sets an elitism strategy. At the beginning of the
algorithm, the best m elephant individuals are saved. After
an iteration is completed, the fitness values of the worst m

elephants are compared with the best elephant individuals
that were saved before, and the better agents have the
opportunity to be preserved. In this way, it is ensured that
the quality of the latter agents is not worse than the quality
of the former agents.

2.2.4 Pseudocode of EHO

Based on the above description, the process of EHO can be
summarized, and the pseudocode is shown in Algorithm 1.

2.3 GBO

GBO is a population-based algorithm solved by the gradient
method. In GBO, the search direction is controlled by
Newton’s method. Additionally, two main operators and a
set of vectors are adapted to explore the search space.

2.3.1 Gradient search rule (GSR)

The gradient search rule (GSR) is extracted from Newton’s
method to control the direction of the vector search. To
ensure a balance between exploration and exploitation
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during the iterations and accelerate the convergence, a series
of vectors are introduced as follows:

ρ1 = 2 × rand × α − α (11)

α =
∣
∣
∣
∣
β × sin

[
3π

2
+ sin(β × 3π

2
)

]∣
∣
∣
∣

(12)

β = βmin + (βmax − βmin) ×
[

1 − (
m

M
)3

]2
(13)

where βmax and βmin are taken as 1.2 and 0.2, respectively,
m and M represent the current and the maximum number of
iterations, respectively, and rand denotes a random number
between [0,1]. The value of α varies with the iterations
and can be used to control the convergence rate. Early in
the iteration, the value of α is large, thus allowing the
algorithm to increase the diversity and converge quickly
to the region where it hopes to find the optimal solution.
Later in the iteration, the value decreases. Therefore, the
algorithm can better exploit the explored regions. On this
basis, the expression of GSR is as follows:

GSR = rand × ρ1 × 2�x × xn

(xworst − xbest + ε)
(14)

where xworst and xbest represent positions of the worst and
the best agents, and ε is a small number in the range of
[0, 0.1]. The proposed GSR is capable of a random search,
which enhances the exploration ability of GBO and the
ability to jump out of the local optimum. �x is calculated
by the following expression:

�x = rand(1 : N) × |step| (15)

step = (xbest − xm
r1) + δ

2
(16)

δ = 2 × rand ×
(∣

∣
∣
∣

xm
r1 + xm

r2 + xm
r3 + xm

r4

4
− xm

n

∣
∣
∣
∣

)

(17)

where rand(1 : N) denotes N random numbers between
[0,1] and step is the step size. xbest represents the global
optimal agent, and xm

n denotes the mth dimension of the nth

agent. r1, r2, r3, r4 are different integers randomly selected
from [1, N].

Moreover, a motion parameter DM is set for a
local search to improve the exploitation capabilities. The
expression is shown as follows:

DM = rand × ρ2 × (xbest − xn) (18)

rand denotes a random number between [0,1], and ρ2 is
the parameter that controls the step size and is represented
as follows:

ρ2 = 2 × rand × α − α (19)

Ultimately, the current location of the search agent (xm
n )

can be updated by GSR and DM in the following way:

X1m
n = xm

n − GSR + DM (20)

According to 14 and 18, (20) can also be expressed as
follows:

X1m
n = xm

n − rand ×ρ1 × 2�x × xm
n

(ypm
n − yqm

n + ε)
+ rand ×ρ2 × (xbest −xm

n )

(21)

where ypm
n =ym

n +�x, yqm
n =ym

n −�x, and ym
n is a newly

generated variable determined by the average of xm
n and

zm
n+1. According to Newton’s method, zm

n+1 is formulated
by:

zm
n+1 = xm

n − randn × 2�x × xm
n

(xworst − xbest + ε)
(22)

where �x is specified by (15), and xworst and xbest

denote the current worst and best agents, respectively. After
replacing the current vector xm

n in (21) with xbest , a new
vector X2m

n can be obtained with the following expression.

X2m
n = xbest − rand ×ρ1 × 2�x × xm

n

(ypm
n − yqm

n + ε)
+ rand ×ρ2 × (xm

r1 −xm
r2)

(23)

Based on 21 and 23, the new solution xm+1
n can be

expressed as:

xm+1
n = ra ×[rb ×X1m

n +(1−rb)×X2m
n ]+(1−ra)×X3m

n

(24)

X3m
n = xm

n − ρ1 × (X2m
n − X1m

n ) (25)

where ra and rb are random numbers between [0,1].

2.3.2 Local escaping operator (LEO)

The local escaping operator (LEO) is set to retune the
resulting solution so that the algorithm can move away
from local optima, improving the probability of finding
the optimal solution. A solution with superior performance
(Xm

LEO ) is introduced in the LEO, which is represented as:

if rand < pr

Xm
LEO=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Xm+1
n +f1 × (u1 × xbest − u2 × xm

k ) + f2 × ρ1 × [u3 × (X2m
n − X1m

n )

+u2 × (xm
r1 − xm

r2)]/2 rand < 0.5
xbest + f1 × (u1 × xbest − u2 × xm

k ) + f2 × ρ1 × [u3 × (X2m
n − X1m

n )

+u2 × (xm
r1 − xm

r2)]/2 otherwise

end

(26)

pr is a predetermined threshold, where pr = 0.5. f1 is a
random number between [-1,1], and f2 is a random number
that conforms to the standard normal distribution. u1, u2, u3
are respectively represented by:

u1 = L1 × 2 × rand + (1 − L1) (27)

u2 = L1 × rand + (1 − L1) (28)

u3 = L1 × rand + (1 − L1) (29)

where L1 is a binary parameter of 0 or 1, and μ1 is a random
number between [0,1]. When μ1 < 0.5, L1 = 1; otherwise,
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L1 = 0. In summary, the resulting solution xm
k is expressed

as follows:

xm
k = L2 × xm

p + (1 − L2) × xrand (30)

where xm
p is a randomly selected solution from the

population, p ∈ [1, 2, . . . . . . N]. L2 is a binary parameter
of 0 or 1, and μ2 is a random number between [0,1]. When
μ2 < 0.5, L2 = 1; otherwise, L2 = 0. xrand is the newly
generated solution in the following manner.

xrand = Xmin + rand × (Xmax − Xmin) (31)

3 The proposed algorithm

3.1 Motivation

Traditional clustering algorithms (e.g., k-means), whose
degree of validity depends on the initial solution, may fall into
local optima when dealing with complex problems. There-
fore, in this paper a new method is developed for data clustering.
The method applies the concept of metaheuristics to automati-
cally estimate the initial clustering centers and enhance the
ability of the algorithm to escape from local optima.

