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Abstract 
Online learning is playing an increasingly important role in education. Massive open online course (MOOC) platforms are 
among the most important tools in online learning, and record historical learning data from an extremely large number of 
learners. To enhance the learning experience, a promising approach is to apply sequential pattern mining (SPM) to discover 
useful knowledge in these data. In this paper, mining sequential patterns (SPs) with flexible constraints in MOOC enrollment 
data is proposed, which follows that research approach. Three constraints are proposed: the length constraint, discreteness 
constraint, and validity constraint. They are used to describe the effect of the length of enrollment sequences, variance of 
enrollment dates, and enrollment moments, respectively. To improve the mining efficiency, the three constraints are pushed 
into the support, which is the most typical parameter in SPM, to form a new parameter called support with flexible con-
straints (SFC). SFC is proved to satisfy the downward closure property, and two algorithms are proposed to discover SPs 
with flexible constraints. They traverse the search space in a breadth-first and depth-first manner. The experimental results 
demonstrate that the proposed algorithms effectively reduce the number of patterns, with comparable performance to clas-
sical SPM algorithms.
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1  Introduction

Online education is popular at present because of school 
closures caused by the breakout of COVID-19 [25]. Since 
the beginning of 2020, almost all students around the world 
have experienced online study. Massive open online courses 
(MOOCs) have become the main online learning method. 
The main MOOC platforms, for example, EdX and Cour-
sera, are collecting historical learning data from an increas-
ing number of students. Thus, discovering knowledge from 
MOOC data is a promising approach to improve online 
learning quality.

Data mining is the non-trivial process of identifying 
valid, novel, potentially useful, and ultimately, understand-
able patterns from an extremely large volume of data. As 
one of the main data mining tasks, pattern mining [35] 

discovers various interesting, useful, and unexpected pat-
terns efficiently and effectively. Itemsets [32], sequential 
patterns (SPs) [12], and sub-graphs [7] are typical patterns 
discovered in pattern mining.

In this paper, data mining is used, or specifically, pat-
tern mining techniques, to discover knowledge hidden in 
MOOC data. Online learning activities involve temporal fac-
tors; hence, SPs play an important role. Thus, mining SPs in 
learners’ historical data is a promising approach to improve 
online learning quality.

Given a sequence database, the problem of SP mining 
(SPM) is to discover subsequences whose supports are no 
lower than a user-specified minimum support [12]. Many 
algorithms have been proposed, most of which focus on 
developing efficient strategies for identifying all SPs, which 
can be categorized into three broad classes: Apriori-based 
[33], vertical database format [41], and projection-based 
pattern growth algorithms [27]. Generally, numerous SPs 
are discovered by typical SPM algorithms, which makes it 
difficult for people to identify meaningful results. To address 
this limitation, various constraints, such as gap [26] and dis-
creteness constraints [38], are used to discover effective and 
actionable SPs.
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Recently, SPM has been successfully applied in fields 
such as vehicle trajectory prediction [42] and electronic 
medicine [24]. Among these application fields, online 
education is the most promising application domain at 
present because of school closures caused by the breakout 
of COVID-19. Considering the characteristics of MOOC 
data, flexible constraints are incorporated into typical SPM 
algorithms to discover meaningful SPs to improve learning 
quality.

The “Course Recommendation” dataset1 provided by 
the MoocData platform is used throughout this paper. The 
dataset was collected from XuetangX,2 one of the largest 
MOOC platforms in China. Originally used for course rec-
ommendation, the dataset contains the records of 82,535 
course enrollment sequences from XuetangX from October 
1, 2016 to March 31, 2018. The characteristics of this dataset 
are shown in Table 1.

Considering the dataset shown in Table 1, the major parts 
of this study are as follows:

First, the importance of SPs is evaluated from three 
aspects: the lengths of enrollment sequences containing 
them, the variance of days within them, and the moments of 
enrollments in them. These three aspects are modeled using 
three constraints.

Second, to make the mining process with three con-
straints efficient, they are integrated into the support, which 
is the most general parameter for evaluating SPs, to develop 
a new parameter called support with flexible constraints 
(SFC). It is proved that SFC also satisfies the downward 
closure property.

Third, using breadth-first traversal and depth-first tra-
versal, two algorithms for mining SPs with flexible con-
straints are proposed and explained. In these two algorithms, 
SFC is used to replace the support directly.

Finally, extensive experiments were conducted on MOOC 
data. The results demonstrated that the proposed algorithms 
effectively reduced the number of discovered results with 
acceptable efficiency and memory consumption.

The remainder of this paper is organized as follows: 
Related work is described in Section 2, and the SPM 
problem is defined in Section 3. In Section 4, the three 
constraints, in addition to their rationality, are discussed. 
The mining algorithms are described in detail in Sec-
tion 5. The experimental results are presented and ana-
lyzed in Section  6. Finally, conclusions are drawn in 
Section 7.

2 � Related work

In this section, first, applications of data mining for MOOC 
data are reviewed. Then, studies on constraint-based SPM 
are discussed.

2.1 � Data mining from MOOC data

Mining knowledge from MOOC data not only helps instruc-
tors to improve their teaching materials and methods but 
also helps learners to access more appropriate courses or 
learning paths [1]. Data mining from MOOC data is receiv-
ing increasing attention, particularly with the rise of online 
learning during the COVID-19 pandemic. Learning behavior 
understanding [16], dropout prediction [8], and personalized 
learning [43] are typical data mining tasks that use MOOC 
data.

SPM has become an effective tool for analyzing students’ 
online learning behaviors. Fournier-Viger et al. [10] used 
SPM techniques to mine frequent action sequences and asso-
ciations between these sequences in a set of recorded usage 
of the RomanTutor by novices, intermediates, and experts. 
Using the discovered SPs, learners’ actions were tracked, 
and suggestions were provided to improve the learners’ 
experience. Kinnebrew et al. used SPM and action abstrac-
tion to identify important learning behaviors of students in 
different groups [19]. In their method, both sequence support 
and instance support were used to evaluate the resulting SPs.

Using SPs to recommend MOOC teaching materials is 
a promising approach [34]. Taking a student's sequence of 
past courses, Wang and Zaïane [36] implemented a course 
recommender system based on three sequence-related 
approaches, including SPM. Wong et al. used SPM to verify 
the effect of self-regulated learning (SRL) [37]. Specifically, 
SPM was used to explore whether differences exist between 
learners who viewed the SRL-prompt videos and those who 
did not. The results demonstrated that the SRL-prompt view-
ers tended to follow the sequential structure of the course 
provided by the instructor, whereas this was less likely in 
the group of SRL-prompt non-viewers.

Table 1   Characteristics of the Course Recommendation dataset

Feature Number

Time span 547 days
Number of courses 1,302
Number of sequences 82,535
Length of the longest sequence 398
Length of the shortest sequence 3
Average sequence length 5.19

1  http://​moocd​ata.​cn/​data/​course-​recom​menda​tion
2  https://​next.​xueta​ngx.​com/
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Different from the above-mentioned SPM-based methods, 
the object of analysis in the present paper is course enroll-
ment MOOC data rather than device usage data, learning 
behavior data, and video-viewing data.

2.2 � Constraint‑based SPM

Many SPM algorithms have been proposed to discover fre-
quent SPs (FSPs) [15], high utility SPs [31], negative SPs 
[5], and SPs from data streams [18].

