
1 3

/ Published online: 23 March 2022

Applied Intelligence (2022) 52:16458-16474
https://doi.org/10.1007/s10489-021-03122-7

Mining sequential patterns with flexible constraints from MOOC data

Wei Song1  · Wei Ye1 · Philippe Fournier‑Viger2 

Accepted: 16 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Online learning is playing an increasingly important role in education. Massive open online course (MOOC) platforms are
among the most important tools in online learning, and record historical learning data from an extremely large number of
learners. To enhance the learning experience, a promising approach is to apply sequential pattern mining (SPM) to discover
useful knowledge in these data. In this paper, mining sequential patterns (SPs) with flexible constraints in MOOC enrollment
data is proposed, which follows that research approach. Three constraints are proposed: the length constraint, discreteness
constraint, and validity constraint. They are used to describe the effect of the length of enrollment sequences, variance of
enrollment dates, and enrollment moments, respectively. To improve the mining efficiency, the three constraints are pushed
into the support, which is the most typical parameter in SPM, to form a new parameter called support with flexible con-
straints (SFC). SFC is proved to satisfy the downward closure property, and two algorithms are proposed to discover SPs
with flexible constraints. They traverse the search space in a breadth-first and depth-first manner. The experimental results
demonstrate that the proposed algorithms effectively reduce the number of patterns, with comparable performance to clas-
sical SPM algorithms.

Keywords  Sequential pattern · MOOC · Support with flexible constraints · Downward closure property

1  Introduction

Online education is popular at present because of school
closures caused by the breakout of COVID-19 [25]. Since
the beginning of 2020, almost all students around the world
have experienced online study. Massive open online courses
(MOOCs) have become the main online learning method.
The main MOOC platforms, for example, EdX and Cour-
sera, are collecting historical learning data from an increas-
ing number of students. Thus, discovering knowledge from
MOOC data is a promising approach to improve online
learning quality.

Data mining is the non-trivial process of identifying
valid, novel, potentially useful, and ultimately, understand-
able patterns from an extremely large volume of data. As
one of the main data mining tasks, pattern mining [35]

discovers various interesting, useful, and unexpected pat-
terns efficiently and effectively. Itemsets [32], sequential
patterns (SPs) [12], and sub-graphs [7] are typical patterns
discovered in pattern mining.

In this paper, data mining is used, or specifically, pat-
tern mining techniques, to discover knowledge hidden in
MOOC data. Online learning activities involve temporal fac-
tors; hence, SPs play an important role. Thus, mining SPs in
learners’ historical data is a promising approach to improve
online learning quality.

Given a sequence database, the problem of SP mining
(SPM) is to discover subsequences whose supports are no
lower than a user-specified minimum support [12]. Many
algorithms have been proposed, most of which focus on
developing efficient strategies for identifying all SPs, which
can be categorized into three broad classes: Apriori-based
[33], vertical database format [41], and projection-based
pattern growth algorithms [27]. Generally, numerous SPs
are discovered by typical SPM algorithms, which makes it
difficult for people to identify meaningful results. To address
this limitation, various constraints, such as gap [26] and dis-
creteness constraints [38], are used to discover effective and
actionable SPs.

 *	 Wei Song
	 songwei@ncut.edu.cn

1	 School of Information Science and Technology, North China
University of Technology, Beijing 100144, China

2	 College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen 518060, China

http://orcid.org/0000-0003-0649-8850
http://orcid.org/0000-0002-7680-9899
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-03122-7&domain=pdf

1 3

Mining sequential patterns with flexible constraints from MOOC data	

Recently, SPM has been successfully applied in fields
such as vehicle trajectory prediction [42] and electronic
medicine [24]. Among these application fields, online
education is the most promising application domain at
present because of school closures caused by the breakout
of COVID-19. Considering the characteristics of MOOC
data, flexible constraints are incorporated into typical SPM
algorithms to discover meaningful SPs to improve learning
quality.

The “Course Recommendation” dataset1 provided by
the MoocData platform is used throughout this paper. The
dataset was collected from XuetangX,2 one of the largest
MOOC platforms in China. Originally used for course rec-
ommendation, the dataset contains the records of 82,535
course enrollment sequences from XuetangX from October
1, 2016 to March 31, 2018. The characteristics of this dataset
are shown in Table 1.

Considering the dataset shown in Table 1, the major parts
of this study are as follows:

First, the importance of SPs is evaluated from three
aspects: the lengths of enrollment sequences containing
them, the variance of days within them, and the moments of
enrollments in them. These three aspects are modeled using
three constraints.

Second, to make the mining process with three con-
straints efficient, they are integrated into the support, which
is the most general parameter for evaluating SPs, to develop
a new parameter called support with flexible constraints
(SFC). It is proved that SFC also satisfies the downward
closure property.

Third, using breadth-first traversal and depth-first tra-
versal, two algorithms for mining SPs with flexible con-
straints are proposed and explained. In these two algorithms,
SFC is used to replace the support directly.

Finally, extensive experiments were conducted on MOOC
data. The results demonstrated that the proposed algorithms
effectively reduced the number of discovered results with
acceptable efficiency and memory consumption.

The remainder of this paper is organized as follows:
Related work is described in Section 2, and the SPM
problem is defined in Section 3. In Section 4, the three
constraints, in addition to their rationality, are discussed.
The mining algorithms are described in detail in Sec-
tion 5. The experimental results are presented and ana-
lyzed in Section 6. Finally, conclusions are drawn in
Section 7.

2 � Related work

In this section, first, applications of data mining for MOOC
data are reviewed. Then, studies on constraint-based SPM
are discussed.

2.1 � Data mining from MOOC data

Mining knowledge from MOOC data not only helps instruc-
tors to improve their teaching materials and methods but
also helps learners to access more appropriate courses or
learning paths [1]. Data mining from MOOC data is receiv-
ing increasing attention, particularly with the rise of online
learning during the COVID-19 pandemic. Learning behavior
understanding [16], dropout prediction [8], and personalized
learning [43] are typical data mining tasks that use MOOC
data.

SPM has become an effective tool for analyzing students’
online learning behaviors. Fournier-Viger et al. [10] used
SPM techniques to mine frequent action sequences and asso-
ciations between these sequences in a set of recorded usage
of the RomanTutor by novices, intermediates, and experts.
Using the discovered SPs, learners’ actions were tracked,
and suggestions were provided to improve the learners’
experience. Kinnebrew et al. used SPM and action abstrac-
tion to identify important learning behaviors of students in
different groups [19]. In their method, both sequence support
and instance support were used to evaluate the resulting SPs.

Using SPs to recommend MOOC teaching materials is
a promising approach [34]. Taking a student's sequence of
past courses, Wang and Zaïane [36] implemented a course
recommender system based on three sequence-related
approaches, including SPM. Wong et al. used SPM to verify
the effect of self-regulated learning (SRL) [37]. Specifically,
SPM was used to explore whether differences exist between
learners who viewed the SRL-prompt videos and those who
did not. The results demonstrated that the SRL-prompt view-
ers tended to follow the sequential structure of the course
provided by the instructor, whereas this was less likely in
the group of SRL-prompt non-viewers.

Table 1   Characteristics of the Course Recommendation dataset

Feature Number

Time span 547 days
Number of courses 1,302
Number of sequences 82,535
Length of the longest sequence 398
Length of the shortest sequence 3
Average sequence length 5.19

1  http://​moocd​ata.​cn/​data/​course-​recom​menda​tion
2  https://​next.​xueta​ngx.​com/

16459

http://moocdata.cn/data/course-recommendation
https://next.xuetangx.com/

1 3

W. Song et al.

Different from the above-mentioned SPM-based methods,
the object of analysis in the present paper is course enroll-
ment MOOC data rather than device usage data, learning
behavior data, and video-viewing data.

2.2 � Constraint‑based SPM

Many SPM algorithms have been proposed to discover fre-
quent SPs (FSPs) [15], high utility SPs [31], negative SPs
[5], and SPs from data streams [18].

In many application domains (e.g., music genre classifica-
tion) [29], SPs confined by predefined constraints are more
meaningful than general SPs. A constraint is an additional
set of criteria that the user provides to indicate more pre-
cisely the types of patterns to be found. This idea has been
used from the beginning of the topic of SPM in the GSP
algorithm [33]. For constraint-based SPM, the approach
used to push the constraints deep into the mining process
is important [23].