The ability to balance exploration and exploitation is the
concern of all metaheuristic algorithms [63]. The analysis
of EHO reveals that the worst positioned agents are only
randomly modified by (10). This kind of approach lacks
some variation mechanism, which makes the exploitation
capacity insufficient and thus leads to a slow convergence.
Furthermore, the best-positioned agents are adjusted by
(8). This would be useless once the population has fallen
into a local optimum while reducing the diversity of the
population. In addition, the capability of exploitation of
EHO is relatively weak, which increases the probability of
falling into a local optimum [64]. By combining with GBO,
the search direction during the iteration can be guided to
avoid trapping in a local optimum, resulting in a better
solution. The local escape operator (LEO) in GBO can
improve the diversity of the population and avoid excessive
stagnation. In this case, the proposed algorithm can make
full use of the gradient information so that the search
efficiency of the algorithm can be improved. [65].

Based on the above reasons, several modifications are
performed. First, Gaussian chaos mapping is introduced
to initialize the population, thus increasing the diversity
and traversal of the initial population. Next, two operators,
random wandering and variation operators, are adopted to
optimize the position of the agents. The aim is to achieve
a better balance between exploration and exploitation.
Furthermore, EHO is combined with GBO to enhance
the exploitation capability by introducing GSR and LEO

operators. In summary, the authors believe that this kind of
modification is quite interesting.

3.2 Methodology

Since the algorithm is based on a metaheuristic, the search
agents need to be represented first. Depending on the speci-
ficity of the clustering problem, the representation of the
individuals is supposed to be changed. If the input dataset
U={x1, x2, . . . . . . , xn} includes n agents, then each object
with m features can be represented as xi={xi1, xi2, . . . . . .

xim}, i ∈ [1, n]. Since one or more initial clustering centers
are generated, the dimensionality dim of the algorithm will
change based on the number of clusters k, i.e., dim =
m × k. Therefore, each candidate solution Cj denotes a set
of cluster centers, which can be represented by:

Cj = {c11, c12, . . . . . . c1m, c21, . . . . . . cdim} (32)

The solution for the initial iteration is irrelevant to the clus-
tering problem and is randomly generated based on the
available dataset. To complete the initialization process,
upper and lower bounds must be determined for each fea-
ture. Namely, the lower bound is represented as cmin = {cl1,

cl2, . . . . . . clm}, where clm = min{c1m, c2m, . . . . . . cnm}.
Similarly, the upper bound is determined as cmax = {cu1,

cu2, . . . . . . cum}, where cum = max{c1m, c2m, . . . . . . cnm}.

3.2.1 Initialization

It is noted that a strong connection exists between the
quality of the initial population and the efficiency of the
metaheuristic algorithm. Under this circumstance, it is
necessary to improve the initialization by suitable methods
to obtain a higher quality initial population. In the original
EHO, the search process starts from a randomly generated
initialized population. Based on that, a priori knowledge
of the objective function or constraints is not required.
However, it lacks ergodicity and diversity. It has been
experimentally demonstrated that chaotic maps have similar
properties to randomness but possess better statistical and
dynamic properties [66]. Therefore, it is advantageous to
use chaotic maps for population initialization in GBEHO.

In this paper, a pre-programmed Gaussian sequence [67]
is selected to replace the conventional random number
generator, which is represented as follows.

η(t + 1) =
{

0 η(t) = 0
1

η(t)
− [ 1

η(t)
] otherwise

(33)

η(t) and η(t + 1) denote the numbers of chaotic maps
generated in the current and next generations, respectively.
The initialized population is generated by the Gaussian
chaos mapping function, which can explore the space more
extensively to obtain better exploration results.
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3.2.2 Randomwandering operator

It should be emphasized that in the original EHO, the
position of the patriarch is determined by the position of all
members in the same clan. Once the algorithm has fallen
into a local optimum, the quality of the best solution is
difficult to modify. As a result, the populations generated
by the clan operator are prone to wandering in place. This
makes the algorithm somewhat lack the ability to jump out
of the local optimum. In our consideration, as the best-
positioned agent in each clan, the update strategy of the
patriarch should be pioneering and innovative.

One of the most significant rules of metaheuristic algo-
rithms is to maintain a balance between exploration (diver-
sification) and exploitation (intensification). In the pre-
exploration stage, agents need to explore the search space
sufficiently to identify promising regions for exploitation.
During this phase, individuals should have a better stochas-
tic search ability; otherwise, it will lead to premature con-
vergence. In the exploitation phase, agents focus on discov-
ering better solutions in the explored regions. Therefore, the
accuracy of individuals in finding the best solution should
be optimized so that the algorithm converges to a feasible
local or global optimal solution in a limited time. Based
on this consideration, the update strategy of the patriarch is
adapted as follows:

xt+1
best,ci =

{

xt
best,ci + C(σ) it

/

Maxiter < 0.5
xt
a,ci + 2(rand − 0.5)(xt

b,ci − xt
c,ci ) otherwise

(34)

where xt
best,ci and xt+1

best,ci denote the current and lat-
est positions of the patriarch in clan ci, respectively,
xa,ci , xb,ci , xc,ci denote individuals randomly selected from
clan ci, respectively, rand is a random number between
[0,1], and C(σ) denotes the Cauchy distributed random
number. It has been proven that a Cauchy distribution-based
random walk could contribute to global exploration [68].
The Cauchy distribution function is defined as

F(σ ; a, b) = 1

2
+ 1

π
arctan(

σ − a

b
) (35)

where a is the location parameter and b is the scale
parameter. In the standard Cauchy distribution, a = 0, b =
1. Meanwhile, the Cauchy density function is as follows

fC(a,b)(σ ) = b

π(b2 + σ 2)
(36)

The Cauchy distributed random number C(σ) generated
by (35) can be expressed by

σ = tan

(

π

(

F(σ ; a, b) − 1

2

))

(37)

It should be noted that the random wandering operator
based on the Cauchy distribution replaces the original stra-
tegy of updating based on the mean value in GBEHO. Under

this circumstance, it is beneficial for agents to expand the search
area, bringing an increase in diversity. For the algorithm to
run smoothly, bounds should be checked to prevent crossing
them. Once out of range, the Cauchy mutation is repeated
several times until the new solution lies within the specified
range. As the iterations continue to run, it is actually a pro-
cess of decreasing the step size. Later in the algorithm, GBEHO
moves to exploitation. At that time, the clan leader is modified
by the position of three random individuals in the population,
which contributes to improving the accuracy of discovering
the globally optimal solution.