In many application domains (e.g., music genre classifica-
tion) [29], SPs confined by predefined constraints are more 
meaningful than general SPs. A constraint is an additional 
set of criteria that the user provides to indicate more pre-
cisely the types of patterns to be found. This idea has been 
used from the beginning of the topic of SPM in the GSP 
algorithm [33]. For constraint-based SPM, the approach 
used to push the constraints deep into the mining process 
is important [23].

Time constraints, generally including gap and duration, 
are the most widely used constraints in SPM. The gap con-
straint refers to the minimum and maximum amount of time 
between two consecutive itemsets within an SP, whereas the 
duration constraint is the maximum time difference for each 
SP. Li et al. proposed two gap-constrained algorithms [21]: 
Gap-BIDE and Gap-Connect. The former mines closed gap-
constrained subsequences from a set of input sequences and 
the latter discovers repetitive gap-constrained subsequences 
from a single input sequence. Wu et al. solved the problem 
of SPM with periodic wildcard gaps using the data structure 
of Nettree [39]. Sqn2Vec [26] and NegPSpan [14] are SPM 
algorithms that use time constraints, and TRuleGrowth [11] 
is an algorithm for mining sequential rules with a sliding-
window constraint.

Length constraints that restrict the minimum/maximum 
number of items per SP are also commonly used in SPM. 
cSpade [41] incorporates max-gap, max-span, and length 
constraints. The length-decreasing support constraint was 
proposed by Seno and Karypis [30]. Their algorithm SLP-
Miner finds all the FSPs whose support decreases as a func-
tion of their length. Thus, long SPs that usually have lower 
supports can also be discovered. WSLPMiner is also an 
SPM algorithm with a length-decreasing support constraint 
[40].

Aggregate constraints are imposed on an aggregate of 
items in an SP, where aggregate functions can be those 
involving the average, general sum, or minimum/maxi-
mum number. Chen et al. proposed the PTAC algorithm 
to discover SPs with tough aggregate constraints [2]. In 
their algorithm, two strategies that avoid an unneces-
sary item check and unnecessary projected database gen-
eration are used to improve the efficiency and memory 
consumption.

Other typical constraints used for SPM also exist, such 
as the item constraint [6], discreteness constraint [38], and 
norm constraint [4].

3 � Preliminaries

Let Σ be a set of courses. An item is represented as a pair 
(c, t), where c ∈ Σ is a course and t is the enrollment time of 
c. A sequence S =  < (c1, t1), (c2, t2), …, (cn, tn) > is a list of 
time-ordered items, where for any 1 ≤ i < j ≤ n, ti < tj holds. 
The length of sequence S, denoted by |S|, is the total number 
of items in S. S[i] (1 ≤ i ≤ n) denotes the ith item in S, and 
S[i].c and S[i].t are the course and enrollment time of S[i], 
respectively. It should be noted that, at each time, only a 
single item rather than an itemset is used in this paper. This 
is because students can only enroll on one course at one time 
in the MOOC data used in this study.

A sequence S =  < (c1, t1), (c2, t2), …, (cn, tn) > is called 
a subsequence of another sequence S' =  < (c'1, t'1), (c'2, t'2), 
…, (c'm, t'm) > (n ≤ m), and S' a super-sequence of S, denoted 
by S ⊑ S', if there exist integers 1 ≤ i1 < … < in ≤ m such that 
S[1].c = S'[i1].c, S[2].c = S'[i2].c, …, S[n].c = S'[in].c. The 
ordered list of pairs < S'[i1], S'[i2], …, S'[in] > is called an 
occurrence of S in S', denoted by Occ(S, S'). If there exists 
at least one item (cj, tj) ∈ S', and (cj, tj) ∉ S, S is called a 
proper subsequence of S', or S' a proper super-sequence of 
S, denoted by S ⊏ S'.

A sequence database SDB is a set of 2-tuples (sid, IS), 
where sid is called a sequence-id and IS an input sequence. 
A tuple (sid, IS) in a sequence database SDB is said to con-
tain a sequence S if S is a subsequence of IS. For the MOOC 
data used in this paper, each sequence S has at most only one 
occurrence in one input sequence IS.

The number of tuples in a sequence database SDB con-
taining sequence S is called the support of S, denoted by 
sup(S). The set of input sequences in tuples of SDB con-
taining sequence S is called the support set of S, denoted 
by sup_set(S).

Consider two input sequences ISX and ISY containing S. 
It is easy to understand that the enrollment times in Occ(S, 
ISX) are not equal to the enrollment times in Occ(S, ISY). 
Thus, the enrollment times are omitted in the mining results 
in this paper. Formally, S =  < c1, c2, …, cn > is called an SP, 
where c1, c2, …, cn are time-ordered courses without specific 
enrollment times. S.ci(1 ≤ i ≤ n) denotes the ith course of S.

Let min_sup be the user-specified minimum support 
threshold. An SP S is an FSP in the sequence database SDB 
if sup(S)≥ min_sup. The frequent SPM problem is to find 
the complete set of FSPs in SDB with respect to min_sup.

Consider the example sequence database in Table  2. 
To make the explanation simple and clear, the enrollment 
time of each item in all the input sequences is omitted. IS1, 
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IS2, and IS4 contain the SP S =  < Data structure, Operat-
ing system > , and input sequences of these three tuples 
comprise sup_set(S). Thus, if the support threshold min_
sup = 2, < Data structure, Operating system > is an FSP.

Different from traditional classroom teaching, learners 
on the same MOOC course may be significantly different 
in age, prerequisite knowledge, and learning objectives. For 
example, IS3 is different from the other four input sequences 
in the example sequence database because IS3 includes a 
non-computing course, whereas the other four sequences 
are all composed of computing courses. Furthermore, some 
learners may also enroll on many courses without a clear 
relationship. Thus, mining SPs directly in MOOC data may 
lead to an extremely large number of uninteresting patterns 
using substantial computational time and space.

Constraint-based mining may overcome the above-men-
tioned difficulties because constraints usually confine the 
patterns to be found to a particular subset that satisfies some 
strong conditions. Moreover, fewer resulting SPs also reduce 
the search space, thereby leading to an efficient mining pro-
cess with small memory consumption. The challenge is how 
to push the constraints deep into the mining process rather 
than using constraints to filter the results after all SPs are 
discovered.

4 � Flexible constraints

To determine the interestingness of SPs, three flexible con-
straints are considered from the perspective of the number 
of course enrollments within the input sequences, span of 
enrollment days, and specific enrollment time within a day. 
To improve efficiency, we push these constraints into the 
mining process by proving the downward closure property.

4.1 � Length constraint

First, the lengths of the enrollment sequences were consid-
ered and their distribution seemed to be long tailed. Figure 1 
shows the distribution of sequence lengths in the Course 
Recommendation dataset.

Figure 1 shows that most sequence lengths are short. Spe-
cifically, 37.76% of the sequences have lengths equal to 3, 
18.91% of the sequences have lengths equal to 4, 13.81% 
of the sequences have lengths equal to 5, and only five 
sequences are longer than 200. This phenomenon illustrates 
that school education is still the most important channel for 
people to acquire knowledge, although MOOCs are play-
ing an increasingly important role in learning. Thus, most 
learners resort to MOOCs as an auxiliary learning method 
when they encounter problems that they need to solve using 
knowledge covered by online courses. Learners who have 
enrolled on multiple courses, or even hundreds of courses, 
may be platform testers or staff of relevant management 
departments.