Time constraints, generally including gap and duration,
are the most widely used constraints in SPM. The gap con-
straint refers to the minimum and maximum amount of time
between two consecutive itemsets within an SP, whereas the
duration constraint is the maximum time difference for each
SP. Li et al. proposed two gap-constrained algorithms [21]:
Gap-BIDE and Gap-Connect. The former mines closed gap-
constrained subsequences from a set of input sequences and
the latter discovers repetitive gap-constrained subsequences
from a single input sequence. Wu et al. solved the problem
of SPM with periodic wildcard gaps using the data structure
of Nettree [39]. Sqn2Vec [26] and NegPSpan [14] are SPM
algorithms that use time constraints, and TRuleGrowth [11]
is an algorithm for mining sequential rules with a sliding-
window constraint.

Length constraints that restrict the minimum/maximum
number of items per SP are also commonly used in SPM.
cSpade [41] incorporates max-gap, max-span, and length
constraints. The length-decreasing support constraint was
proposed by Seno and Karypis [30]. Their algorithm SLP-
Miner finds all the FSPs whose support decreases as a func-
tion of their length. Thus, long SPs that usually have lower
supports can also be discovered. WSLPMiner is also an
SPM algorithm with a length-decreasing support constraint
[40].

Aggregate constraints are imposed on an aggregate of
items in an SP, where aggregate functions can be those
involving the average, general sum, or minimum/maxi-
mum number. Chen et al. proposed the PTAC algorithm
to discover SPs with tough aggregate constraints [2]. In
their algorithm, two strategies that avoid an unneces-
sary item check and unnecessary projected database gen-
eration are used to improve the efficiency and memory
consumption.

Other typical constraints used for SPM also exist, such
as the item constraint [6], discreteness constraint [38], and
norm constraint [4].

3 � Preliminaries

Let Σ be a set of courses. An item is represented as a pair
(c, t), where c ∈ Σ is a course and t is the enrollment time of
c. A sequence S =  < (c1, t1), (c2, t2), …, (cn, tn) > is a list of
time-ordered items, where for any 1 ≤ i < j ≤ n, ti < tj holds.
The length of sequence S, denoted by |S|, is the total number
of items in S. S[i] (1 ≤ i ≤ n) denotes the ith item in S, and
S[i].c and S[i].t are the course and enrollment time of S[i],
respectively. It should be noted that, at each time, only a
single item rather than an itemset is used in this paper. This
is because students can only enroll on one course at one time
in the MOOC data used in this study.

A sequence S =  < (c1, t1), (c2, t2), …, (cn, tn) > is called
a subsequence of another sequence S' =  < (c'1, t'1), (c'2, t'2),
…, (c'm, t'm) > (n ≤ m), and S' a super-sequence of S, denoted
by S ⊑ S', if there exist integers 1 ≤ i1 < … < in ≤ m such that
S[1].c = S'[i1].c, S[2].c = S'[i2].c, …, S[n].c = S'[in].c. The
ordered list of pairs < S'[i1], S'[i2], …, S'[in] > is called an
occurrence of S in S', denoted by Occ(S, S'). If there exists
at least one item (cj, tj) ∈ S', and (cj, tj) ∉ S, S is called a
proper subsequence of S', or S' a proper super-sequence of
S, denoted by S ⊏ S'.

A sequence database SDB is a set of 2-tuples (sid, IS),
where sid is called a sequence-id and IS an input sequence.
A tuple (sid, IS) in a sequence database SDB is said to con-
tain a sequence S if S is a subsequence of IS. For the MOOC
data used in this paper, each sequence S has at most only one
occurrence in one input sequence IS.

The number of tuples in a sequence database SDB con-
taining sequence S is called the support of S, denoted by
sup(S). The set of input sequences in tuples of SDB con-
taining sequence S is called the support set of S, denoted
by sup_set(S).

Consider two input sequences ISX and ISY containing S.
It is easy to understand that the enrollment times in Occ(S,
ISX) are not equal to the enrollment times in Occ(S, ISY).
Thus, the enrollment times are omitted in the mining results
in this paper. Formally, S =  < c1, c2, …, cn > is called an SP,
where c1, c2, …, cn are time-ordered courses without specific
enrollment times. S.ci(1 ≤ i ≤ n) denotes the ith course of S.

Let min_sup be the user-specified minimum support
threshold. An SP S is an FSP in the sequence database SDB
if sup(S)≥ min_sup. The frequent SPM problem is to find
the complete set of FSPs in SDB with respect to min_sup.

Consider the example sequence database in Table 2.
To make the explanation simple and clear, the enrollment
time of each item in all the input sequences is omitted. IS1,

16460

1 3

Mining sequential patterns with flexible constraints from MOOC data	

IS2, and IS4 contain the SP S =  < Data structure, Operat-
ing system > , and input sequences of these three tuples
comprise sup_set(S). Thus, if the support threshold min_
sup = 2, < Data structure, Operating system > is an FSP.

Different from traditional classroom teaching, learners
on the same MOOC course may be significantly different
in age, prerequisite knowledge, and learning objectives. For
example, IS3 is different from the other four input sequences
in the example sequence database because IS3 includes a
non-computing course, whereas the other four sequences
are all composed of computing courses. Furthermore, some
learners may also enroll on many courses without a clear
relationship. Thus, mining SPs directly in MOOC data may
lead to an extremely large number of uninteresting patterns
using substantial computational time and space.

Constraint-based mining may overcome the above-men-
tioned difficulties because constraints usually confine the
patterns to be found to a particular subset that satisfies some
strong conditions. Moreover, fewer resulting SPs also reduce
the search space, thereby leading to an efficient mining pro-
cess with small memory consumption. The challenge is how
to push the constraints deep into the mining process rather
than using constraints to filter the results after all SPs are
discovered.

4 � Flexible constraints

To determine the interestingness of SPs, three flexible con-
straints are considered from the perspective of the number
of course enrollments within the input sequences, span of
enrollment days, and specific enrollment time within a day.
To improve efficiency, we push these constraints into the
mining process by proving the downward closure property.

4.1 � Length constraint

First, the lengths of the enrollment sequences were consid-
ered and their distribution seemed to be long tailed. Figure 1
shows the distribution of sequence lengths in the Course
Recommendation dataset.

Figure 1 shows that most sequence lengths are short. Spe-
cifically, 37.76% of the sequences have lengths equal to 3,
18.91% of the sequences have lengths equal to 4, 13.81%
of the sequences have lengths equal to 5, and only five
sequences are longer than 200. This phenomenon illustrates
that school education is still the most important channel for
people to acquire knowledge, although MOOCs are play-
ing an increasingly important role in learning. Thus, most
learners resort to MOOCs as an auxiliary learning method
when they encounter problems that they need to solve using
knowledge covered by online courses. Learners who have
enrolled on multiple courses, or even hundreds of courses,
may be platform testers or staff of relevant management
departments.

This indicates that enrolling on a few courses is feasible
for MOOC learners, whereas enrolling on a large number of
courses occurs infrequently. Thus, the argument in this study
is that the supports contributed by short sequences and long
sequences are not the same, and the support contributed by
long sequences is not as important as that contributed by
short sequences. To model this fact, the length constraint
is defined.

Definition 1 (Length constraint)  Let SDB be the sequence
database and S be an SP. The length constraint of S with
respect to IS ∈ sup_set(S) is defined as

where max_L is the maximum length of all input sequences
in SDB.

In this study, the length of the input sequence is divided
by the maximum length of all input sequences to ensure that

(1)LC(S, IS) = exp (−|IS|∕max_L),

Table 2   Example sequence database

sid Input sequence

IS1 Data structure, Introduction to logic, Operating system, Linear
algebra, Introduction to big data

IS2 Linear algebra, Data structure, Operating system, Data mining
IS3 Database, Principles of economics, Data mining
IS4 Database, Data structure, Operating system
IS5 Introduction to big data, Database, Data mining

0 50 100 150 200 250 300 350 400

1

10

100

1000

10000

srenraelforeb
mu

N

Lengths of sequences

Fig. 1   Distribution of sequence lengths in the Course Recommenda-
tion dataset

16461

1 3

W. Song et al.

the value of |IS| / max_L is in the range (0, 1] , which prevents
the decay of the constraint from being too large. To push the
length constraint into the mining process, it is incorporated
into the support.

Definition 2 (Support with length constraint)  The support
with length constraint (SLC) of an SP S is defined as

The SLC in Definition 1 reflects that the support contri-
bution decays as the length increases, and it is lower than
the general support of the sequence stated in Section 3. The
rationality is verified in Lemma 1.

Lemma 1  Let SDB be the sequence database and S be an
SP. Then, supL(S)  ≤ sup(S).