3.2.3 Mutation operator

Another deficiency of EHO is the lack of a variation
mechanism, which is reflected in the following two points.
First, most of the agents in a population, excluding the worst
individual, are updated based on the relationship with the
clan leader, and the sense of independence is poor. This type
of mechanism is not conducive to enhancing the diversity.
For instance, once the algorithm is caught in a local
optimum, it is difficult to have the opportunity to continue
exploring. Second, during the search process, a few agents
broke away from the group led by the female matriarch.
These agents obviously have a more prominent sense of
independence and are able to perform a random search in
the search space. However, their sense of following the
matriarch is still relatively weak in terms of the whole clan.
Unless most of them explore the wrong search direction, it
will slow down the convergence speed of the algorithm and
affect the search efficiency. In the original algorithm, the
position of the worst individual is adjusted by the random
nature, making it difficult to ensure that the search agent is
updated to a better position [69].

Similar to mutations in chromosomes, mutation strate-
gies have been widely used through genetic algorithms [70],
the aim of which is to increase the diversity of the popu-
lation. To ensure that most agents have the opportunity to
mutate, a variance probability (PSR) is set. This parame-
ter should take a value between (0,1) to avoid exceeding
the population size boundary. If PSR is less than 0.2, it
means that fewer individuals undergo mutation, and it is
difficult for the experiment to have a substantial effect.
If PSR is greater than 0.8, then the algorithm will deter-
mine that most of the individuals will participate in the
mutation, which is contrary to the original intention of the
setting. Therefore, for the purpose of maintaining a balance
between exploration and exploitation while meeting the
diversity enhancement requirements, the magnitude of the
variance probability PSR is proposed to be experimentally
tested in order to determine the optimal clustering effect.
It has been experimentally verified that this module has a
positive impact on the performance of the algorithm. The

Gradient-based elephant herding optimization for cluster analysis 11613



ablation experiments will be presented in the next section.
In GBEHO, the mutation operator is set as shown below:

xworst,ci = xworst,ci + δmr1 + K (38)

K = u1e
−2t

Maxiter (39)

xt+1
i =

⎧

⎨

⎩

xt
i + r2

(
xt
pbest +xGbest

2 − xt
i

)

+ r3

(
xt
pbest −xGbest

2 − xt
i

)

rand < PSR

xt
i + αr4(x

t
best,ci − xt

i ) otherwise

(40)

where xworst,ci represents the position of the agent to be
modified and δ is the variation factor. In this paper, δ =
0.1 ∗ (Xmax − Xmin). r1, r2, r3, and r4 are random numbers
uniformly distributed from 0 to 1. u1 is a random variable
of [−1, 1], and t and Maxiter represent the current and
maximum number of iterations, respectively. xt

pbest is the
optimal solution at the tth iteration, and xGbest stands for the
global optimal solution.

3.2.4 Greedy selection strategy

When designing a hybrid framework, there are two critical
issues [71]. One is to combine two or more methods into
one framework, and the other is to evaluate the best solution
from the iterations. In this paper, EHO is set as the basic
algorithm because of its ease of implementation and certain
exploration capability. The obtained solutions are then
updated via GBO to enhance the diversity of the population.
Compared to EHO, GBO is more advantageous in terms
of its exploitation capability due to GSR and LEO. Finally,
the solutions provided by the search agents are evaluated
by a reedy selection strategy. If the fitness generated by the
new agent is better than the current one, it is replaced and
involved in a new round of iteration processes. The purpose
is to ensure the convergence of GBEHO.

GBestX =
{

xi
k f (xi

k) < f (GBestX)

GBestX else
(41)

where GBestX represents the global optimal agent, and xi
k

represents the kth agent generated in the ith iteration.

3.3 Pseudocode of GBEHO

According to the above adjustments, the pseudocode of
GBEHO is shown in Algorithm 2. The initialization is
performed in line 4 by means of the introduced chaotic
mapping. The EHO phase is then completed in lines 7 to
16. In detail, the two proposed operators are applied in
lines 11 and 15. In the second stage, the algorithm performs
the gradient search rule (GSR) and local escaping operator
(LEO) operators, which are shown in lines 17-28. Finally,
the clustering process is completed based on the searched
clustering centers in lines 33-36. In addition, the flow chart
of GBEHO is given in Fig. 1.
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Fig. 1 Flowchart of GBEHO

3.4 Time complexity

The time complexity of the algorithm can reflect the
magnitude of the running time variation with an increase
in the input size [72]. The time complexity of the proposed
GBEHO is bounded by the number of search agents N , the
dimensions of the problem D, and the maximum number of
iterations T .

In general, the time complexity of GBEHO can be
divided into the following parts: chaos initialization, random
wandering, mutation, and the GBO strategy. First, the
time spent initializing the population using Gaussian chaos
mapping is O(N). Next, the main loop phase with a
maximum number of iterations of T is executed. Random
wandering with a Cauchy distribution takes O(T N), and
the execution of the mutation operator takes O(T N).
In addition, the GBO strategy costs O(T ND), so the
computational complexity of GBEHO is O(T DN + T N).

4 Experiments and analysis

In this section, experiments are conducted to verify the
validity of the GBEHO. All simulations are implemented on
a Windows 10 operating system computer with an Intel(R)
Core (TM) i5-9300H (2.40 GHz) processor, 16 GB of RAM
and the MATLAB R2019b platform.

4.1 Influence of the parameters

In Section 3, the variation probability PSR is introduced
into GBEHO. To verify the sensitivity of the controlled
parameters, four versions of GBEHO were developed to test
the performance under different parameters on a set of 23
recognized functions [73]. The values of PSR vary in the
range of [0.2, 0.8] with a step size of 0.1. For the sake of
convenience, these sub-algorithms are named GB2, GB3,
GB4, GB5, GB6, GB7, and GB8, corresponding to PSR

values of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, respectively.
The test functions include 7 unimodal benchmark functions,
6 expandable multimodal functions, and 10 multimodal
functions with fixed dimensions. The basic information
of the benchmark functions is listed in Table 1. In this
subsection, PSR is the only parameter that changes across
GBEHO versions. For the sake of validating the parameters,
the final clustering part of the original algorithm was
excluded, and only the final fitness values were calculated.
Furthermore, the number of clans c in GBEHO is set to 5.
The maximum number of iterations tmax is set to 500, and
the size of population N is set to 10.