This indicates that enrolling on a few courses is feasible 
for MOOC learners, whereas enrolling on a large number of 
courses occurs infrequently. Thus, the argument in this study 
is that the supports contributed by short sequences and long 
sequences are not the same, and the support contributed by 
long sequences is not as important as that contributed by 
short sequences. To model this fact, the length constraint 
is defined.

Definition 1 (Length constraint)  Let SDB be the sequence 
database and S be an SP. The length constraint of S with 
respect to IS ∈ sup_set(S) is defined as

where max_L is the maximum length of all input sequences 
in SDB.

In this study, the length of the input sequence is divided 
by the maximum length of all input sequences to ensure that 

(1)LC(S, IS) = exp (−|IS|∕max_L),

Table 2   Example sequence database

sid Input sequence

IS1 Data structure, Introduction to logic, Operating system, Linear 
algebra, Introduction to big data

IS2 Linear algebra, Data structure, Operating system, Data mining
IS3 Database, Principles of economics, Data mining
IS4 Database, Data structure, Operating system
IS5 Introduction to big data, Database, Data mining

0 50 100 150 200 250 300 350 400
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srenraelforeb
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Fig. 1   Distribution of sequence lengths in the Course Recommenda-
tion dataset
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the value of |IS| / max_L is in the range (0, 1] , which prevents 
the decay of the constraint from being too large. To push the 
length constraint into the mining process, it is incorporated 
into the support.

Definition 2 (Support with length constraint)  The support 
with length constraint (SLC) of an SP S is defined as

The SLC in Definition 1 reflects that the support contri-
bution decays as the length increases, and it is lower than 
the general support of the sequence stated in Section 3. The 
rationality is verified in Lemma 1.

Lemma 1  Let SDB be the sequence database and S be an 
SP. Then, supL(S)  ≤ sup(S).

Proof. Suppose that m input sequences in SDB con-
tain S; that is, there are m input sequences in sup_set(S), 
and sup(S) = m. For any IS ∈ sup_set(S), |IS|≤ max_L. Thus, 
0 < (|IS| / max_L)  ≤ 1. Hence, 0 < exp(-|IS| / max_L)  ≤ 1; that is, 
0 < LC(S, IS)  ≤ 1. Because there are m input sequences in sup_
set(S), 

∑
IS∈sup_set(S)LC(S, IS) ≤ m ; that is, supL(S) ≤ sup(S).□

The next lemma shows that the support with length con-
straint satisfies the downward closure property, which is an 

(2)
supL(S) =

∑
IS∈sup_set(S)

LC(S, IS) =
∑

IS∈sup_set(S)
exp(−|IS|∕max_L)

effective tool for reducing the search space, and is widely 
used in SPM.

Lemma 2  For any two SPs SX and SY, if SX ⊑ SY, supL(SY)  
≤ supL(SX).

Proof. For SX ⊑ SY, sup_set(SY) ⊆ sup_set(SX). There are 
two cases:

(1) If sup_set(SY) = sup_set(SX), supL(SY) = supL(SX).
(2) If sup_set(SY) ⊂ sup_set(SX), input sequences are con-
tained in sup_set(SX) but not contained in sup_set(SY). 
Thus,

supL
�
SY
�
=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
LC

�
SY , IS

�

=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
LC

�
SX , IS

�

<

�
IS∈sup_set(SY)∧IS∈sup_set(SX)

LC
�
SX , IS

�
+
�

IS�∉sup_set(SY)∧IS�∈sup_set(SX)
LC

�
SX , IS

�
�

= supL
�
SX

�

Table 3   Two sequences with enrollment dates

sid Input sequence

IS3 (Database, 2017/2/24), 
(Principles of Economics, 
2017/2/25), (Data mining, 
2017/5/9)

IS5 (Introduction to big data, 
2017/2/14), (Database, 
2017/2/18), (Data mining, 
2017/2/26)

According to the above discussion, supL(SY)  ≤ supL(SX).□
Lemma 2 shows that the length constraint can be pushed 

into the mining process to speed up the discovery of SPs.

4.2 � Discreteness constraint

The discreteness constraint is also proposed, which describes 
how each enrollment time varies from the mean time in a 
sequence.

Consider an SP S =  < Database, Data mining > in the 
example sequence database shown in Table 2. Both IS3 
and IS5 contain S. To explain the discreteness constraint, 
the specific enrollment date of each course of IS3 and IS5 
is provided. Examples with enrollment dates are shown in 
Table 3.

To engage learners in the MOOC platform, small dis-
creteness among enrollment dates is preferred. From this 
point of view, for the same SP S, IS5 contributes more to 

sup(S) than IS3. For IS5, the mean date of two enrollment 
dates of S is 2017/2/22, and the distance between both 
enrollment dates and the mean date is 4 days. For IS3, the 
mean date of the two enrollment dates of S is 2017/4/2, and 
the distance between both enrollment dates and the mean 
date is 37 days. To model this assumption, the discreteness 
constraint is defined.

Definition 3 (Discreteness constraint)  Let S =  < c1, c2, …, 
cn > be an SP. IS ∈ sup_set(S) is an input sequence, and there 
exist integers 1 ≤ i1 < i2 < … < in ≤ m such that S.c1 = IS[i1].c, 
S.c2 = IS[i2].c, …, S.cn = IS[in].c. The discreteness constraint 
of S with respect to IS is defined as

where

(3)DC(S, IS) = exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
,
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From Definition 3, the discreteness constraint indicates how 
widely enrollment times in a sequence’s occurrence vary. If enroll-
ment times vary greatly from the mean time of a sequence’s occur-
rence, the constraint is small. To simplify the calculation, only 
the enrollment dates are considered and the specific enrollment 
moments are omitted when computing the discreteness constraints.

To push the discreteness constraint into the mining pro-
cess, it is incorporated into the support.

Definition 4 (Support with discreteness constraint)  Let 
S =  < c1, c2, …, cn > be an SP. The support with discrete-
ness constraint (SDC) of S is defined as

The function exp(-x) is monotone decreasing. To avoid 
supD(S) becoming too small, min–max normalization is used to 
rescale the enrollment time into the range [0, 1] before the dis-
creteness constraint and SDC are calculated. It can also be proved 
that the SDC is lower than the general support stated in Section 3.

Lemma 3  Let SDB be the sequence database and S be an 
SP. Then, supD(S)  ≤ sup(S).

(4)IS
�
in
�
.t =

1

n

∑n

j=1
IS
�
ij
�
.t.

(5)
supD(S) =

∑
IS∈sup_set(S) DC(S, IS)

=
∑

IS∈sup_set(S) exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
.

Proof. Suppose that m input sequences in SDB contain S; 
that is, there are m input sequences in sup_set(S) and 
sup(S) = m. For any IS ∈ sup_set(S), ∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2 ≥ 0. 

Thus, 0 < exp
�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
  ≤  1; that is, 0 < DC(S, 

IS)  ≤ 1. Because there are m input sequences in sup_set(S), ∑
IS∈sup_set(S)DC(S, IS) ≤ m ; that is, supD(S)  ≤ sup(S). □
The SDC also satisfies the downward closure property, 

which is proved in Lemma 4.