Proof. Suppose that m input sequences in SDB con-
tain S; that is, there are m input sequences in sup_set(S),
and sup(S) = m. For any IS ∈ sup_set(S), |IS|≤ max_L. Thus,
0 < (|IS| / max_L)  ≤ 1. Hence, 0 < exp(-|IS| / max_L)  ≤ 1; that is,
0 < LC(S, IS)  ≤ 1. Because there are m input sequences in sup_
set(S),

∑
IS∈sup_set(S)LC(S, IS) ≤ m ; that is, supL(S) ≤ sup(S).□

The next lemma shows that the support with length con-
straint satisfies the downward closure property, which is an

(2)
supL(S) =

∑
IS∈sup_set(S)

LC(S, IS) =
∑

IS∈sup_set(S)
exp(−|IS|∕max_L)

effective tool for reducing the search space, and is widely
used in SPM.

Lemma 2  For any two SPs SX and SY, if SX ⊑ SY, supL(SY) 
≤ supL(SX).

Proof. For SX ⊑ SY, sup_set(SY) ⊆ sup_set(SX). There are
two cases:

(1) If sup_set(SY) = sup_set(SX), supL(SY) = supL(SX).
(2) If sup_set(SY) ⊂ sup_set(SX), input sequences are con-
tained in sup_set(SX) but not contained in sup_set(SY).
Thus,

supL
�
SY
�
=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
LC

�
SY , IS

�

=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
LC

�
SX , IS

�

<

�
IS∈sup_set(SY)∧IS∈sup_set(SX)

LC
�
SX , IS

�
+
�

IS�∉sup_set(SY)∧IS�∈sup_set(SX)
LC

�
SX , IS

�
�

= supL
�
SX

�

Table 3   Two sequences with enrollment dates

sid Input sequence

IS3 (Database, 2017/2/24),
(Principles of Economics,
2017/2/25), (Data mining,
2017/5/9)

IS5 (Introduction to big data,
2017/2/14), (Database,
2017/2/18), (Data mining,
2017/2/26)

According to the above discussion, supL(SY)  ≤ supL(SX).□
Lemma 2 shows that the length constraint can be pushed

into the mining process to speed up the discovery of SPs.

4.2 � Discreteness constraint

The discreteness constraint is also proposed, which describes
how each enrollment time varies from the mean time in a
sequence.

Consider an SP S =  < Database, Data mining > in the
example sequence database shown in Table 2. Both IS3
and IS5 contain S. To explain the discreteness constraint,
the specific enrollment date of each course of IS3 and IS5
is provided. Examples with enrollment dates are shown in
Table 3.

To engage learners in the MOOC platform, small dis-
creteness among enrollment dates is preferred. From this
point of view, for the same SP S, IS5 contributes more to

sup(S) than IS3. For IS5, the mean date of two enrollment
dates of S is 2017/2/22, and the distance between both
enrollment dates and the mean date is 4 days. For IS3, the
mean date of the two enrollment dates of S is 2017/4/2, and
the distance between both enrollment dates and the mean
date is 37 days. To model this assumption, the discreteness
constraint is defined.

Definition 3 (Discreteness constraint)  Let S =  < c1, c2, …,
cn > be an SP. IS ∈ sup_set(S) is an input sequence, and there
exist integers 1 ≤ i1 < i2 < … < in ≤ m such that S.c1 = IS[i1].c,
S.c2 = IS[i2].c, …, S.cn = IS[in].c. The discreteness constraint
of S with respect to IS is defined as

where

(3)DC(S, IS) = exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
,

16462

1 3

Mining sequential patterns with flexible constraints from MOOC data	

From Definition 3, the discreteness constraint indicates how
widely enrollment times in a sequence’s occurrence vary. If enroll-
ment times vary greatly from the mean time of a sequence’s occur-
rence, the constraint is small. To simplify the calculation, only
the enrollment dates are considered and the specific enrollment
moments are omitted when computing the discreteness constraints.

To push the discreteness constraint into the mining pro-
cess, it is incorporated into the support.

Definition 4 (Support with discreteness constraint)  Let
S =  < c1, c2, …, cn > be an SP. The support with discrete-
ness constraint (SDC) of S is defined as

The function exp(-x) is monotone decreasing. To avoid
supD(S) becoming too small, min–max normalization is used to
rescale the enrollment time into the range [0, 1] before the dis-
creteness constraint and SDC are calculated. It can also be proved
that the SDC is lower than the general support stated in Section 3.

Lemma 3  Let SDB be the sequence database and S be an
SP. Then, supD(S)  ≤ sup(S).

(4)IS
�
in
�
.t =

1

n

∑n

j=1
IS
�
ij
�
.t.

(5)
supD(S) =

∑
IS∈sup_set(S) DC(S, IS)

=
∑

IS∈sup_set(S) exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
.

Proof. Suppose that m input sequences in SDB contain S;
that is, there are m input sequences in sup_set(S) and
sup(S) = m. For any IS ∈ sup_set(S), ∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2 ≥ 0.

Thus, 0 < exp
�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
  ≤  1; that is, 0 < DC(S,

IS)  ≤ 1. Because there are m input sequences in sup_set(S), ∑
IS∈sup_set(S)DC(S, IS) ≤ m ; that is, supD(S)  ≤ sup(S). □
The SDC also satisfies the downward closure property,

which is proved in Lemma 4.

Lemma 4  For any two SPs, SX and SY, if SX ⊑ SY, supD(SY) 
≤ supD(SX).

Proof. For SX ⊑ SY, there are two cases.

(1)	 If SX = SY, supD(SY) = supD(SX).
(2)	 If SX ⊏ SY, first consider the case in which |SY| =|SX|+ 1.

Let SX =  < c1, c2, …, cn > and SY =  < c1, c2, …, cn,
cn+1 > . For an input sequence IS containing both SX and
SY, there exist integers i1 < … < in < in+1 such that
IS[i1].c = c1, …, IS[in].c = cn, IS[in+1].c = cn+1. Then

DC
�
SY , IS

�
= exp

�
−
∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�2

�

and DC
�
SX , IS

�
= exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
 .

According to Eq. (4),

(6)

IS
�
in+1

�
.t =

1

n+1

�∑n

j=1
IS
�
ij
�
.t + IS

�
in+1

�
.t
�
=

n

n+1

1

n

∑n

j=1
IS
�
ij
�
.t +

1

n+1
IS
�
in+1

�
.t

=
n

n+1
IS
�
in
�
.t +

1

n+1
IS
�
in+1

�
.t =

n+1−1

n+1
IS
�
in
�
.t +

1

n+1
IS
�
in+1

�
.t

= IS
�
in
�
.t +

1

n+1

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�
.

By substitution with Eq. (6),

(7)

n+1∑

j=1

(IS[ij].t − IS[in+1].t)
2 =

n+1∑

j=1

(IS[ij].t − IS[in].t −
1

n + 1
(IS[in+1].t − IS[in].t))

2

=

n+1∑

j=1

((IS[ij].t − IS[in].t)
2 −

2(IS[ij].t − IS[in].t)(IS[in+1].t − IS[in].t)

n + 1
+

(IS[in+1].t − IS[in].t)
2

(n + 1)2
)

=

n+1∑

j=1

(IS[ij].t − IS[in].t)
2 −

2(IS[in+1].t − IS[in].t)

n + 1

n+1∑

j=1

(IS[ij].t − IS[in].t) +
(IS[in+1].t − IS[in].t)

2

n + 1
.

16463

1 3

W. Song et al.

For the first term on the right-hand side of the last expres-
sion in Eq. (7),

For the second term on the right-hand side of the last
expression in Eq. (7),

(8)∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2

=
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2

+
�
IS
�
in+1

�
.t − IS

�
in
�
.t
�
2

Because ∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
=
∑n

j=1
IS
�
ij
�
.t − n × IS

�
in
�
.t = 0,

Substituting Eqs. (8) and (10) into Eq. (7) yields

Hence, ∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�
2

≥
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2 . Thus,

exp

�
−
∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�2

�
≤ exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
 ; that

is, DC(SY, IS)  ≤ DC(SX, IS). Thus,

(9)
−

2

�
IS[in+1].t−IS[in].t

�

n+1

∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�

= −
2(IS[in+1].t−IS[in].t)

n+1

�∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
+
�
IS
�
in+1

�
.t − IS

�
in
�
.t
��

(10)
−
2

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�

n + 1

∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
= −

2

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�
2

n + 1

(11)

∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�2

=
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

+
n

n+1

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�2

.