To evaluate the performance of each variant, several
measurement terms were invoked, including the mean and
standard deviation values (std). Given the randomized
nature of the heuristic algorithm, it was necessary to
compare the experimental results via statistical tests in order

Gradient-based elephant herding optimization for cluster analysis 11615



Ta
bl
e
1

D
et

ai
ls

of
ni

ne
be

nc
hm

ar
k

fu
nc

tio
ns

N
o.

Fu
nc

tio
n

D
im

en
si

on
R

an
ge

f
m

in

F1
f

1
(x

)
=

n
∑ i=

1
x

2 i
30

[-
10

0,
10

0]
0

F2
f

2
(x

)
=

n
∑ i=

1
| x i

| +
n ∏ i=

1
| x i

|
30

[-
10

,1
0]

0

F3
f

3
(x

)
=

n
∑ i=

1
(

i
∑ j
−1

x
j
)2

30
[-

10
0,

10
0]

0

F4
f

4
(x

)
=

m
in i

{| x
i| ,

1
≤

i
≤

n
}

30
[-

10
0,

10
0]

0

F5
f

5
(x

)
=

n
−1 ∑ i=

1
[10

0(
x
i+

1
−

x
2 i
)2

+
(x

i
−

1)
2
]

30
[-

30
,3

0]
0

F6
f

6
(x

)
=

n
∑ i=

1
([x

i
+

0.
5])

2
30

[-
10

0,
10

0]
0

F7
f

7
(x

)
=

n
∑ i=

1
ix

4 i
+

r
a
n
d
o
m

[0,
1)

30
[-

1.
28

,1
.2

8]
0

F8
f

8
(x

)
=

n
∑ i=

1
−x

i
si

n(
√ | x i

| )
30

[-
50

0,
50

0]
−4

18
.9

82
9

×
di

m

F9
f

9
(x

)
=

n
∑ i=

1
[x2 i

−
10

co
s(

2π
x
i)

+
10

]
30

[-
5.

12
,5

.1
2]

0

F1
0

f
10

(x
)
=

−2
0

ex
p(

−0
.2

√

1 n

n
∑ i=

1
x

2 i
)−

ex
p(

1 n

n
∑ i=

1
co

s(
2π

x
i)

)
+

20
+

e

30
[-

32
,3

2]
0

F1
1

f
11

(x
)
=

1
40

00

n
∑ i=

1
x

2 i
−

n ∏ i=
1

co
s(

x
i √ i
)
+

1
30

[-
60

0,
60

0]
0

F1
2

f
12

(x
)
=

π n
{10

si
n(

π
y

1
)
+

n
−1 ∑ i=

1
(y

i
−

1)
2
[1

+
10

si
n2

(π
y
i+

1
)]

+
(y

n
−

1)
2
}+

n
∑ i=

1
u
(x

i,
10

,
10

0,
4)

y
i
=

1
+

x
i
+1 4

u
(x

i,
a
,
k
,
m

)
=

⎧ ⎪ ⎨ ⎪ ⎩

k
(x

i
−

a
)m

x
i
>

a

0
−

a
<

x
i
<

a

k
(−

x
i
−

a
)m

x
i
<

−a

30
[-

50
,5

0]
0

F1
3

f
13

(x
)
=

0.
1{s

in
2
(3

π
x

1
)
+

n
∑ i=

1
(x

i
−

12
[1

+
si

n2
(3

π
x
i
+

1)
]+

(x
n

−
1)

2
[1

+
si

n2
(2

π
x
n
)]}

+
n
∑ i=

1
u
(x

i
,
5,

10
0,

4)
30

[-
50

,5
0]

0

F1
4

f
14

(x
)
=

(
1 50

0
+

25 ∑ j
=1

1

j
+

2
∑ i=

1
(x

i
−a

ij
)6

)−
1

2
[-

65
,6

5]
1

F1
5

f
15

(x
)
=

11 ∑ i=
1
[a i

−
x

1
(b

2 i
+b

i
x

2
)

b
2 i
+b

i
x

3
+x

4
]2

4
[-

5,
5]

0.
00

03
0

Y. Duan et al.11616



Ta
bl
e
1

(c
on

tin
ue

d)

N
o.

Fu
nc

tio
n

D
im

en
si

on
R

an
ge

f
m

in

F1
6

f
16

(x
)
=

4x
2 1
−

2.
1x

4 1
+

1 3
x

6 1
+

x
1
x

2
−

4x
2 2
+

4x
4 2

2
[-

5,
5]

-1
.0

31
6

F1
7

f
17

(x
)
=

(x
2
−

5.
1

4π
2
x

2 1
+

5 π
x

1
−

6)
2
+

10
(1

−
1 8π

)
co

sx
1
+

10
2

[-
5,

5]
0.

39
8

F1
8

f
18

(x
)
=

[1
+

(x
1
+

x
2
+

1)
2
(1

9
−

14
x

1
+

3x
2 1
−

14
x

2
+

6x
1
x

2
+

3x
2 2
)]

×
[30

+
(2

x
1
−

3x
2
)2

×
(1

8
−

32
x

1
+

12
x

2 1
+

48
x

2
−

36
x

1
x

2
+

27
x

2 2
)]

2
[-

2,
2]

3

F1
9

f
19

(x
)
=

−
4
∑ i=

1
c i

ex
p[−

3
∑ j
=1

a
ij

(x
j

−
p

ij
)2

]
3

[1
,3

]
-3

.8
6

F2
0

f
20

(x
)
=

−
4
∑ i=

1
c i

ex
p(

−
6
∑ j
=1

a
ij

(x
j

−
p

ij
)2

)
6

[0
,1

]
-3

.3
2

F2
1

f
21

(x
)
=

−
5
∑ i=

1
[(X

−
a
i)

(X
−

a
i)

T
+

c i
]−1

4
[0

,1
0]

-1
0.

15
32

F2
2

f
22

(x
)
=

−
7
∑ i=

1
[(X

−
a
i)

(X
−

a
i)

T
+

C
i]−1

4
[0

,1
0]

-1
0.