Lemma 4  For any two SPs, SX and SY, if SX ⊑ SY, supD(SY)  
≤ supD(SX).

Proof. For SX ⊑ SY, there are two cases.

(1)	 If SX = SY, supD(SY) = supD(SX).
(2)	 If SX ⊏ SY, first consider the case in which |SY| =|SX|+ 1. 

Let SX =  < c1, c2, …, cn > and SY =  < c1, c2, …, cn, 
cn+1 > . For an input sequence IS containing both SX and 
SY, there exist integers i1 < … < in < in+1 such that 
IS[i1].c = c1, …, IS[in].c = cn, IS[in+1].c = cn+1. Then 

DC
�
SY , IS

�
= exp

�
−
∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�2

�
 

and DC
�
SX , IS

�
= exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
 . 

According to Eq. (4),

(6)

IS
�
in+1

�
.t =

1

n+1

�∑n

j=1
IS
�
ij
�
.t + IS

�
in+1

�
.t
�
=

n

n+1

1

n

∑n

j=1
IS
�
ij
�
.t +

1

n+1
IS
�
in+1

�
.t

=
n

n+1
IS
�
in
�
.t +

1

n+1
IS
�
in+1

�
.t =

n+1−1

n+1
IS
�
in
�
.t +

1

n+1
IS
�
in+1

�
.t

= IS
�
in
�
.t +

1

n+1

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�
.

By substitution with Eq. (6),

(7)

n+1∑

j=1

(IS[ij].t − IS[in+1].t)
2 =

n+1∑

j=1

(IS[ij].t − IS[in].t −
1

n + 1
(IS[in+1].t − IS[in].t))

2

=

n+1∑

j=1

((IS[ij].t − IS[in].t)
2 −

2(IS[ij].t − IS[in].t)(IS[in+1].t − IS[in].t)

n + 1
+

(IS[in+1].t − IS[in].t)
2

(n + 1)2
)

=

n+1∑

j=1

(IS[ij].t − IS[in].t)
2 −

2(IS[in+1].t − IS[in].t)

n + 1

n+1∑

j=1

(IS[ij].t − IS[in].t) +
(IS[in+1].t − IS[in].t)

2

n + 1
.
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For the first term on the right-hand side of the last expres-
sion in Eq. (7),

For the second term on the right-hand side of the last 
expression in Eq. (7),

(8)∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2

=
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2

+
�
IS
�
in+1

�
.t − IS

�
in
�
.t
�
2

Because ∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
=
∑n

j=1
IS
�
ij
�
.t − n × IS

�
in
�
.t = 0,

Substituting Eqs. (8) and (10) into Eq. (7) yields

Hence, ∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�
2

≥
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
2 . Thus, 

exp

�
−
∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�2

�
≤ exp

�
−
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

�
 ; that 

is, DC(SY, IS)  ≤ DC(SX, IS). Thus,

(9)
−

2

�
IS[in+1].t−IS[in].t

�

n+1

∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�

= −
2(IS[in+1].t−IS[in].t)

n+1

�∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
+
�
IS
�
in+1

�
.t − IS

�
in
�
.t
��

(10)
−
2

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�

n + 1

∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�
= −

2

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�
2

n + 1

(11)

∑n+1

j=1

�
IS
�
ij
�
.t − IS

�
in+1

�
.t
�2

=
∑n

j=1

�
IS
�
ij
�
.t − IS

�
in
�
.t
�2

+
n

n+1

�
IS
�
in+1

�
.t − IS

�
in
�
.t
�2

.

(12)
�

IS∈sup_set(SY )
⋀

IS∈sup_set(SX )
DC

�
SY , IS

�
≤

�
IS∈sup_set(SY )

⋀
IS∈sup_set(SX )

DC
�
SX , IS

�

Table 4   Two input sequences with specific enrollment times

sid Input sequence

IS3 (Database, 2017/2/24 9:52:00), (Prin-
ciples of Economics, 2017/2/25 
10:19:00), (Data mining, 2017/5/9 
8:22:00)

IS5 (Introduction to big data, 2017/2/14 
8:21:00), (Database, 2017/2/18 
3:46:00), (Data mining, 2017/2/26 
0:54:00)

Because SX⊏ SY, sup_set(SY) ⊆ sup_set(SX) holds. If 
sup_set(SY) = sup_set(SX), Eq. (12) implies that supD(SY)  
≤ supD(SX). If sup_set(SY) ⊂ sup_set(SX), input sequences are 

contained in sup_set(SX) and not contained in sup_set(SY). 
Thus,

supD
�
SY
�
=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
DC

�
SY , IS

�

≤

�
IS∈sup_set(SY)∧IS∈sup_set(SX)

DC
�
SX , IS

�

<

�
IS∈sup_set(SY)∧IS∈sup_set(SX)

DC
�
SX , IS

�
+
�

IS�∉sup_set(SY)∧IS�∈sup_set(SX)
DC

�
SX , IS

�
�

= supD
�
SX

�

According to the above discussion, supD(SY)  ≤ supD(SX) 
when |SY| =|SX|+ 1.

When |SY| =|SX|+ m (m > 1), (m − 1) SPs S1, S2,…, Sm−1 
can be identified such that SX ءغ ⊏ S1 ⊏ S2 ⊏…⊏ Sm−2 ⊏ Sm−1 
⊏SY and |SY| =|Sm−1|+ 1 =|Sm−2|+ 2 = … =|S1|+ m − 1 =|SX
|+ m. Similar to the case in which |SY| =|SX|+ 1, supD(SY)  
≤ supD(Sm−1)  ≤ supD(Sm−2)  ≤ … ≤ supD(S1)  ≤ supD(SX).

According to the above discussion, supD(SY)  ≤ supD(SX) 
when SX ⊑ SY.□

Lemma 4 shows that the discreteness constraint can also 
be pushed into the mining process to speed up the discovery 
of SPs.

4.3 � Validity constraint

The validity constraint is also proposed, which distinguishes 
serious learning from casual learning enrollments. The 

object of this constraint is still the enrollment time, that is, 
the specific moment within a day.

Consider IS3 and IS5 in the example sequence database 
in Table 2. The specific enrollment moment is shown in 
Table 4. It should be noted that the format of Table 4 is the 
same as the original format of the Course Recommendation 
dataset. To simplify the explanation, some information was 
omitted in the previous examples.

The motivation for defining the validity constraint is 
that enrollments during normal working hours are often 
generated by learners who have a strong desire to learn, 
whereas enrollments during non-working hours are often 
generated by learners who simply want to gain some basic 
knowledge. For IS3 and IS5 in Table 4, although both con-
tain the SP S =  < Database, Data mining > , the enrollment 
moments for IS3 are during working hours, whereas the 
enrollment moments for IS5 are during non-working hours 
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(early morning and midnight). It is assumed that IS3 con-
tributes more to sup(S) than IS5. To model this assumption, 
the validity constraint is defined. In this paper, enrollment 
during normal working hours is called valid enrollment 
and enrollment during non-working hours is called casual 
enrollment. For example, if normal working hours are set to 
the period 8:00–22:59 and non-working hours to the period 
23:00–7:59, S has two valid enrollments in IS3 and two cas-
ual enrollments in IS5.