(12)
�

IS∈sup_set(SY)
⋀

IS∈sup_set(SX)
DC

�
SY , IS

�
≤

�
IS∈sup_set(SY)

⋀
IS∈sup_set(SX)

DC
�
SX , IS

�

Table 4   Two input sequences with specific enrollment times

sid Input sequence

IS3 (Database, 2017/2/24 9:52:00), (Prin-
ciples of Economics, 2017/2/25
10:19:00), (Data mining, 2017/5/9
8:22:00)

IS5 (Introduction to big data, 2017/2/14
8:21:00), (Database, 2017/2/18
3:46:00), (Data mining, 2017/2/26
0:54:00)

Because SX⊏ SY, sup_set(SY) ⊆ sup_set(SX) holds. If
sup_set(SY) = sup_set(SX), Eq. (12) implies that supD(SY) 
≤ supD(SX). If sup_set(SY) ⊂ sup_set(SX), input sequences are

contained in sup_set(SX) and not contained in sup_set(SY).
Thus,

supD
�
SY
�
=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
DC

�
SY , IS

�

≤

�
IS∈sup_set(SY)∧IS∈sup_set(SX)

DC
�
SX , IS

�

<

�
IS∈sup_set(SY)∧IS∈sup_set(SX)

DC
�
SX , IS

�
+
�

IS�∉sup_set(SY)∧IS�∈sup_set(SX)
DC

�
SX , IS

�
�

= supD
�
SX

�

According to the above discussion, supD(SY)  ≤ supD(SX)
when |SY| =|SX|+ 1.

When |SY| =|SX|+ m (m > 1), (m − 1) SPs S1, S2,…, Sm−1
can be identified such that SX ءغ ⊏ S1 ⊏ S2 ⊏…⊏ Sm−2 ⊏ Sm−1
⊏SY and |SY| =|Sm−1|+ 1 =|Sm−2|+ 2 = … =|S1|+ m − 1 =|SX
|+ m. Similar to the case in which |SY| =|SX|+ 1, supD(SY) 
≤ supD(Sm−1)  ≤ supD(Sm−2)  ≤ … ≤ supD(S1)  ≤ supD(SX).

According to the above discussion, supD(SY)  ≤ supD(SX)
when SX ⊑ SY.□

Lemma 4 shows that the discreteness constraint can also
be pushed into the mining process to speed up the discovery
of SPs.

4.3 � Validity constraint

The validity constraint is also proposed, which distinguishes
serious learning from casual learning enrollments. The

object of this constraint is still the enrollment time, that is,
the specific moment within a day.

Consider IS3 and IS5 in the example sequence database
in Table 2. The specific enrollment moment is shown in
Table 4. It should be noted that the format of Table 4 is the
same as the original format of the Course Recommendation
dataset. To simplify the explanation, some information was
omitted in the previous examples.

The motivation for defining the validity constraint is
that enrollments during normal working hours are often
generated by learners who have a strong desire to learn,
whereas enrollments during non-working hours are often
generated by learners who simply want to gain some basic
knowledge. For IS3 and IS5 in Table 4, although both con-
tain the SP S =  < Database, Data mining > , the enrollment
moments for IS3 are during working hours, whereas the
enrollment moments for IS5 are during non-working hours

16464

1 3

Mining sequential patterns with flexible constraints from MOOC data	

(early morning and midnight). It is assumed that IS3 con-
tributes more to sup(S) than IS5. To model this assumption,
the validity constraint is defined. In this paper, enrollment
during normal working hours is called valid enrollment
and enrollment during non-working hours is called casual
enrollment. For example, if normal working hours are set to
the period 8:00–22:59 and non-working hours to the period
23:00–7:59, S has two valid enrollments in IS3 and two cas-
ual enrollments in IS5.

Definition 5 (Validity constraint)  Let S =  < c1, c2, …, cn > be
an SP. Suppose that IS ∈ sup_set(S) is an input sequence. The
validity constraint of S with respect to IS is defined as

where num_l is the number of casual enrollments of S in IS
and max_L is the maximum length of all input sequences
in SDB.

From Definition 5, the validity constraint distinguishes
between standard learning behavior and casual learn-
ing behavior. For S =  < Database, Data mining > , VC(S,
IS3) = 1, which indicates that sup(S) does not decay in IS3
with respect to enrollment moments because both enroll-
ments are valid enrollments.

To push the validity constraint into the mining process, it
is incorporated into the support.

Definition 6 (Support with validity constraint)  Let S be
an SP. The support with validity constraint (SVC) of S is
defined as

It can also be proved that the SVC is lower than the gen-
eral support stated in Section 3.

(13)VC(S, IS) = exp (−num_l∕max_L),

(14)supV (S) =
∑

IS∈sup_set(S)
VC(S, IS) =

∑
IS∈sup_set(S)

exp (−num_l∕max_L).

Lemma 5  Let SDB be the sequence database and S be an
SP. Then, supV(S)  ≤ sup(S).

Proof. Suppose that m input sequences in SDB con-
tain S; that is, there are m input sequences in sup_set(S)
and sup(S) = m. For any IS ∈ sup_set(S), num_l(S, IS) /
max_L ≥ 0. Thus, 0 < exp(-num_l(S, IS) / max_L)  ≤ 1; that
is, 0 < VC(S, IS)  ≤ 1. Because there are m input sequences
in sup_set(S),

∑
IS∈sup_set(S)VC(S, IS) ≤ m ; that is, supV(S) 

≤ sup(S). □
The SVC also satisfies the downward closure property,

which is proved in Lemma 6.

Lemma 6  For any two SPs SX and SY, if SX ⊑ SY, supV(SY) 
≤ supV(SX).

Proof. For SX ⊑ SY, there are two cases.

(1) If SX = SY, supV(SY) = supV(SX).
(2) If SX ⊏ SY, for an input sequence IS containing both
SX and SY, num_l(SX, IS)/max_L ≤ num_l(SY, IS)/max_L.
Thus, exp(-num_l(SX, IS)/max_L)  ≥ exp(-num_l(SY,
IS)/max_L); that is,

Because SX⊏ SY, sup_set(SY) ⊆ sup_set(SX) holds. If
sup_set(SY) = sup_set(SX),

If sup_set(SY) ⊂ sup_set(SX), input sequences are con-
tained in sup_set(SX) and not contained in sup_set(SY). Thus,

(15)VC
(
SX , IS

)
≥ VC

(
SY , IS

)
.

supV
�
SY
�
=
∑

IS∈sup_set(SY)
VC

�
SY , IS

�
=
∑

IS∈sup_set(SX)
VC

�
SY , IS

�

≤
∑

IS∈sup_set(SX)
VC

�
SX , IS

�

= supV
�
SX

�
.

supV
�
SY
�
=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
VC

�
SY , IS

�

≤
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
VC

�
SX , IS

�

<

∑
IS∈sup_set(SY)∧IS∈sup_set(SX)

VC
�
SX , IS

�
+
∑

IS�∉sup_set(SY)∧IS�∈sup_set(SX)
VC

�
SX , IS

�
�

= supV
�
SX

�

According to the above discussion, supV(SY)  ≤  supV(SX)
when SX ⊑ SY.□

Lemma 6 shows that the validity constraint can be pushed
into the mining process to speed up the discovery of SPs.

4.4 � Constraint integration

To speed up the SPM process, the length constraint, discrete-
ness constraint, and validity constraint are integrated flexibly
into one constraint, and the general support is replaced.

16465

1 3

W. Song et al.

Definition 7 (SFC)  Let S be an SP. The SFC of S is defined as

where α (0 ≤ α ≤ 1) is the length factor, β (0 ≤ β ≤ 1) is the
discreteness factor, and γ (0 ≤ γ  ≤ 1) is the validity factor
such that

For an SP S, supFC(S) reflects the decay of sup(S) affected by
the input sequences in sup_set(S), including the lengths of these
input sequences, variances of the enrollment dates in these input
sequences, and enrollment moments within a day in these input
sequences. If the lengths of input sequences in sup_set(S) are
short, the variances of the enrollment dates are small, and there
are few casual enrollments, then there will be more opportuni-
ties to discover S when using the proposed algorithms.

It also can be proved that the SFC is lower than the gen-
eral support.

Theorem 1  Let SDB be the sequence database and S =  < c1,
c2, …, cn > be an SP. Then, supFC(S)  ≤ sup(S).

Proof. Let IS be an input sequence and IS ∈ sup_set(S).
There exist integers 1 ≤ i1 < … < in such that S.c1 = IS[i1].c,
S.c2 = IS[i2].c, …, S.cn = IS[in].c. According to Lemma 1,

Similarly, according to Lemmas 3 and 5,

Assume LC(S, IS)  ≥ DC(S, IS) and LC(S, IS)  ≥ VC(S,
IS). Then,

According to Eq. (17),

For the other two cases, (1) DC(S, IS)  ≥ LC(S, IS) and
DC(S, IS)  ≥ VC(S, IS) and (2) VC(S, IS)  ≥ LC(S, IS) and
VC(S, IS)  ≥ DC(S, IS), it can be concluded that Eq. (21)
holds similarly.