40
28

F2
3

f
23

(x
)
=

−
10 ∑ i=

1
[(X

−
a
i)

(X
−

a
i)

T
+

c i
]−1

4
[0

,1
0]

-1
0.

53
63 to test the validity of the experimental data [74]. Therefore,

the Wilcoxon rank-sum test and the Friedman test with a
significance level of 5% were adopted, where the p value
is an important indicator of the confidence of the results.
When p < 0.05, it was determined that there was a
statistically significant difference between the two groups
of results. In addition, bold indicates the best candidate
solution obtained in each function, and NaN indicates
that the algorithm performs best on the current function.
Moreover, the ranks of the results obtained by different
algorithms on each function were also compared. The
results obtained when each experiment was completed 30
times are shown in Table 2.

The box plots represent discrete information of a set of
data, which can detect outliers and data skewness and can be
used to differentiate the ability of algorithms in terms of data
symmetry and dispersion [75]. The height in each boxplot
reflects the stability, with narrower heights representing less
noise and outliers and more stable results. The aggregation
of the solution is an important factor in assessing the
performance of the algorithm. If an algorithm falls into a
local optimum, it will lead to premature convergence, and
the quality of the solution will be degraded. 6 representative
functions are selected from unimodal benchmark functions,
multimodal functions, and fixed-dimension functions, with
the box plots of the 7 variants and the original EHO plotted
in Fig. 2. As can be observed from the results in the figure,
the graphics of GB2 are relatively lower and narrower.
Considering the mean, best value, worst value, and standard
deviation, GBEHO performs better in different functions
when PSR = 0.2.

The results of the 8 algorithms on 23 benchmark
functions are represented in Table 2. As clearly shown in
the table, the different GBEHO variants achieved higher
ranks than EHO. The results show that the quality of the
candidate solutions is significantly strengthened by two
operators and the combination with GBO. Indeed, GBEHO
obtains a lower mean and standard deviation on most
functions, especially GB2. Meanwhile, the performance
of the algorithm gradually decreases as the probability of
variation increases. Specifically, GB2 surpasses the other
algorithms on F1 to F4, F9 to F11, F13 to F15, and F17
to F19 and obtains the highest ranking. GB3 performs best
on F10 and F16 and ranks second among all algorithms.
Comparatively, the improvement of GBEHO with PSR

greater than 0.6 is less pronounced. These results show that
the newly added operators further promote the capability
of local exploitation. Meanwhile, the balance between
exploration and exploitation is well achieved through the
combined framework. However, the performance of variants
on parts of the functions is relatively insignificant, e.g.,
F5, F6, F8, F12, F22, and F23. It is obvious that the best
solutions on those functions are achieved by the original
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Fig. 2 Comparison of the box plots for different algorithms

EHO. This is probably due to the unique characteristics
of the different functions that make the modifications of
EHO inapplicable. In conclusion, the variation operator can
promote the performance of the original algorithm, and
the improvement is most pronounced when PSR = 0.2.
Therefore, PSR is set to 0.2 in the subsequent experiments.

4.2 Analysis of themodifications

To investigate the impact of the modifications on the
performance of the algorithm, a set of comparison
experiments is conducted. In this subsection, in addition
to GBEHO and EHO, three other methods, namely,
Gaussian sequence + EHO (GEHO), mutation operator +
EHO (MEHO), and random wandering operator + EHO
(RWEHO) are designed. The above three strategies are also
the core modules of the modifications. 6 representative
functions are selected to verify the performance of the
different variants. The size of population N is set to 30, the
maximum number of iterations tmax is 500, and the number
of clans c is 5. Other than that, other parameters are kept
consistent. To reduce the effects of errors and instabilities,
all algorithms are subjected to 30 experiments. The final
results are based on an average of 30 experiments.

Figure 3 shows the convergence curves of 5 algorithms
on the 30-dimensional functions. The convergence effi-
ciency of the other 4 variants is significantly better than
the original EHO. This indicates that the modifications of
Gaussian mapping, random wandering, and mutation oper-
ators can indeed all improve the convergence efficiency of
the EHO. Specifically, the Gaussian sequence improves the
initialization, which leads to an increased efficiency in the
early stages of the algorithm. In addition, the global opti-
mal solutions achieved by MEHO and RWEHO are superior
to EHO and GEHO. It is therefore proven that random
wandering and mutation operators enhance the diversity of
the population. Consequently, exploration and exploitation
are promoted, leading to a higher convergence accuracy.
In comparison, GBEHO has the best convergence perfor-
mance. The global optimum is attained around the 300th
and 10th generations on the F2 and F9 functions, respec-
tively. The convergence rate on the F11, F14, F15, and F20
functions is also the fastest among several algorithms. These
results provide strong evidence that the combined effect of
modifications has led to further improvements in the search
accuracy and breadth of GBEHO.

In addition, the average, standard deviation, best, and
worst values of different variants on the six benchmark
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Fig. 3 Comparison of box plots for different algorithms

functions are recorded and reported in Table 3. The results
in the table are the average results obtained after 30 runs
of each algorithm, and the best results on each function
are shown in bold. It is obvious that all variants perform
better than the original EHO algorithm, indicating that the
strategy of Gaussian sequence, the random wandering, and
the mutation operators are efficient, respectively. Besides,
it is also worth noting that GBEHO achieves the most
desirable performance overall, with the best average and
standard deviation results on F2, F9, F11, F14, and F15.
This indicates that the combination of different strategies is
effective in a way that can significantly improve exploration
and exploitation. In summary, it can be concluded that the
modifications of EHO are convincing.

4.3 Comparisonwith othermetaheuristic algorithms

To further verify the effectiveness of the algorithm, GBEHO
was compared with nine other metaheuristics, namely, k-
means, particle swarm optimization (PSO) [76], differential
evolution (DE) [77], genetic algorithm (GA) [70], cuckoo
search algorithm (CS) [78], gravitational search algorithm

(GSA) [79], bat algorithm (BA) [80], a quantum-inspired
ant lion optimized hybrid k-means algorithm (QALO-
K) [35], hybrid grey wolf optimizer and a tabu search
(GWOTS) [81].

4.3.1 Parameter settings

Under the consideration of fairness, parameters within the
selected algorithm are preset, which are shown in Table 4.
It should be noted that the parameters in the table are
set according to the recommendations in the above work.
Except for the parameters in the table, the other parameters
are kept consistent. Furthermore, the maximum number of
iterations tmax is set to 200, and the size of population N is
set to 10. The number of clans c in GBEHO is set to 5.

