
ar
X

iv
:2

10
2.

13
26

5v
1

 [
cs

.R
O

]
 2

6
Fe

b
20

21

Robot Navigation in a Crowd by Integrating Deep Reinforcement

Learning and Online Planning

Zhiqian Zhou, Pengming Zhu, Zhiwen Zeng, Junhao Xiao, Huimin Lu*, Zongtan Zhou

Abstract— It is still an open and challenging problem for
mobile robots navigating along time-efficient and collision-free
paths in a crowd. The main challenge comes from the complex
and sophisticated interaction mechanism, which requires the
robot to understand the crowd and perform proactive and
foresighted behaviors. Deep reinforcement learning is a promis-
ing solution to this problem. However, most previous learning
methods incur a tremendous computational burden. To address
these problems, we propose a graph-based deep reinforcement
learning method, SG-DQN, that (i) introduces a social attention
mechanism to extract an efficient graph representation for the
crowd-robot state; (ii) directly evaluates the coarse q-values of
the raw state with a learned dueling deep Q network(DQN);
and then (iii) refines the coarse q-values via online planning on
possible future trajectories. The experimental results indicate
that our model can help the robot better understand the crowd
and achieve a high success rate of more than 0.99 in the
crowd navigation task. Compared against previous state-of-
the-art algorithms, our algorithm achieves an equivalent, if
not better, performance while requiring less than half of the
computational cost.

I. INTRODUCTION

In the last decade, a significant number of mobile ser-

vice robots have been introduced into households, offices,

and various public places. They share living and social

space with humans and have varying degrees of interactions

with humans (e.g., carrying foods, cleaning rooms, and

guiding visitors). Because humans are dynamic decision-

making agents, a robot needs to understand interactions

among humans and construct a proactive and foresighted

collision avoidance strategy. However, this is still an open

and challenging problem.

Navigating robots among dynamic obstacles has been thor-

oughly studied in robotics and related areas. There is a large

body of work on classic navigation techniques, such as social

force models [1], [2], and velocity obstacles [3]–[6]. These

approaches often treat humans as simple dynamic obstacles,

focusing only on reaction-based collision avoidance rules and

ignoring pedestrians’ decision-making operations. Therefore,

such approaches cannot understand social scenarios well and

result in shortsighted and occasionally unnatural behaviors.

To address this problem, some researchers separate the

crowd navigation task into two disjoint subtasks: first pre-

dicting pedestrians’ trajectories and then planning collision-

*This work was supported by the National Natural Science Foundation of
China [61773393, U1913202, U1813205]
All the authors are with Robotics Research Center, College of
Intelligence Science and Technology, National University of Defense
Technology. zhiqian.zhou13@hotmail.com, zhupengming@nudt.edu.cn,
zengzhiwen@nudt.edu.cn, lhmnew@nudt.edu.cn, junhao.xiao@ieee.org,
@nudt.edu.cn and narcz@163.com

Fig. 1: Illustration of our SG-DQN. When the robot navigates

in a crowd, it selectively aggregates pedestrians’ information

with social attention weights, coarsely evaluates the state-

action values of all actions with the learned dueling DQN,

and quickly generates the best candidate actions. By per-

forming rollouts on the current state, the robot refines the

coarse state-action values of the best candidate actions and

makes a more foresighted decision.

free paths [7]–[12]. However, with increasing crowd size

and density, trajectory-based approaches suffer from high

computational cost and the freezing robot problem [13], in

which the robot cannot find a plausible path. The key to

addressing this issue is to consider crowd interactions.

With the rapid development of machine learning algo-

rithms, some other studies have focused on deep reinforce-

ment learning (DRL) because of its ability to model varying

interactions in a crowd and generate a more foresighted path.

Previous works have focused on value-based and model-

based DRL methods [14]–[17]. Their framework includes

two disjoint modules: a value function to estimate the state

value of a given robot-crowd configuration and a state transi-

tion function to propagate agents’ dynamics forward in time.