Definition 5 (Validity constraint)  Let S =  < c1, c2, …, cn > be 
an SP. Suppose that IS ∈ sup_set(S) is an input sequence. The 
validity constraint of S with respect to IS is defined as

where num_l is the number of casual enrollments of S in IS 
and max_L is the maximum length of all input sequences 
in SDB.

From Definition 5, the validity constraint distinguishes 
between standard learning behavior and casual learn-
ing behavior. For S =  < Database, Data mining > , VC(S, 
IS3) = 1, which indicates that sup(S) does not decay in IS3 
with respect to enrollment moments because both enroll-
ments are valid enrollments.

To push the validity constraint into the mining process, it 
is incorporated into the support.

Definition 6 (Support with validity constraint)  Let S be 
an SP. The support with validity constraint (SVC) of S is 
defined as

It can also be proved that the SVC is lower than the gen-
eral support stated in Section 3.

(13)VC(S, IS) = exp (−num_l∕max_L),

(14)supV (S) =
∑

IS∈sup_set(S)
VC(S, IS) =

∑
IS∈sup_set(S)

exp (−num_l∕max_L).

Lemma 5  Let SDB be the sequence database and S be an 
SP. Then, supV(S)  ≤ sup(S).

Proof. Suppose that m input sequences in SDB con-
tain S; that is, there are m input sequences in sup_set(S) 
and sup(S) = m. For any IS ∈ sup_set(S), num_l(S, IS) / 
max_L ≥ 0. Thus, 0 < exp(-num_l(S, IS) / max_L)  ≤ 1; that 
is, 0 < VC(S, IS)  ≤ 1. Because there are m input sequences 
in sup_set(S), 

∑
IS∈sup_set(S)VC(S, IS) ≤ m ; that is, supV(S)  

≤ sup(S). □
The SVC also satisfies the downward closure property, 

which is proved in Lemma 6.

Lemma 6  For any two SPs SX and SY, if SX ⊑ SY, supV(SY)  
≤ supV(SX).

Proof. For SX ⊑ SY, there are two cases.

(1) If SX = SY, supV(SY) = supV(SX).
(2) If SX ⊏ SY, for an input sequence IS containing both 
SX and SY, num_l(SX, IS)/max_L ≤ num_l(SY, IS)/max_L. 
Thus, exp(-num_l(SX, IS)/max_L)  ≥ exp(-num_l(SY, 
IS)/max_L); that is,

Because SX⊏ SY, sup_set(SY) ⊆ sup_set(SX) holds. If 
sup_set(SY) = sup_set(SX),

If sup_set(SY) ⊂ sup_set(SX), input sequences are con-
tained in sup_set(SX) and not contained in sup_set(SY). Thus,

(15)VC
(
SX , IS

)
≥ VC

(
SY , IS

)
.

supV
�
SY
�
=
∑

IS∈sup_set(SY)
VC

�
SY , IS

�
=
∑

IS∈sup_set(SX)
VC

�
SY , IS

�

≤
∑

IS∈sup_set(SX)
VC

�
SX , IS

�

= supV
�
SX

�
.

supV
�
SY
�
=
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
VC

�
SY , IS

�

≤
∑

IS∈sup_set(SY)∧IS∈sup_set(SX)
VC

�
SX , IS

�

<

∑
IS∈sup_set(SY)∧IS∈sup_set(SX)

VC
�
SX , IS

�
+
∑

IS�∉sup_set(SY)∧IS�∈sup_set(SX)
VC

�
SX , IS

�
�

= supV
�
SX

�

According to the above discussion, supV(SY)  ≤  supV(SX) 
when SX ⊑ SY.□

Lemma 6 shows that the validity constraint can be pushed 
into the mining process to speed up the discovery of SPs.

4.4 � Constraint integration

To speed up the SPM process, the length constraint, discrete-
ness constraint, and validity constraint are integrated flexibly 
into one constraint, and the general support is replaced.
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Definition 7 (SFC)  Let S be an SP. The SFC of S is defined as

where α (0 ≤ α ≤ 1) is the length factor, β (0 ≤ β ≤ 1) is the 
discreteness factor, and γ (0 ≤ γ  ≤ 1) is the validity factor 
such that

For an SP S, supFC(S) reflects the decay of sup(S) affected by 
the input sequences in sup_set(S), including the lengths of these 
input sequences, variances of the enrollment dates in these input 
sequences, and enrollment moments within a day in these input 
sequences. If the lengths of input sequences in sup_set(S) are 
short, the variances of the enrollment dates are small, and there 
are few casual enrollments, then there will be more opportuni-
ties to discover S when using the proposed algorithms.

It also can be proved that the SFC is lower than the gen-
eral support.

Theorem 1  Let SDB be the sequence database and S =  < c1, 
c2, …, cn > be an SP. Then, supFC(S)  ≤ sup(S).

Proof. Let IS be an input sequence and IS ∈ sup_set(S). 
There exist integers 1 ≤ i1 < … < in such that S.c1 = IS[i1].c, 
S.c2 = IS[i2].c, …, S.cn = IS[in].c. According to Lemma 1,

Similarly, according to Lemmas 3 and 5,

Assume LC(S, IS)  ≥ DC(S, IS) and LC(S, IS)  ≥ VC(S, 
IS). Then,

According to Eq. (17),

For the other two cases, (1) DC(S, IS)  ≥ LC(S, IS) and 
DC(S, IS)  ≥ VC(S, IS) and (2) VC(S, IS)  ≥ LC(S, IS) and 
VC(S, IS)  ≥ DC(S, IS), it can be concluded that Eq. (21) 
holds similarly.

Suppose that m input sequences in SDB contain S; that is, 
there are m input sequences in sup_set(S), and sup(S) = m. 
According to Eq. (21),

(16)supFC(S) = α × supL(S) + β × supD(S) + γ × supV (S)

(17)α + β + γ = 1

(18)0 < LC(S, IS) = exp (−|IS|∕max_L) ≤ 1.

(19)

0 < DC(S, IS) = exp

(
−

n∑

j=1

(
IS
[
ij
]
.t − IS

[
in
]
.t
)2

)
≤ 1,

(20)0 < VC(S, IS) = exp (−num_l(S, IS)∕max_L) ≤ 1.

� × LC(S, IS) + � × DC(S, IS) + � × VC(S, IS)

≤ � × LC(S, IS) + � × LC(S, IS) + � × LC(S, IS)

= (� + � + �) × LC(S, IS).

(21)� × LC(S, IS) + � × DC(S, IS) + � × VC(S, IS) ≤ 1.

According to the above discussion, supFC(S)  ≤ sup(S). □
Using SFC to replace the support can guarantee mining 

efficiency because it also satisfies the downward closure 
property.

Theorem 2  For any two SPs SX and SY, if SX ⊑ SY, supFC(SY)  
≤ supFC(SX).

Proof. According to Lemma 2, supL(SY)  ≤ supL(SX). 
Because 0 ≤ α ≤ 1,

Similarly, according to Lemmas 4 and 6,

Summing Eqs. (22), (23), and (24) yields

According to the above discussion, supFC(SY)  ≤ supFC(SX) 
if SX ⊑ SY.□ 

Using Theorem 2, when an SP’s SFC is found to be 
lower than the minimum support threshold, all its super 
patterns can be safely pruned when using the proposed 
algorithms.