Suppose that m input sequences in SDB contain S; that is,
there are m input sequences in sup_set(S), and sup(S) = m.
According to Eq. (21),

(16)supFC(S) = α × supL(S) + β × supD(S) + γ × supV (S)

(17)α + β + γ = 1

(18)0 < LC(S, IS) = exp (−|IS|∕max_L) ≤ 1.

(19)

0 < DC(S, IS) = exp

(
−

n∑

j=1

(
IS
[
ij
]
.t − IS

[
in
]
.t
)2

)
≤ 1,

(20)0 < VC(S, IS) = exp (−num_l(S, IS)∕max_L) ≤ 1.

� × LC(S, IS) + � × DC(S, IS) + � × VC(S, IS)

≤ � × LC(S, IS) + � × LC(S, IS) + � × LC(S, IS)

= (� + � + �) × LC(S, IS).

(21)� × LC(S, IS) + � × DC(S, IS) + � × VC(S, IS) ≤ 1.

According to the above discussion, supFC(S)  ≤ sup(S). □
Using SFC to replace the support can guarantee mining

efficiency because it also satisfies the downward closure
property.

Theorem 2  For any two SPs SX and SY, if SX ⊑ SY, supFC(SY) 
≤ supFC(SX).

Proof. According to Lemma 2, supL(SY)  ≤ supL(SX).
Because 0 ≤ α ≤ 1,

Similarly, according to Lemmas 4 and 6,

Summing Eqs. (22), (23), and (24) yields

According to the above discussion, supFC(SY)  ≤ supFC(SX)
if SX ⊑ SY.□

Using Theorem 2, when an SP’s SFC is found to be
lower than the minimum support threshold, all its super
patterns can be safely pruned when using the proposed
algorithms.

Given the above discussion, the problem to be solved
is redefined as follows: Given a positive integer min_sup
as the minimum support threshold, an SP S is a flexible-
constraint-based SP (FCSP) in the sequence database SDB
if supFC(S)  ≥ min_sup. An FCSP with length l is called
an l-FCSP. The flexible-constraint-based SPM (FCSPM)
problem is to find the complete set of FCSPs with respect
to SDB and min_sup.

Theorem 3  Let S_FCSP and S_FSP be the sets of FCSPs
and FSPs with respect to the same min_sup, respectively.
Then, S_FCSP ⊆ S_FSP.

Proof. For ∀ S ∈ S_FCSP, supFC(S)  ≥ min_sup. Accord-
ing to Theorem 1, supFC(S)  ≤ sup(S). Hence, sup(S)  ≥ min_
sup, and S ∈ S_FSP. Thus, S_FCSP ⊆ S_FSP.□

From Theorem 3, the set of FCSPs is a subset of the set
of FSPs when the same threshold is set.

supFC(S) = � × supL(S) + � × supD(S) + � × supV (S)

=
∑

IS∈sup_set(S) (� × LC(S, IS) + � × DC(S, IS) + � × VC(S, IS))

≤ m = ���(S).

(22)� × supL
(
SY
)
≤ � × supL

(
SX

)

(23)� × supD
(
SY
)
≤ � × supD

(
SX

)
,

(24)� × supV
(
SY
)
≤ � × supV

(
SX

)
.

supFC
(
SY
)
= � × supL

(
SY
)
+ � × supD

(
SY
)
+ � × supV

(
SY
)

≤ � × supL
(
SX

)
+ � × supD

(
SX

)
+ � × supV

(
SX

)

= supFC
(
SX

)

16466

1 3

Mining sequential patterns with flexible constraints from MOOC data	

5 � Algorithm description

To discover FCSPs, two algorithms are proposed. One trav-
erses the search space level-by-level and is called SPM using
flexible constraints level-wisely (SPM-FC-L), and the other
traverses the search space using recursive projections and is
called SPM using flexible constraints by projection (SPM-
FC-P). The SPM-FC-L algorithm is convenient to imple-
ment, whereas SPM-FC-P is more efficient. Because it was

proved in Section 4.4 that SFC satisfies the downward clo-
sure property, as does the support, the support is replaced
by SFC in both algorithms directly.

5.1 � SPM‑FC‑L algorithm

To replace the support with SFC, it is natural to discover
the FCSPs based on the GSP algorithm [33]. Algorithm 1
describes the proposed SPM-FC-L for mining FCSPs.

In Algorithm 1, FCSPs with single items are first discov-
ered on Line 1. FSk is used to denote the set of FCSPs with
length k. The initial value of k is set to one on Line 2. The
main loop discovers all FCSPs using a candidate generation-
and-test methodology (Lines 3–7). On Line 4, the function
candidate_gen (described in Algorithm 2) is called to gener-
ate candidates with length (k + 1). CSk is used to denote the
set of candidate FCSPs with length k. On Line 5, only candi-
dates with SFC no lower than min_sup are kept. The number
of iterations is incremented by one on Line 6. Finally, on
Line 8, all the discovered FCSPs are returned.

The function candidate_gen generates the candidate
FCSPs with length (k + 1) by joining two k-FCSPs that
share the first (k-1) common courses. For each such pair of
FCSPs, two candidates can be generated. Each candidate is
not retained until all its subsequences are FCSPs because
of the downward closure property of SFC. Different from
typical SPM algorithms that use both itemset-extension
and sequence-extension to generate new candidates, only
sequence-extension is considered. This is because there is
only one course enrollment at one time in the Course Rec-
ommendation dataset used in this paper.

5.2 � SPM‑FC‑P algorithm

In this section, another FCSP mining algorithm, SPM-FC-P,
is proposed that uses the recursive sequence database pro-
jection approach. To explain the algorithm, the following
concepts of sequence database projection are introduced.

Let SX =  < c1, c2, …, cn > and SY =  < c1, c2, …, cm > be two
SPs. SY is called a prefix of SX if (1) m < n and (2) there exist
integers 1 ≤ i1 < i2 < … < im < n such that SY .C1

= SX.Ci1

 ,
SY .C2

= SX.Ci2

 , …, SY .Cm
= SX.Cim

 . SZ =< cim+1, cim+2,… , cn >
is called the suffix of SX with respect to prefix SY, and denoted
by SZ = SX / SY.

16467

1 3

W. Song et al.

Fox example, SP SY =  < Data structure, Operating sys-
tem > is a prefix of SX =  < Data structure, Introduction to
logic, Operating system, Linear algebra, Introduction to
big data > , and SZ =  < Linear algebra, Introduction to big
data > is a suffix of SX with respect to SY.

Let S be an SP in a sequence database SDB. The S-pro-
jected database, denoted by SDB|S, is the collection of suf-
fixes of input sequences in SDB with respect to prefix S.

The sequence database in Table 2 is considered as an
example. Consider S =  < Data structure, Operating sys-
tem > . The S-projected database is shown in Table 5.

According to the above concepts, Algorithm 3 describes
the proposed SPM-FC-P for mining FCSPs.

In the S-projected database, all 1-FCSPs are enumerated
on Line 1. Then the main loop (Lines 2–7) generates new
FCSPs by appending each 1-FCSP to the current FCSP.
On Line 3, a 1-FCSP is appended after the last item of the
current FCSP to form a new FCSP. According to previous
SPM algorithms based on pattern growth [27], it is easy to
understand that the SFC of the new SP is the same as the
SFC of the appended item. Thus, it is also an FCSP. Then,
the newly formed FCSP is output on Line 4 and its projected
database is constructed on Line 5. On Line 6, the SPM-FC-P
procedure is called to generate FCSPs recursively. It should
be noted that, when SPM-FC-P is called the first time, S is
an empty set and SDB | S is SDB itself.

5.3 � Summary of the proposed algorithms

Discovering SPs from MOOC learning data is important
for improving the online learning experience. To the best of
the authors’ knowledge, this is the first work on extracting

constraint-based SPs from MOOC data. The novelty of the
two proposed algorithms can be summarized as follows.

First, the interestingness of the resulting SPs is measured
from three perspectives: the number of courses in which
students were enrolled, date span of course enrollment, and
specific enrollment moment in a day. Thus, the problem of
the extremely large number of resulting SPs of a typical FSP
mining problem can be solved, to great extent. Addition-
ally, the FCSPs are more meaningful than FSPs that use
frequency only.

Second, the downward closure property was also proved
to be satisfied for FCSPs. Thus, the two algorithms for min-
ing FCSPs are not only easy to implement but also effective
in reducing the extremely large search space. Therefore, the
efficiency of both SPM-FC-L and SPM-FC-P is comparable
with that of counter level-wise and projection-based SPM
algorithms.