4.3.2 Datasets

Adán et al. [34] stated that the evaluation of a complete
clustering algorithm should include both synthetic and
standard real-world datasets. The datasets chosen for the
experiments are from the University of California, Irvine

Y. Duan et al.11622



Table 3 Comparison results on 6 benchmark functions of different variants

Datasets EHO GEHO MEHO RWEHO GBEHO

F2 Mean 3.42E-03 1.53E-24 0.00E+00 0.00E+00 0.00E+00

Std 4.83E-03 8.37E-24 0.00E+00 0.00E+00 0.00E+00

Best 2.12E-05 4.15E-45 0.00E+00 0.00E+00 0.00E+00

Worst 2.46E-02 4.58E-23 0.00E+00 0.00E+00 0.00E+00

F9 Mean 6.44E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 1.59E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Best 3.28E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Worst 6.33E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 Mean 1.20E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Std 1.47E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Best 5.39E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Worst 3.88E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F14 Mean 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01

Std 2.21E-04 3.44E-04 4.31E-07 2.83E-09 4.55E-15

Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01

Worst 9.99E-01 9.99E-01 9.98E-01 9.98E-01 9.98E-01

F15 Mean 7.59E-02 2.95E-02 6.34E-03 5.95E-04 3.72E-04

Std 2.76E-03 2.34E-04 3.62E-03 4.19E-04 6.70E-05

Best 5.35E-03 9.09E-03 2.08E-03 3.12E-04 3.08E-04

Worst 1.70E-02 1.60E-02 9.04E-03 7.05E-04 5.72E-04

F20 Mean −2.19E+00 −3.24E+00 −3.32E+00 −3.32E+00 −3.32E+00

Std 7.85E-01 5.48E-02 5.51E-02 2.86E-02 5.37E-03

Best −2.87E+00 −3.32E+00 −3.32E+00 −3.32E+00 −3.32E+00

Worst −2.04E+00 −3.15E+00 −3.27E+00 −3.28E+00 −3.29E+00

(UCI) machine learning repository [82] and include Iris,
Wine, Seeds, Breast, Heart, CMC, and Vowel. The synthetic
dataset consists of two artificial datasets: two-moon and
aggregation [83]. The basic information of the datasets is
shown in Table 5.

4.3.3 Comparison of the experimental results

In this section, the various algorithms are compared based
on the experimental values of SSE. Each algorithm is
run 30 times separately, and the obtained results are
shown in Table 6. Best, Worse, Mean, and Std. denote
the best, worst, mean, and standard deviation of all the
results, respectively. Obviously, it can be seen that the
algorithms produce separate values due to the complexity
of the dataset. GBEHO can provide the lowest solutions in
most datasets. Compared to the basic k-means algorithm,
GBEHO achieves better mean values in all cases.

For 9 datasets, GBEHO can provide the lowest mean
SSE results for 7 datasets: Wine, Seeds, Breast, Heart,
CMC, Vowel, and Aggregation. In particular, GBEHO
achieves the lowest best and worst values on these datasets.
However, due to the inability to accurately identify the

manifold structure, GBEHO performed poorly in the Two-
moon dataset. The standard deviations of GBEHO are
smaller than those of the other algorithms, indicating that
the algorithm is more stable in its operation. In general,
GBEHO could obtain more satisfactory results than the
other 9 algorithms. Consequently, these results provide
strong proof for GBEHO to solve the clustering problem
effectively.

Figure 4 shows the box plots obtained by 9 algorithms
on the different datasets. It is observed that the box plots of
GBEHO are the narrowest among all data sets. Obviously,
GBEHO has a more stable clustering ability, and the
population diversity is ameliorated by using the strategy of
mixing EHO and GBO. In addition, GBEHO produced the
fewest outlier points, which indicates that GBEHO has a
strong robustness. These facts indicate that the proposed
algorithm can effectively circumvent local minima.

4.3.4 Convergence analysis

Iteration is the act of repeating a set of procedures to achieve
the best solution. When all procedures of an algorithm are
repeated once, this is called one iteration. The results of
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Table 4 Parameter settings of the different algorithms

Algorithm Parameter Range

GBEHO c 5

pr 0.5

PSR 0.2

PSO c1 2

c2 2

ωmax 0.9

ωmin 0.2

DE Differential weight 0.8

Crossover probability 0.2

GA Crossover rate 0.7

Mutation rate 0.2

Selection rate 0.8

CS P 0.25

GSA G0 100

a 20

BA α 0.9

τ 0.9

fmin 0

fmax 2

QALO-K F 0.2

CR 0.5

GWOTS α [2,0]

bw 0.01

T abusize 5

each iteration provide the initial value for the next iteration
[84]. The convergence curve can reflect the convergence
rate and the global search ability during the iteration of the
algorithm.

The comparison of convergence curves on different
datasets is shown in Fig. 5. All curves are generated
synthetically after 30 independent runs of the different
algorithms. GBEHO reaches stability at the 20th generation

on the Iris, Wine, Seeds, Breast, Heart, and Aggregation
datasets. Despite the fact that GBEHO converges more
slowly on the Vowel dataset, the quality of the solutions
found is higher. The results verify that GBEHO has
relatively faster convergence and a superior global search
capability. Compared with GBEHO, the performances of
metaheuristics for PSO, DE, GA, CS, GSA, and BA are
slightly less.

4.3.5 Statistical analysis

In the proceeding experiments, there are inevitable chance
factors that affect the experimental results. To test the
variability between different algorithms, further statistical
analysis of the obtained results is needed to obtain more
reliable data. Nonparametric tests can be used in the field
of mathematics to check the performance of the algorithms
[85]. The Wilcoxon signed-rank test [86] and Friedman
test [87] are two well-known techniques. Both can be
used on data distributions, statistically examining whether
a difference exists between two groups. The experiments in
this paper are performed at the 5% significance level.

Table 7 reports the results for the comparison of GBEHO
with PSO, GBEHO with DE, GBEHO with GA, GBEHO
with CS, GBEHO with GSA, GBEHO with BA, GBEHO
with QALO-K, GBEHO with GWOTS, and GBEHO with
k-means on the nine groups. If the p-value is less than 0.05,
then the result is significantly different. The bold values in
the table indicate values greater than 0.05. As observed from
the table, except for the values obtained for GBEHO vs. CS
on Iris and GBEHO vs. PSO on the Heart dataset, which are
greater than 0.05, all other values are less than 0.05, which
provides valid evidence against the null hypothesis. The
results suggest that the excellent performance of GBEHO is
statistically significant, and not achieved by chance.