Given the above discussion, the problem to be solved 
is redefined as follows: Given a positive integer min_sup 
as the minimum support threshold, an SP S is a flexible-
constraint-based SP (FCSP) in the sequence database SDB 
if supFC(S)  ≥ min_sup. An FCSP with length l is called 
an l-FCSP. The flexible-constraint-based SPM (FCSPM) 
problem is to find the complete set of FCSPs with respect 
to SDB and min_sup.

Theorem 3  Let S_FCSP and S_FSP be the sets of FCSPs 
and FSPs with respect to the same min_sup, respectively. 
Then, S_FCSP ⊆ S_FSP.

Proof. For ∀ S ∈ S_FCSP, supFC(S)  ≥ min_sup. Accord-
ing to Theorem 1, supFC(S)  ≤ sup(S). Hence, sup(S)  ≥ min_
sup, and S ∈ S_FSP. Thus, S_FCSP ⊆ S_FSP.□

From Theorem 3, the set of FCSPs is a subset of the set 
of FSPs when the same threshold is set.

supFC(S) = � × supL(S) + � × supD(S) + � × supV (S)

=
∑

IS∈sup_set(S) (� × LC(S, IS) + � × DC(S, IS) + � × VC(S, IS))

≤ m = ���(S).

(22)� × supL
(
SY
)
≤ � × supL

(
SX

)

(23)� × supD
(
SY
)
≤ � × supD

(
SX

)
,

(24)� × supV
(
SY
)
≤ � × supV

(
SX

)
.

supFC
(
SY
)
= � × supL

(
SY
)
+ � × supD

(
SY
)
+ � × supV

(
SY
)

≤ � × supL
(
SX

)
+ � × supD

(
SX

)
+ � × supV

(
SX

)

= supFC
(
SX

)
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5 � Algorithm description

To discover FCSPs, two algorithms are proposed. One trav-
erses the search space level-by-level and is called SPM using 
flexible constraints level-wisely (SPM-FC-L), and the other 
traverses the search space using recursive projections and is 
called SPM using flexible constraints by projection (SPM-
FC-P). The SPM-FC-L algorithm is convenient to imple-
ment, whereas SPM-FC-P is more efficient. Because it was 

proved in Section 4.4 that SFC satisfies the downward clo-
sure property, as does the support, the support is replaced 
by SFC in both algorithms directly.

5.1 � SPM‑FC‑L algorithm

To replace the support with SFC, it is natural to discover 
the FCSPs based on the GSP algorithm [33]. Algorithm 1 
describes the proposed SPM-FC-L for mining FCSPs.

In Algorithm 1, FCSPs with single items are first discov-
ered on Line 1. FSk is used to denote the set of FCSPs with 
length k. The initial value of k is set to one on Line 2. The 
main loop discovers all FCSPs using a candidate generation-
and-test methodology (Lines 3–7). On Line 4, the function 
candidate_gen (described in Algorithm 2) is called to gener-
ate candidates with length (k + 1). CSk is used to denote the 
set of candidate FCSPs with length k. On Line 5, only candi-
dates with SFC no lower than min_sup are kept. The number 
of iterations is incremented by one on Line 6. Finally, on 
Line 8, all the discovered FCSPs are returned.

The function candidate_gen generates the candidate 
FCSPs with length (k + 1) by joining two k-FCSPs that 
share the first (k-1) common courses. For each such pair of 
FCSPs, two candidates can be generated. Each candidate is 
not retained until all its subsequences are FCSPs because 
of the downward closure property of SFC. Different from 
typical SPM algorithms that use both itemset-extension 
and sequence-extension to generate new candidates, only 
sequence-extension is considered. This is because there is 
only one course enrollment at one time in the Course Rec-
ommendation dataset used in this paper.

5.2 � SPM‑FC‑P algorithm

In this section, another FCSP mining algorithm, SPM-FC-P, 
is proposed that uses the recursive sequence database pro-
jection approach. To explain the algorithm, the following 
concepts of sequence database projection are introduced.

Let SX =  < c1, c2, …, cn > and SY =  < c1, c2, …, cm > be two 
SPs. SY is called a prefix of SX if (1) m < n and (2) there exist 
integers 1 ≤ i1 < i2 < … < im < n such that SY .C1

= SX.Ci1

 , 
SY .C2

= SX.Ci2

 , …, SY .Cm
= SX.Cim

 . SZ =< cim+1, cim+2,… , cn > 
is called the suffix of SX with respect to prefix SY, and denoted 
by SZ = SX / SY.
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Fox example, SP SY =  < Data structure, Operating sys-
tem > is a prefix of SX =  < Data structure, Introduction to 
logic, Operating system, Linear algebra, Introduction to 
big data > , and SZ =  < Linear algebra, Introduction to big 
data > is a suffix of SX with respect to SY.

Let S be an SP in a sequence database SDB. The S-pro-
jected database, denoted by SDB|S, is the collection of suf-
fixes of input sequences in SDB with respect to prefix S.

The sequence database in Table 2 is considered as an 
example. Consider S =  < Data structure, Operating sys-
tem > . The S-projected database is shown in Table 5.

According to the above concepts, Algorithm 3 describes 
the proposed SPM-FC-P for mining FCSPs.

In the S-projected database, all 1-FCSPs are enumerated 
on Line 1. Then the main loop (Lines 2–7) generates new 
FCSPs by appending each 1-FCSP to the current FCSP. 
On Line 3, a 1-FCSP is appended after the last item of the 
current FCSP to form a new FCSP. According to previous 
SPM algorithms based on pattern growth [27], it is easy to 
understand that the SFC of the new SP is the same as the 
SFC of the appended item. Thus, it is also an FCSP. Then, 
the newly formed FCSP is output on Line 4 and its projected 
database is constructed on Line 5. On Line 6, the SPM-FC-P 
procedure is called to generate FCSPs recursively. It should 
be noted that, when SPM-FC-P is called the first time, S is 
an empty set and SDB | S is SDB itself.

5.3 � Summary of the proposed algorithms

Discovering SPs from MOOC learning data is important 
for improving the online learning experience. To the best of 
the authors’ knowledge, this is the first work on extracting 

constraint-based SPs from MOOC data. The novelty of the 
two proposed algorithms can be summarized as follows.

First, the interestingness of the resulting SPs is measured 
from three perspectives: the number of courses in which 
students were enrolled, date span of course enrollment, and 
specific enrollment moment in a day. Thus, the problem of 
the extremely large number of resulting SPs of a typical FSP 
mining problem can be solved, to great extent. Addition-
ally, the FCSPs are more meaningful than FSPs that use 
frequency only.

Second, the downward closure property was also proved 
to be satisfied for FCSPs. Thus, the two algorithms for min-
ing FCSPs are not only easy to implement but also effective 
in reducing the extremely large search space. Therefore, the 
efficiency of both SPM-FC-L and SPM-FC-P is comparable 
with that of counter level-wise and projection-based SPM 
algorithms.

Finally, the three constraints, that is, length constraint, 
discreteness constraint, and validity constraint, were also 
all proved to satisfy the downward closure property. Hence, 
these three constraints can be used separately according to 
the specific application scenario, which makes the two pro-
posed algorithms suitable for general usage.