Finally, the three constraints, that is, length constraint,
discreteness constraint, and validity constraint, were also
all proved to satisfy the downward closure property. Hence,
these three constraints can be used separately according to
the specific application scenario, which makes the two pro-
posed algorithms suitable for general usage.

6 � Experimental results

In this section, the performance of the proposed algo-
rithms is evaluated and they are compared with two general
SPM algorithms: GSP [33] and PrefixSpan [27], and one
constraint-based sequential rule mining algorithm, TRule-
Growth [11]. The source code of each algorithm was down-
loaded from the SPMF data mining library [9]. To run GSP,
PrefixSpan, and TRuleGrowth on the Course Recommen-
dation dataset, the dataset was transformed by deleting the
specific enrollment time and retaining the order of course
enrollment within each sequence. It should be noted that
TRuleGrowth is an algorithm with a sliding-window con-
straint for mining partially ordered sequential rules. For a
fair comparison, when TRuleGrowth was run, the part that
calculated confidence was blocked. Thus, in Sects. 6.1 and
6.2, only the time and memory required for TRuleGrowth to
mine the SPs is recorded, and the time and memory required
for TRuleGrowth to generate rules from the SPs is ignored.
Similarly, the number of results for TRuleGrowth is also
the number of discovered SPs rather than the number of
sequential rules.

The experiments were conducted on a computer with a
2-Core 1.80 GHz CPU and 8 GB memory running 64-bit
macOS Mojave (macOS 10.14). The programs were written
in Java. It should be noted that the support used for evalua-
tion was the ratio of the number of input sequences contain-
ing the target pattern to the total number of input sequences

Table 5   S-projected database in the example sequence database

Although S =  < Data structure, Operating system > is contained by
IS1, IS2, and IS4, the S-projected database is only composed of two
suffixes because IS4 / S = ∅

sid Input sequence

IS’1 Linear algebra, Introduction to
big data

IS’2 Data mining

16468

1 3

Mining sequential patterns with flexible constraints from MOOC data	

0.09 0.08 0.07 0.06 0.05
10

100

1000

10000

0.7 0.6 0.5 0.4 0.3
1

10

100

1000

)ceS(e
mitnu

R

min_sup(%)

GSP PrefixSpan TRuleGrowth SPM-FC-L SPM-FC-P

(a)

R
un

tim
e(
Se

c)
min_sup(%)

(b)

Fig. 2   Comparison of execution times

0.09 0.08 0.07 0.06 0.05

400

600

800

1000

1200

1400

1600

1800

2000

0.7 0.6 0.5 0.4 0.3
200

400

600

800

1000

1200

1400

1600

1800

)B
M(egasu

yro
me

M

min_sup(%)

GSP PrefixSpan TRuleGrowth SPM-FC-L SPM-FC-P

(a)

M
em

or
y

us
ag

e(
M

B)

min_sup(%)

(b)

Fig. 3   Comparison of memory usage

16469

1 3

W. Song et al.

in the sequence database; that is, the support values used in
experiments were in the range [0, 1].

In the proposed model, the length factor α (0 ≤ α ≤ 1), dis-
creteness factor β (0 ≤ β≤ 1), and validity factor γ (0 ≤ γ  ≤ 1)
had to be set to appropriate values. First, the approximate
ranges of these parameters were outlined, and then their
optimal values were determined using progressive refine-
ment. For all the experiments, α = 1/6, β = 3/6, and γ = 2/6.

6.1 � Runtime

First, the efficiency performance of these algorithms was
demonstrated. When measuring the runtime, the minimum
support threshold was varied. Because there was only one
dataset, the same dataset was tested using two groups of
minimum support thresholds in the experiments in Sects. 6.1
to 6.3.

In Fig. 2, the efficiency of the five algorithms can be cat-
egorized into two groups. Generally, the three projection-
based algorithms (PrefixSpan, TRuleGrowth, and SPM-FC-
P) were faster than the two level-wise algorithms (GSP and
SPM-FC-L). This is consistent with the existing consensus
in the field of pattern mining; that is, pattern-growth-based
algorithms are more efficient because numerous candidates
and multiple database scans can be avoided effectively. The
two proposed algorithms demonstrated efficiency com-
parable with their counterpart algorithms. Specifically,
SPM-FC-L was slightly faster than GSP, and SPM-FC-P

was slightly slower than PrefixSpan and slightly faster than
TRuleGrowth.

In this set of experiments, the two proposed algorithms
were not faster than PrefixSpan. This can be explained by the
following two aspects. The low efficiency of SPM-FC-L was
caused by its level-wise search space traversal, whereas the
main reason that algorithm SPM-FC-P was slightly slower
than PrefixSpan is that SPM-FC-P had to calculate three
types of constraints in addition to the corresponding sup-
ports, and then integrate them into an SFC.

6.2 � Memory consumption

The memory usage of the five algorithms was also com-
pared. The results are shown in Fig. 3.

The plots of the results for this set of comparisons can
also be divided into two categories that are similar to the
results in Fig. 2. For the two level-wise algorithms, the
proposed SPM-FC-L algorithm consumed less memory
than the GSP algorithm, on average, whereas for the three
projection-based algorithms, the memory consumption of
the proposed SPM-FC-P algorithm was less than that of
PrefixSpan, and comparable with that of TRuleGrowth. For
example, when the minimum support threshold was 0.4%,
SPM-FC-P saved nearly half the memory compared with
PrefixSpan. This was mainly because a considerable num-
ber of SPs were not FCSPs when using SFC. Thus, fewer
results for the proposed algorithms could avoid unnecessary

0.09 0.08 0.07 0.06 0.05
0

5000

10000

15000

20000

25000

sPSforeb
mu

N

min_sup(%)
FSP POSP FCSP

(a)

0.7 0.6 0.5 0.4 0.3
0

500

1000

1500

2000

2500

3000

3500

N
um

be
r o

f S
Ps

min_sup(%)

(b)

Fig. 4   Number of discovered patterns

16470

1 3

Mining sequential patterns with flexible constraints from MOOC data	

join operations and database projections, which led to less
memory consumption.

For SPM-FC-P and TRuleGrowth, the memory consump-
tion of SPM-FC-P in the first set of experiments was worse
than that of TRuleGrowth, whereas the memory consump-
tion of SPM-FC-P in the second set of experiments was
better than that of TRuleGrowth. The results were closely
related to the number of discovered SPs; that is, SPM-FC-P
consumed more memory than TRuleGrowth when the num-
ber of discovered FCSPs was more than the number of SPs
discovered by TRuleGrowth, whereas SPM-FC-P consumed
less memory than TRuleGrowth when the number of discov-
ered FCSPs was fewer than the number of SPs discovered by
TRuleGrowth, on average. This is also verified in the com-
parison of the number of discovered patterns in Section 6.3.

6.3 � Number of discovered patterns

The number of SPs discovered by our algorithms was also
compared with the number of SPs discovered by the other
three algorithms. The results are shown in Fig. 4. Because
SPM-FC-L and SPM-FC-P returned the same results, and
GSP and PrefixSpan returned the same results, the results for
the comparison were discovered using SPM-FC-P (FCSPs)
and PrefixSpan (FSPs), respectively. Because the SPs dis-
covered by TRuleGrowth, used for extracting partially
ordered sequential rules (POSRs), are different from both
FCSPs and FSPs, this type of SP is denoted by partially
ordered SPs (POSPs) in this set of experiments.

Figure 4 shows that the number of FCSPs was always
smaller than the number of FSPs. This reflects that flexible
constraints could present fewer results to users according to
the characteristics of MOOC data. Generally, the greater the

number of results found, the greater the number of results
the proposed algorithms could reduce. For example, when
min_sup was 0.05%, the maximum number of FSPs and
FCSPs could be determined, and the number of FCSPs was
6,837 smaller than the number of FSPs.

For the results discovered by TRuleGrowth, the number
of FCSPs was sometimes less than the number of POSPs,
but more often, the number of FCSPs was more than that of
POSPs. The reason behind these results is that POSPs are
used for generating POSRs pair by pair. Within each pair
of POSPs, one POSP is tested for the antecedent, and the
other is verified for the consequent. Items in each POSP are
unordered. Thus, a large number of permutation results of
SPs caused by different orders are avoided. Thus, the number
of final resulting POSPs is reduced accordingly.

6.4 � Impact of a single constraint

The two proposed algorithms measure the importance of
FCSPs with SFC, which is the integration of SLC, SDC, and
SVC. To show the effect of each constraint, the performance
of each proposed algorithm was compared with that of its
counterpart that uses only one constraint.