The results of the Friedman test are shown in Table 8. The
obtained values are the average ranking of all algorithms

Table 5 Basic information of the datasets

Title Number Attribute Cluster

Two-moon 1502 2 2

Aggregation 788 2 7

Iris 150 3 4

Wine 178 3 13

Seeds 210 3 7

breast 277 9 2

heart 270 13 2

CMC 1473 9 3

Vowel 874 3 6
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Fig. 4 Comparison of box plots for different algorithms

when conducting the experiments. According to the results,
the algorithm with the lower ranking is considered to be
the most efficient algorithm. Obviously, a better average
ranking of GBEHO proves that the proposed algorithm has
a more competitive advantage. At the same time, it makes
the series of experiments more convincing.

4.3.6 Analysis of the clustering process

In this subsection, three datasets, Iris, Seeds and Aggre-
gation, are selected for visualization and presentation. The

original distributions are shown in Fig. 6. Figures 7, 8 and
9 display the clustering visualization results. We know that
GBEHO and PSO are the two best algorithms on the Iris
dataset. It can be observed in Fig. 7 that both algorithms
accurately divide the dataset into three distinct clusters, and
both achieve relatively better solutions. In comparison, the
centroids found by GBEHO are significantly closer to the
real scenario than PSO. This suggests that GBEHO has a
better performance. In terms of the iterations, the centroids
found by GBEHO are relatively stable at the 20th genera-
tion. This indicates that GBEHO has a faster convergence
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Fig. 5 Convergence curves of different algorithms

rate and stability. Figure 8 compares the clustering results
on the Seeds dataset, where GBEHO and GA are the two
superior algorithms. Apparently, GBEHO achieves better
positions of centroids in the 20th generation and in the final
results. In the 20th generation, GBEHO is able to extract
centroids of the bottom leftmost cluster, while GA is unable
to. It is clear that GBEHO is able to distinguish blue and
green clusters more accurately than GA. The performance
on the Aggregation dataset is shown in Fig. 9. For the two

clusters on the top left and top, GBEHO obtains more pre-
cise clustering centroids. Both GWOTS and GBEHO find
the exact centroids on the upper and lower right clusters.
However, GBEHO’s delineation in the bottommost cluster
is more obvious. Although the black and magenta clusters
in Fig. 6c are not accurately distinguished, this is due to the
shortcomings of the traditional Euclidean distance. In terms
of the overall convergence rate and clustering accuracy,
GBEHO is relatively superior.
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Fig. 7 Comparison of the clustering results on the Iris dataset
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Fig. 8 Comparison of clustering results on the Seeds dataset

4.4 Comparison experiments with state-of-art
techniques

In this subsection, extra experiments are conducted to fur-
ther validate the performance of the proposed algorithm.5
UCI datasets, namely, Wine, Breast, CMC, Heart, and
Vowel, are chosen to evaluate the significance of GBEHO
with PSR = 0.2 versus the reported results of four other
recently proposed algorithms, such as CSOS, Hybrid FCM-
PSO, ACLSHMS, and KIGSA-C. Table 9 shows the values
of the experimental parameters for the different algorithms.
The maximum number of iterations Maxit is set to 500, and
the size of population N is set to 30. To eliminate the influ-
ence of uncontrollable factors to the greatest extent possible,
all algorithms were run 30 times, and the average value was
adopted as the final result for comparison.

When completing the clustering of the dataset, attention
needs to be given to the degree of adaptation of the clusters

to the input data. Therefore, it is necessary to validate
via certain evaluation criteria, which is a fundamental
aspect of data clustering. The metrics for evaluating the
clustering results are broadly classified into three categories,
namely, external metrics, internal metrics, and relative
validation [25]. Four evaluation metrics are invoked in
the experiments to quantitatively compare the clustering
performance, namely, accuracy rate (AR), specificity (SP ),
detection rate (DR), and F-measure (F1), which are defined
in 42-45.

AR = T P + T N

T P + T N + FN + FP
(42)

SP = T N

T N + FP
(43)

DR = T P

T P + FN
(44)
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Fig. 9 Comparison of clustering results on the Aggregation dataset

F1 =
(

b2 + 1
) · precision · recall

b2 · precision + recall
(45)

where T P is true positive, T N is true negative, FP

is false positive, FN is false negative in classification,
precision = T P

T P+FP
, recall = T P

T P+FN
and b = 1.

The obtained results are shown in Table 10. Figure 10
shows the comparison of the evaluation metrics of the five
algorithms on different datasets. On the Wine dataset, all
five algorithms achieve satisfactory results. The reason lies
in the simpler structure of the Wine dataset. Therefore,
the different algorithms are able to achieve more accurate
identification. In contrast, on the breast and Vowel datasets,
several algorithms do not perform well due to the more
complex structure of the clusters. Specifically, for AR,
GBEHO achieves the best performance on Wine and CMC,

and ranks 2nd, 3rd and 4th on breast, Vowel and heart,
respectively. As for SP , GBEHO ranks 1st on Wine and
CMC, and ranks 3rd, 3rd and 4th on breast, Vowel and heart
datasets, respectively. For DR, GBEHO ranks first on Wine
and CMC datasets, and 2nd, 2nd and 3rd on breast, Vowel
and heart datasets, respectively. For F1, GBEHO ranks
2nd on Wine, breast and CMC datasets, and 4th on heart
and Vowel. Overall, GBEHO performs the best on Wine,
CMC. The performance on breast is located at 2nd, which
is not as good as KIGSA-C. While for the heart dataset,
CSOS performs the best, Hybrid FCM-PSO is second, and
GBEHO is able to achieve a tie with KIGSA-C. On the
Vowel dataset, GBEHO performs second only to KIGSA-
C and ranks second. From the above analysis, it can be
concluded that GBEHO’s performance is competitive and
convincing in the comparison of the state-of-art techniques.
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Table 9 Parameter settings of the different algorithms

Algorithm Parameter Range

CSOS N 30

Maxit 500

Hybrid FCM-PSO m 2

ω 1

c1 2

c2 2

N 30

Maxit 500

ACLSHMS k 5

C 1

N 30

Maxit 500

KIGSA-C G0 100

N 30

Maxit 500

Legend:

N : The size of population, Maxit : Maximum number of iterations,

ω: Inertia weight, c1: Cognitive coefficient,

c2: Social coefficient, m: Fuzzifier constant,

k: Number of clusters in bid grouping, C: Moving coefficient, G0:
Gconstant

Table 10 Results of GBEHO with PSR = 0.2 versus others state-of-
the-art techniques

Algorithm

Dataset Measure GBEHO CSOS Hybrid FCM-PSO ACLSHMS KIGSA-C

Wine AR 0.8263 0.7191 0.6707 0.8041 0.7866
SP 0.7528 0.6895 0.6512 0.7352 0.7194
DR 0.8536 0.7618 0.8098 0.8412 0.7985
F1 0.8254 0.6575 0.7418 0.7882 0.8583

breast AR 0.3588 0.3276 0.3012 0.3367 0.3693
SP 0.2353 0.2112 0.2454 0.2336 0.3518
DR 0.5637 0.5098 0.4839 0.5567 0.6147
F1 0.4412 0.2786 0.3108 0.4148 0.4685

CMC AR 0.5688 0.5174 0.5236 0.5472 0.5334
SP 0.5712 0.5568 0.5384 0.5611 0.5598
DR 0.4396 0.3748 0.3982 0.4157 0.4049
F1 0.4936 0.3415 0.4165 0.4577 0.5103

heart AR 0.6111 0.6457 0.6329 0.584 0.6382
SP 0.5823 0.6212 0.6035 0.5426 0.6096
DR 0.6533 0.7083 0.6726 0.6121 0.6231
F1 0.6512 0.6788 0.6812 0.5987 0.6989

Vowel AR 0.1875 0.1126 0.1667 0.2012 0.2379
SP 0.1812 0.1297 0.1482 0.2139 0.2854
DR 0.625 0.4631 0.5052 0.4667 0.6898
F1 0.1664 0.1258 0.1895 0.1978 0.2512

In general, it is proved that GBEHO provides a better choice
of clustering. Therefore, GBEHO can be regarded as a
powerful and effective clustering algorithm.

5 Discussions

Overall, the experimental results are consistent with the
hypothesis. The introduction of the two operators and
GBO improves the performance of the original EHO.
Experiments on benchmark functions and datasets with
different types prove that the improvement is significant.
The proposed GBEHO is proven to have a higher clustering
accuracy by evaluating four metrics, namely, accuracy rate,
specificity, detection rate, and F-measure. Therefore, it can
be concluded that GBEHO is an effective clustering method
that can be used for a cluster analysis of different datasets.

Compared with other algorithms based on metaheuristics
that are used for clustering, GBEHO shows a more
competitive and superior performance and provides more
desirable clustering results. GBEHO inherits all the
advantages of traditional EHO, such as a superior global
exploration capability. Meanwhile, the clan operator and
separating operator in the original EHO are improved
by the random wandering operator and mutation operator
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Fig. 10 Comparison results of 5 algorithms on different datasets

so GBEHO is better equipped with a stronger local
exploitation compared with PSO, DE, GA, etc. Compared
with BA and CS, it has a better exploration, and thus
better avoids falling into the local optimum trap. In that
case, the convergence rate is optimized. Moreover, GBEHO
provides more accurate clustering results than the state-of-
art algorithms. However, we observe that GBEHO is subject
to several problems as follows. First, the time complexity of
GBEHO is too high compared to other classical algorithms,
which is caused by the newly added mechanism. The
enhancement in clustering accuracy leads to an increase
in the complexity of GBEHO. Second, with the increase
in dimensionality, some of the metaheuristic algorithms

suffer from a weakened stability. A scalability test with
expandable dimensions is not performed, so the adaptability
of GBEHO to multiple dimensions needs to be further
examined. However, based on the No Free Lunch (NFL)
theorem [51], there is no perfect optimization method, so
we do not intend to claim that GBEHO is the best method
in the world. The famous k-means algorithm has gained
widespread use and attention since its inception, but it does
not mean that k-means is without flaws. On the contrary, k-
means is still limited to dependence on the initial solution
and the tendency to fall into a local optimum. For our
proposed method, we are more concerned with the accuracy
of clustering rather than the time. As the research work
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goes further and becomes more detailed, the authors believe
that there will be more techniques for improving operational
efficiency in the future, such as parallel computing, which
will provide better technical support for GBEHO.

6 Conclusions and future work

Traditional clustering methods easily fall into local optima,
and the initialization of the center of mass position is a
prominent problem. In this paper, an improved version of
EHO is proposed for clustering analysis. Chaotic mapping
based on Gaussian sequences improves the ergodicity and
diversity of the initialized populations. Two operators,
random wandering and mutation, are presented to optimize
the strategy of updating positions in EHO, thus promoting
the population diversity and the ability to jump out of
the local optimum. Among them, the former improves
the diversity of the population as well as the global
exploration ability, and the latter promotes local exploitation
at a later stage. In addition, GBO operators contribute to
further balancing exploration and exploitation for the sake
of determining the best center of mass more accurately.
More suitable variable parameters are determined through
ablation experiments.

Experiments on artificial and real-world datasets indi-
cated that GBEHO has a better clustering performance than
the other metaheuristic algorithms and their variants. The
obtained intracluster variance was compared with classical
k-means, PSO, DE, and GA algorithms to show superi-
ority. By analyzing box plots and convergence curves, it
was shown that GBEHO has a greater stability and faster
convergence. The numerical data were confirmed by sta-
tistical analysis. Nonparametric tests were performed to
verify significant differences between GBEHO and other
algorithms. The visualization graphs of the clustering pro-
cess demonstrated that GBEHO can find more accurate
centroids at a faster iteration rate. Compared with the
other state-of-art algorithms, GBEHO achieves more real-
istic results on accuracy rate, specificity, detection rate,
and F-measure on five UCI datasets. Taken together, these
results confirmed that GBEHO is an effective tool for data
clustering.

In future research, we plan to reduce the time complexity
of GBEHO through further design and experimentation.
GBEHO can also be extended to several application
areas, such as intrusion detection, image segmentation,
and route planning. In addition, the performance of the
hybrid algorithm will continue to be optimized to address
sophisticated problems faced in practical engineering. The
authors believe that this is an algorithm with great potential,
and its application effect is worthy of expectation.
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