6 � Experimental results

In this section, the performance of the proposed algo-
rithms is evaluated and they are compared with two general 
SPM algorithms: GSP [33] and PrefixSpan [27], and one 
constraint-based sequential rule mining algorithm, TRule-
Growth [11]. The source code of each algorithm was down-
loaded from the SPMF data mining library [9]. To run GSP, 
PrefixSpan, and TRuleGrowth on the Course Recommen-
dation dataset, the dataset was transformed by deleting the 
specific enrollment time and retaining the order of course 
enrollment within each sequence. It should be noted that 
TRuleGrowth is an algorithm with a sliding-window con-
straint for mining partially ordered sequential rules. For a 
fair comparison, when TRuleGrowth was run, the part that 
calculated confidence was blocked. Thus, in Sects. 6.1 and 
6.2, only the time and memory required for TRuleGrowth to 
mine the SPs is recorded, and the time and memory required 
for TRuleGrowth to generate rules from the SPs is ignored. 
Similarly, the number of results for TRuleGrowth is also 
the number of discovered SPs rather than the number of 
sequential rules.

The experiments were conducted on a computer with a 
2-Core 1.80 GHz CPU and 8 GB memory running 64-bit 
macOS Mojave (macOS 10.14). The programs were written 
in Java. It should be noted that the support used for evalua-
tion was the ratio of the number of input sequences contain-
ing the target pattern to the total number of input sequences 

Table 5   S-projected database in the example sequence database

Although S =  < Data structure, Operating system > is contained by 
IS1, IS2, and IS4, the S-projected database is only composed of two 
suffixes because IS4 / S = ∅

sid Input sequence

IS’1 Linear algebra, Introduction to 
big data

IS’2 Data mining
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in the sequence database; that is, the support values used in 
experiments were in the range [0, 1].

In the proposed model, the length factor α (0 ≤ α ≤ 1), dis-
creteness factor β (0 ≤ β≤ 1), and validity factor γ (0 ≤ γ  ≤ 1) 
had to be set to appropriate values. First, the approximate 
ranges of these parameters were outlined, and then their 
optimal values were determined using progressive refine-
ment. For all the experiments, α = 1/6, β = 3/6, and γ = 2/6.

6.1 � Runtime

First, the efficiency performance of these algorithms was 
demonstrated. When measuring the runtime, the minimum 
support threshold was varied. Because there was only one 
dataset, the same dataset was tested using two groups of 
minimum support thresholds in the experiments in Sects. 6.1 
to 6.3.

In Fig. 2, the efficiency of the five algorithms can be cat-
egorized into two groups. Generally, the three projection-
based algorithms (PrefixSpan, TRuleGrowth, and SPM-FC-
P) were faster than the two level-wise algorithms (GSP and 
SPM-FC-L). This is consistent with the existing consensus 
in the field of pattern mining; that is, pattern-growth-based 
algorithms are more efficient because numerous candidates 
and multiple database scans can be avoided effectively. The 
two proposed algorithms demonstrated efficiency com-
parable with their counterpart algorithms. Specifically, 
SPM-FC-L was slightly faster than GSP, and SPM-FC-P 

was slightly slower than PrefixSpan and slightly faster than 
TRuleGrowth.

In this set of experiments, the two proposed algorithms 
were not faster than PrefixSpan. This can be explained by the 
following two aspects. The low efficiency of SPM-FC-L was 
caused by its level-wise search space traversal, whereas the 
main reason that algorithm SPM-FC-P was slightly slower 
than PrefixSpan is that SPM-FC-P had to calculate three 
types of constraints in addition to the corresponding sup-
ports, and then integrate them into an SFC.

6.2 � Memory consumption

The memory usage of the five algorithms was also com-
pared. The results are shown in Fig. 3.

The plots of the results for this set of comparisons can 
also be divided into two categories that are similar to the 
results in Fig. 2. For the two level-wise algorithms, the 
proposed SPM-FC-L algorithm consumed less memory 
than the GSP algorithm, on average, whereas for the three 
projection-based algorithms, the memory consumption of 
the proposed SPM-FC-P algorithm was less than that of 
PrefixSpan, and comparable with that of TRuleGrowth. For 
example, when the minimum support threshold was 0.4%, 
SPM-FC-P saved nearly half the memory compared with 
PrefixSpan. This was mainly because a considerable num-
ber of SPs were not FCSPs when using SFC. Thus, fewer 
results for the proposed algorithms could avoid unnecessary 
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join operations and database projections, which led to less 
memory consumption.

For SPM-FC-P and TRuleGrowth, the memory consump-
tion of SPM-FC-P in the first set of experiments was worse 
than that of TRuleGrowth, whereas the memory consump-
tion of SPM-FC-P in the second set of experiments was 
better than that of TRuleGrowth. The results were closely 
related to the number of discovered SPs; that is, SPM-FC-P 
consumed more memory than TRuleGrowth when the num-
ber of discovered FCSPs was more than the number of SPs 
discovered by TRuleGrowth, whereas SPM-FC-P consumed 
less memory than TRuleGrowth when the number of discov-
ered FCSPs was fewer than the number of SPs discovered by 
TRuleGrowth, on average. This is also verified in the com-
parison of the number of discovered patterns in Section 6.3.

6.3 � Number of discovered patterns

The number of SPs discovered by our algorithms was also 
compared with the number of SPs discovered by the other 
three algorithms. The results are shown in Fig. 4. Because 
SPM-FC-L and SPM-FC-P returned the same results, and 
GSP and PrefixSpan returned the same results, the results for 
the comparison were discovered using SPM-FC-P (FCSPs) 
and PrefixSpan (FSPs), respectively. Because the SPs dis-
covered by TRuleGrowth, used for extracting partially 
ordered sequential rules (POSRs), are different from both 
FCSPs and FSPs, this type of SP is denoted by partially 
ordered SPs (POSPs) in this set of experiments.

Figure 4 shows that the number of FCSPs was always 
smaller than the number of FSPs. This reflects that flexible 
constraints could present fewer results to users according to 
the characteristics of MOOC data. Generally, the greater the 

number of results found, the greater the number of results 
the proposed algorithms could reduce. For example, when 
min_sup was 0.05%, the maximum number of FSPs and 
FCSPs could be determined, and the number of FCSPs was 
6,837 smaller than the number of FSPs.

For the results discovered by TRuleGrowth, the number 
of FCSPs was sometimes less than the number of POSPs, 
but more often, the number of FCSPs was more than that of 
POSPs. The reason behind these results is that POSPs are 
used for generating POSRs pair by pair. Within each pair 
of POSPs, one POSP is tested for the antecedent, and the 
other is verified for the consequent. Items in each POSP are 
unordered. Thus, a large number of permutation results of 
SPs caused by different orders are avoided. Thus, the number 
of final resulting POSPs is reduced accordingly.

6.4 � Impact of a single constraint

The two proposed algorithms measure the importance of 
FCSPs with SFC, which is the integration of SLC, SDC, and 
SVC. To show the effect of each constraint, the performance 
of each proposed algorithm was compared with that of its 
counterpart that uses only one constraint.

As discussed in Sects. 6.1 and 6.2, the performance of 
SPM-FC-L was lower than the performance of SPM-FC-P. 
Therefore, the comparison between the four level-wise algo-
rithms was conducted using a group of high thresholds. The 
three level-wise algorithms used only the length constraint, 
discreteness constraint, and validity constraint denoted by 
SPM-LC-L, SPM-DC-L, and SPM-VC-L, respectively. The 
comparison between the four projection-based algorithms 
was conducted on the group of low thresholds. The three 
projection-based algorithms used only the length constraint, 
discreteness constraint, and validity constraint denoted by 
SPM-LC-P, SPM-DC-P, and SPM-VC-P, respectively.