As discussed in Sects. 6.1 and 6.2, the performance of
SPM-FC-L was lower than the performance of SPM-FC-P.
Therefore, the comparison between the four level-wise algo-
rithms was conducted using a group of high thresholds. The
three level-wise algorithms used only the length constraint,
discreteness constraint, and validity constraint denoted by
SPM-LC-L, SPM-DC-L, and SPM-VC-L, respectively. The
comparison between the four projection-based algorithms
was conducted on the group of low thresholds. The three
projection-based algorithms used only the length constraint,
discreteness constraint, and validity constraint denoted by
SPM-LC-P, SPM-DC-P, and SPM-VC-P, respectively.

Table 6   Performance comparison for the level-wise algorithms

Algorithm Runtime (Sec) Memory
usage (MB)

Number of SPs

SPM-LC-L 378.39 1212.01 2347
SPM-DC-L 601.68 1474.88 1911
SPM-VC-L 561.53 1318.12 2143
SPM-FC-L 589.31 1310.34 2081

Table 7   Performance comparison for the projection-based algorithms

Algorithm Runtime (Sec) Memory
usage (MB)

Number of SPs

SPM-LC-P 21.45 559.19 10,472
SPM-DC-P 31.53 694.98 11,847
SPM-VC-P 29.99 628.09 11,678
SPM-FC-P 30.71 599.87 11,325

Table 8   Two input sequences containing S1

sid Input sequence

ISα (Ideological and moral cultivation, 2016/10/18
3:47), (Introduction to Zizhi Tongjian,
2016/12/6 8:03), (Hybrid learning, 2016/12/6
1:42), (News photography, 2016/12/6 6:35),
(The practice of MOOC teaching, 2016/12/6
12:19), (Literature management and infor-
mation analysis, 2017/9/8 6:05), (Chinese
culture, 2017/9/8 7:29), (Traditional Chinese
medicine health preservation, 2017/9/8 7:50)

ISβ (The practice of MOOC teaching, 2017/2/20
11:56), (Literature management and informa-
tion analysis, 2017/4/26 0:20), (History of
Chinese Architecture, 2017/9/8 5:35), (Engi-
neering geology, 2017/9/8 6:50), (Traditional
Chinese medicine health preservation,
2017/9/8 7:42)

16471

1 3

W. Song et al.

The runtime, memory consumption, and the number of
discovered SPs were compared, and the middle threshold of
each threshold group was used, that is, 0.5% for level-wise
algorithms and 0.07% for projection-based algorithms. The
comparison results are shown in Tables 6 and 7.

From Tables 6 and 7, the algorithms that only considered
the length constraint (SPM-LC-L and SPM-LC-P) performed
best, the two algorithms that only considered the discreteness
constraint (SPM-DC-L and SPM-DC-P) performed worst, and
the performance of the two proposed algorithms (SPM-FC-
L and SPM-FC-P) using three constraints was between the
performance of the three algorithms using a single constraint.
Compared with the other two constraints, the length con-
straint was the easiest to calculate. Furthermore, the value of
SLC decreased as the length of the input sequence increased.
Without considering the actual meaning of the discovered SPs,
these two features of SLC made the two length-constraint-
based algorithms perform best, on average.

6.5 � Pattern analysis

From Theorem 3, any FCSP is also an FSP. To show the
effect of the constraints, two typical FSPs that were not
FCSPs were analyzed.

When min_sup was set to 0.75%, S1 =  < Literature man-
agement and information analysis, Traditional Chinese medi-
cine health preservation > was discovered as an FSP, but not
an FCSP. To analyze the reason for this, two random input
sequences containing S1 are shown in Table 8.

For the two selected input sequences, ISα was long, and
contained two casual enrollments, whereas ISβ was a typi-
cal input sequence that satisfied all three constraints (length,
discreteness, and casual enrollments). Similarly, other input
sequences containing S1 reduced the SFC because of the
length, discreteness, and validity, hence S1 was filtered out
by the proposed algorithms.

As another example, when min_sup was set to 0.3%,
S2 =  < Ideological and moral cultivation and legal basis, Fiscal

policy and tax reform, Traditional Chinese rites > was discov-
ered as an FSP, but not an FCSP. Similarly, two input sequences
containing S2 were randomly selected, and are shown in Table 9.

From Table 9, supFC(S2) reduced because of ISγ for two
reasons. One is that ISγ was long, which led to a small con-
tribution to supFC(S2). The other is high discreteness; hence,
the contribution to supFC(S2) was small. In addition to high
discreteness, two out of the three items in S2 with respect to
ISδ were casual enrollments. Thus, the contribution of ISδ to
supFC(S2) was small.

To further analyze the interestingness of the resulting
SPs, the differences between the FCSP results and the results
discovered by only using one constraint were compared.
This was achieved by checking the results discussed in Sec-
tion 6.4. When the minimum threshold was set to 0.06%, two
interesting FCSPs that were not discovered by any single
constraint were selected. They were S3 =  < Surgical nursing,
Discipline studies in nursing, Community nursing, Geriatric
nursing > and S4 =  < Surgical nursing, Community nursing,
Gynecology nursing > . Both S3 and S4 are courses in nurs-
ing. They are certainly interesting and useful for people who
want to study nursing, medicine, or related courses.

The above pattern analysis has illustrated that the pro-
posed constraints can effectively filter patterns that are
deemed to be less interesting.

7 � Conclusions and future work

MOOCs are changing education at the present time. SPM
is an effective tool for analyzing the historical behavior of
numerous online learners. By analyzing the characteristics
of MOOC data, flexible constraints were considered from
the perspectives of the length of enrollment sequences,
span of enrollment dates, and enrollment moments. To
push these constraints deep into the mining process, the
SFC was designed step by step, and it was proved that this
new parameter also satisfies the downward closure property,
which reduced the search space greatly and effectively. Two
algorithms called SPM-FC-L and SPM-FC-P were proposed
for the breadth-first and depth-first traversal of the search
space, respectively. The experimental results demonstrated
that the proposed algorithms discovered fewer results than
FSPs. Furthermore, their efficiency and memory consump-
tion were comparable with classical SPM algorithms.

To the best of the authors’ knowledge, there has been
very little research on SPM from MOOC data, let alone
incorporating constraints. The proofs of downward closure
allow the three constraints to be used together or individu-
ally according to the real-world problem. Therefore, the two
proposed algorithms are meaningful in terms of whether
they improve the design of MOOCs or improve the learning
quality of learners.

Table 9   Two input sequences containing S2

sid Input sequence

ISγ (Ideological and moral cultivation and legal
basis, 2016/10/27 14:43), (Scenario and
policy, 2017/3/17 2:54), (Introduction to
financial engineering, 2017/10/26 10:13),
(Fiscal policy and tax reform, 2017/11/3
12:40), (Career planning, 2017/11/3 14:17),
(Traditional Chinese rites, 2017/12/8 14:57)

ISδ (Ideological and moral cultivation and legal
basis, 2016/11/2 2:42), (Scenario and
policy, 2017/5/12 7:58), (Fiscal policy and
tax reform, 2017/10/14 7:16), (Traditional
Chinese rites, 2017/12/24 13:24)

16472

1 3

Mining sequential patterns with flexible constraints from MOOC data	

Designing more efficient algorithms to discover FCSPs
by proposing novel search space traversal and pruning strate-
gies will be attempted in future work. Furthermore, FCSPs
will be used instead of FSPs to recommend more suitable
learning resources to learners. Other potential interesting
future work includes feature selection in actionable SPs [22],
visualization of FCSPs [3, 13], and mining FCSP with a
deep neural network [17, 20, 28, 44].

Funding  This work was supported by the National Natural Science
Foundation of China (61977001) and Great Wall Scholar Program
(CIT&TCD20190305).

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Baker RS (2014) Educational data mining: an advance for intel-
ligent systems in education. IEEE Intell Syst 29(3):78–82

	 2.	 Chen E, Cao H, Li Q, Qian T (2008) Efficient strategies for tough
aggregate constraint-based sequential pattern mining. Inf Sci
178(6):1498–1518

	 3.	 Chen Y, He F, Li H, Zhang D, Wu Y (2020) A full migration BBO
algorithm with enhanced population quality bounds for multi-
modal biomedical image registration. Appl. Soft Comput. 93

	 4.	 Diop L, Diop C T, Giacometti A, Li D, Soulet A (2018) Sequential
pattern sampling with norm constraints. In: Proceedings of the
2018 IEEE International Conference on Data Mining (ICDM’18),
pp 89–98

	 5.	 Dong X, Gong Y, Cao L (2020) e-RNSP: an efficient method for
mining repetition negative sequential patterns. IEEE Trans Cybern
50(5):2084–2096

	 6.	 Duong HV, Truong TC, Tran AN, Le B (2020) Fast generation of
sequential patterns with item constraints from concise representa-
tions. Knowl Inf Syst 62(6):2191–2223

	 7.	 Fan W, Hu C (2017) Big graph analyses: from queries to depend-
encies and association rules. Data Sci Eng 2(1):36–55

	 8.	 Feng W, Tang J, Liu T X (2019) Understanding dropouts in
MOOCs. In: Proceedings of the 33rd AAAI Conference on Arti-
ficial Intelligence (AAAI’19), pp 517–524

	 9.	 Fournier-Viger P, Lin J C-W, Gomariz A, Gueniche T, Soltani A,
Deng Z, Lam H T (2016) The SPMF open-source data mining
library version 2. In: Proceedings of the 19th European Confer-
ence on Machine Learning and Knowledge Discovery in Data-
bases (PKDD’16), pp 36–40

	10.	 Fournier-Viger P, Nkambou R, Mayers A (2008) Evaluating spa-
tial representations and skills in a simulator-based tutoring system.
IEEE Trans Learn Technol 1(1):63–74

	11.	 Fournier-Viger P, Wu C-W, Tseng VS, Cao L, Nkambou R (2015)
Mining partially-ordered sequential rules common to multiple
sequences. IEEE Trans Knowl Data Eng 27(8):2203–2216

	12.	 Gan W, Lin J C-W, Fournier-Viger P, Chao H-C, Yu P S (2019) A
survey of parallel sequential pattern mining. ACM Trans Knowl
Discov Data 13 (3)

	13.	 Guo Y, Guo S, Jin Z, Kaul S, Gotz D, Cao N (2021) A survey on
visual analysis of event sequence data. IEEE Trans Vis Comput
Graph

	14.	 Guyet T, Quiniou R (2020) NegPSpan: efficient extraction of
negative sequential patterns with embedding constraints. Data
Min Knowl Discov 34(2):563–609

	15.	 Huynh B, Vo B, Snásel V (2017) An efficient method for mining
frequent sequential patterns using multi-Core processors. Appl
Intell 46(3):703–716

	16.	 Jalal A, Mahmood M (2019) Students’ behavior mining in e-learn-
ing environment using cognitive processes with information tech-
nologies. Educ Inf Technol 24(5):2797–2821

	17.	 Jamshed A, Mallick B, Kumar P (2020) Deep learning-based
sequential pattern mining for progressive database. Soft Comput
24:17233–17246

	18.	 Jaysawal B P, Huang J-W (2018) PSP-AMS: progressive mining
of sequential patterns across multiple streams. ACM Trans Knowl
Discov Data 13(1)

	19.	 Kinnebrew JS, Loretz KM, Biswas G (2013) A contextualized,
differential sequence mining method to derive students’ learning
behavior patterns. J Educ Data Min 5(1):190–219

	20.	 Kumar N, Sukavanam N (2020) An improved CNN framework for
detecting and tracking human body in unconstraint environment.
Knowl Based Syst 193

	21.	 Li C, Yang Q, Wang J, Li M (2012) Efficient mining of gap-con-
strained subsequences and its various applications. ACM Trans
Knowl Discov Data 6(1)

	22.	 Li H, He F, Chen Y, Pan Y (2021) MLFS-CCDE: multi-objective
large-scale feature selection by cooperative coevolutionary dif-
ferential evolution. Memetic Comput 13(1):1–18

	23.	 Li Y, Wang G, Yuan Y, Cao X, Yuan L, Lin X (2018) PrivTS:
differentially private frequent time-constrained sequential pattern
mining. In: Proceedings of the 23rd International Conference on
Database Systems for Advanced Applications (DASFAA’18), pp
92–111

	24.	 Le H H, Yamada T, Honda Y, Kayahara M, Kushima M, Araki K,
Yokota H (2019) Analyzing sequence pattern variants in sequen-
tial pattern mining and its application to electronic medical record
systems. In: Proceedings of the 30th International Conference
on Database and Expert Systems Applications (DEXA’19), pp
393–408

	25.	 Nawaz MS, Fournier-Viger P, Shojaee A, Fujita H (2021) Using
artificial intelligence techniques for COVID-19 genome analysis.
Appl Intell 51(5):3086–3103

	26.	 Nguyen D, Luo W, Nguyen T D, Venkatesh S, Phung D Q (2018)
Sqn2Vec: learning sequence representation via sequential patterns
with a gap constraint. In: Proceedings of European Conference
on Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’18), pp 569–584

	27.	 Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q,
Dayal U, Hsu M (2004) Mining sequential patterns by pattern-
growth: the PrefixSpan approach. IEEE Trans Knowl Data Eng
16(11):1424–1440

	28.	 Quan Q, He F, Li H (2021) A multi-phase blending method with
incremental intensity for training detection networks. Vis Comput
37(2):245–259

	29.	 Ren J-M, Jang J-SR (2012) Discovering time-constrained sequen-
tial patterns for music genre classification. IEEE Trans Speech
Audio Process 20(4):1134–1144

	30.	 Seno M, Karypis G (2002) SLPMiner: an algorithm for finding
frequent sequential patterns using length-decreasing support con-
straint. In: Proceedings of the 2002 IEEE International Conference
on Data Mining (ICDM’02), pp 418–425

	31.	 Song W, Rong K (2018) Mining high utility sequential pat-
terns using maximal remaining Utility. In: Proceedings of the
Third International Conference on Data Mining and Big Data
(DMBD’18), pp 466–477

	32.	 Song W, Zhang ZH, Li JH (2016) A high utility itemset mining
algorithm based on subsume index. Knowl Inf Syst 49(1):315–340

16473

1 3

W. Song et al.

	33.	 Srikant R, Agrawal R (1996) Mining sequential patterns: gener-
alizations and performance improvements. In: Proceedings of the
5th International Conference on Extending Database Technology
(EDBT’96), pp 3–17

	34.	 Uddin I, Imran AS, Muhammad K, Fayyaz N, Sajjad M (2021)
A systematic mapping review on MOOC recommender systems.
IEEE Access 9:118379–118405

	35.	 Ventura S, Luna JM (2016) Pattern mining with evolutionary algo-
rithms. Springer, Cham, Switzerland

	36.	 Wang R, Zaïane O R (2018) Sequence-based approaches to course
recommender systems. In: Proceedings of the 29th International
Conference on Database and Expert Systems Applications
(DEXA’18), pp 35–50

	37.	 Wong J, Khalil M, Baars M, de Koning B B, Paas F (2019)
Exploring sequences of learner activities in relation to self-regu-
lated learning in a massive open online course. Comput Educ 140

	38.	 Wu R, Li Q, Chen X (2019) Mining contrast sequential pattern
based on subsequence time distribution variation with discreteness
constraints. Appl Intell 49(12):4348–4360

	39.	 Wu Y, Wang L, Ren J, Ding W, Wu X (2014) Mining sequential
patterns with periodic wildcard gaps. Appl Intell 41(1):99–116

	40.	 Yun U, Ryu KH (2010) Discovering important sequential pat-
terns with length-decreasing weighted support constraints. Int J
Inf Technol Decis Mak 9(4):575–599

	41.	 Zaki M J (2000) Sequence mining in categorical domains: incor-
porating constraints. In: Proceedings of the 2000 ACM CIKM
International Conference on Information and Knowledge Manage-
ment (CIKM’20), pp 422–429

	42.	 Zhang H, He L (2021) Data mining method of sequential patterns
for vehicle trajectory prediction in VANET. Wirel Pers Commun
117(2):417–429

	43.	 Zhang M, Zhu J, Wang Z, Chen Y (2019) Providing personal-
ized learning guidance in MOOCs by multi-source data analysis.
World Wide Web 22(3):1189–1219

	44.	 Zhang S, He F (2020) DRCDN: learning deep residual convolu-
tional dehazing networks. Vis Comput 36(9):1797–1808

Publisher's note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

16474

	Mining sequential patterns with flexible constraints from MOOC data
	Abstract
	1 Introduction
	2 Related work
	2.1 Data mining from MOOC data
	2.2 Constraint-based SPM

	3 Preliminaries
	4 Flexible constraints
	4.1 Length constraint
	4.2 Discreteness constraint
	4.3 Validity constraint
	4.4 Constraint integration

	5 Algorithm description
	5.1 SPM-FC-L algorithm
	5.2 SPM-FC-P algorithm
	5.3 Summary of the proposed algorithms

	6 Experimental results
	6.1 Runtime
	6.2 Memory consumption
	6.3 Number of discovered patterns
	6.4 Impact of a single constraint
	6.5 Pattern analysis

	7 Conclusions and future work
	References