Table 6   Performance comparison for the level-wise algorithms

Algorithm Runtime (Sec) Memory 
usage (MB)

Number of SPs

SPM-LC-L 378.39 1212.01 2347
SPM-DC-L 601.68 1474.88 1911
SPM-VC-L 561.53 1318.12 2143
SPM-FC-L 589.31 1310.34 2081

Table 7   Performance comparison for the projection-based algorithms

Algorithm Runtime (Sec) Memory 
usage (MB)

Number of SPs

SPM-LC-P 21.45 559.19 10,472
SPM-DC-P 31.53 694.98 11,847
SPM-VC-P 29.99 628.09 11,678
SPM-FC-P 30.71 599.87 11,325

Table 8   Two input sequences containing S1

sid Input sequence

ISα (Ideological and moral cultivation, 2016/10/18 
3:47), (Introduction to Zizhi Tongjian, 
2016/12/6 8:03), (Hybrid learning, 2016/12/6 
1:42), (News photography, 2016/12/6 6:35), 
(The practice of MOOC teaching, 2016/12/6 
12:19), (Literature management and infor-
mation analysis, 2017/9/8 6:05), (Chinese 
culture, 2017/9/8 7:29), (Traditional Chinese 
medicine health preservation, 2017/9/8 7:50)

ISβ (The practice of MOOC teaching, 2017/2/20 
11:56), (Literature management and informa-
tion analysis, 2017/4/26 0:20), (History of 
Chinese Architecture, 2017/9/8 5:35), (Engi-
neering geology, 2017/9/8 6:50), (Traditional 
Chinese medicine health preservation, 
2017/9/8 7:42)
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The runtime, memory consumption, and the number of 
discovered SPs were compared, and the middle threshold of 
each threshold group was used, that is, 0.5% for level-wise 
algorithms and 0.07% for projection-based algorithms. The 
comparison results are shown in Tables 6 and 7.

From Tables 6 and 7, the algorithms that only considered 
the length constraint (SPM-LC-L and SPM-LC-P) performed 
best, the two algorithms that only considered the discreteness 
constraint (SPM-DC-L and SPM-DC-P) performed worst, and 
the performance of the two proposed algorithms (SPM-FC-
L and SPM-FC-P) using three constraints was between the 
performance of the three algorithms using a single constraint. 
Compared with the other two constraints, the length con-
straint was the easiest to calculate. Furthermore, the value of 
SLC decreased as the length of the input sequence increased. 
Without considering the actual meaning of the discovered SPs, 
these two features of SLC made the two length-constraint-
based algorithms perform best, on average.

6.5 � Pattern analysis

From Theorem 3, any FCSP is also an FSP. To show the 
effect of the constraints, two typical FSPs that were not 
FCSPs were analyzed.

When min_sup was set to 0.75%, S1 =  < Literature man-
agement and information analysis, Traditional Chinese medi-
cine health preservation > was discovered as an FSP, but not 
an FCSP. To analyze the reason for this, two random input 
sequences containing S1 are shown in Table 8.

For the two selected input sequences, ISα was long, and 
contained two casual enrollments, whereas ISβ was a typi-
cal input sequence that satisfied all three constraints (length, 
discreteness, and casual enrollments). Similarly, other input 
sequences containing S1 reduced the SFC because of the 
length, discreteness, and validity, hence S1 was filtered out 
by the proposed algorithms.

As another example, when min_sup was set to 0.3%, 
S2 =  < Ideological and moral cultivation and legal basis, Fiscal 

policy and tax reform, Traditional Chinese rites > was discov-
ered as an FSP, but not an FCSP. Similarly, two input sequences 
containing S2 were randomly selected, and are shown in Table 9.

From Table 9, supFC(S2) reduced because of ISγ for two 
reasons. One is that ISγ was long, which led to a small con-
tribution to supFC(S2). The other is high discreteness; hence, 
the contribution to supFC(S2) was small. In addition to high 
discreteness, two out of the three items in S2 with respect to 
ISδ were casual enrollments. Thus, the contribution of ISδ to 
supFC(S2) was small.

To further analyze the interestingness of the resulting 
SPs, the differences between the FCSP results and the results 
discovered by only using one constraint were compared. 
This was achieved by checking the results discussed in Sec-
tion 6.4. When the minimum threshold was set to 0.06%, two 
interesting FCSPs that were not discovered by any single 
constraint were selected. They were S3 =  < Surgical nursing, 
Discipline studies in nursing, Community nursing, Geriatric 
nursing > and S4 =  < Surgical nursing, Community nursing, 
Gynecology nursing > . Both S3 and S4 are courses in nurs-
ing. They are certainly interesting and useful for people who 
want to study nursing, medicine, or related courses.

The above pattern analysis has illustrated that the pro-
posed constraints can effectively filter patterns that are 
deemed to be less interesting.

7 � Conclusions and future work

MOOCs are changing education at the present time. SPM 
is an effective tool for analyzing the historical behavior of 
numerous online learners. By analyzing the characteristics 
of MOOC data, flexible constraints were considered from 
the perspectives of the length of enrollment sequences, 
span of enrollment dates, and enrollment moments. To 
push these constraints deep into the mining process, the 
SFC was designed step by step, and it was proved that this 
new parameter also satisfies the downward closure property, 
which reduced the search space greatly and effectively. Two 
algorithms called SPM-FC-L and SPM-FC-P were proposed 
for the breadth-first and depth-first traversal of the search 
space, respectively. The experimental results demonstrated 
that the proposed algorithms discovered fewer results than 
FSPs. Furthermore, their efficiency and memory consump-
tion were comparable with classical SPM algorithms.

To the best of the authors’ knowledge, there has been 
very little research on SPM from MOOC data, let alone 
incorporating constraints. The proofs of downward closure 
allow the three constraints to be used together or individu-
ally according to the real-world problem. Therefore, the two 
proposed algorithms are meaningful in terms of whether 
they improve the design of MOOCs or improve the learning 
quality of learners.

Table 9   Two input sequences containing S2

sid Input sequence

ISγ (Ideological and moral cultivation and legal 
basis, 2016/10/27 14:43), (Scenario and 
policy, 2017/3/17 2:54), (Introduction to 
financial engineering, 2017/10/26 10:13), 
(Fiscal policy and tax reform, 2017/11/3 
12:40), (Career planning, 2017/11/3 14:17), 
(Traditional Chinese rites, 2017/12/8 14:57)

ISδ (Ideological and moral cultivation and legal 
basis, 2016/11/2 2:42), (Scenario and 
policy, 2017/5/12 7:58), (Fiscal policy and 
tax reform, 2017/10/14 7:16), (Traditional 
Chinese rites, 2017/12/24 13:24)
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Designing more efficient algorithms to discover FCSPs 
by proposing novel search space traversal and pruning strate-
gies will be attempted in future work. Furthermore, FCSPs 
will be used instead of FSPs to recommend more suitable 
learning resources to learners. Other potential interesting 
future work includes feature selection in actionable SPs [22], 
visualization of FCSPs [3, 13], and mining FCSP with a 
deep neural network [17, 20, 28, 44].
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