Furthermore, Chen et al. [18] combined the learned model

with Monte-Carlo tree search (MCTS), selecting the action

with maximum d-step return. However, since they must

traverse all successor state when estimating the state value,

these methods require numerous computational resources, es-

pecially when performing a look-ahead rollout. Meanwhile,

model-free DRL methods, such as deep Q network (DQN)

[19], [20], are widely used to learn control policies directly

from the raw state with end-to-end training. However, most

of them takes raw sensor readings as input (e.g. point clouds

and images) [21], [22]. This leads to a large state space,

which makes training more challenging. Additionally, it is

hard to learn a good understanding of a crowd scenario from

raw sensor readings, which is the key to a proactive and

foresighted navigation policy.

http://arxiv.org/abs/2102.13265v1

A key challenge for learning-based methods in crowd

navigation is to get an extensible and efficient state represen-

tation, which involves two subproblems. The first subprob-

lem is to model crowd interactions. Most previous models

consider only pairwise interactions between the robot and

each pedestrian while ignoring human-human interactions

in the crowd, which are more common and important [17],

[23], [24]. LM-SARL, proposed in [16], captures human-

human interactions via a coarse-grained local map. However,

the neighborhoods of humans are 4 × 4 grid, which greatly

simplifies the human-human interactions in a crowd. The

second sub-problem is to aggregate the neighbors’ infor-

mation. The simplest method is to apply a pooling module

[14], [25], treating all neighbors equally. Another method

is to apply a long short-term memory (LSTM) module to

combine the pedestrians’ information sequentially according

to their distances to the robot [23], [24]. Both of them do

not consider the crowd as a whole, losing the important

structural information. The social attention mechanism [7],

[8], which models the relative influences among pedestrians

in a crowd, is very suitable to selectively aggregate the

neighbors’ information. In LM-SARL, a social attentive

pooling module is built to reason the collective importance of

neighboring humans [16]. Similar work can be found in [17],

where a separate attention network was proposed to infer

the relative importance of neighboring humans. After being

trained with human gaze data, it is available to accurately

predicts human-like attention weights in crowd navigation

scenarios.

Since a crowd typically produces non-Euclidean data,

graph neural networks (GNNs) can be used to extract ef-

ficient representations in crowd navigation. In [18], Chen

et al. proposed a relational graph model with a two-layer

graph convolutional network (GCN) to reason about the

relations among all agents [18]. However, this algorithm

does not show good performance in the crowd navigation

task and encounters convergence problems. Even in the given

simple simulated environment, the training process is always

divergent. Another crowd navigation algorithm, G-GCNRL,

utilizes two GCNs to learn human-like attention weights and

integrate information about the crowd scenario [17]. The

experimental results show that the introduction of GCNs

greatly enhances the performance of G-GCNRL.

This work focuses on three improvements to address

the above issues and proposes a graph-based reinforcement

learning method named SG-DQN. First, the social attention

mechanism is introduced into the graph attention network

(GAT) [26] to extract an efficient graph representation.

Second, a dueling DQN [27], is utilized to coarsely evaluate

the state-action values, which greatly shortens the time of

value estimation. Third, the dueling DQN is combined with

online planning, which fine-tunes the coarse evaluation with

a simple and rapid rollout performance. Additionally, the

reward function is redesigned based on current navigation

scenarios to enhance the training convergence. Finally, two

types of scenarios, one simple and one complex, are de-

signed to evaluate the proposed approach. The experimental

results show that the proposed method helps the robot to

better understand the crowd, navigates the robot along time-

efficient and collision-free paths, and outperforms state-of-

the-art methods. The code and the demonstration video are

available at github.com/nubot-nudt/SG-DQN.

II. PROBLEM FORMULATION

A. Crowd Navigation Modeling

As a typical sequential decision-making problem, the

crowd navigation task can be formulated in a reinforcement

learning framework [14]. Suppose that a mobile robot nav-

igates in a crowd of N pedestrians over discrete time steps.

Natural number i is used to number agents, 0 for the robot

and i(i > 0) for the ith pedestrian. The agents’ configuration

is described in robot-centric coordinates, where the robot

is located at the origin and the positive direction of the x-

axis is from its initial position to its goal position. For each

agent, its configuration w can be divided into two parts,

the observable state and the hidden state. In this work, the

observable state consists of the agent’s position p = [px, py],
velocity v = [vx, vy] and radius ρ, and the hidden state

includes the agent’s intended goal position g = [gx, gy],
preferred velocity vp and heading angle θ. For the robot,

it is impossible to observe the pedestrians’ hidden states.

Therefore, the robot’s input state s can be represented as:

s = [w0, w1, ..., wN]

w0 = [p0x, p
0
y, v

0
x, v

0
y , ρ

0, g0x, g
0
y, v

0
p, θ

0]

wi = [pix, p
i
y, v

i
x, v

i
y, ρ

i, i > 0

(1)

where w0 is the full state of the robot and wi is the

observable state of the ith pedestrian.

At time step t, the robot observes a states st, chooses an

action from its discrete action set at ∈ A and then receives

an immediate reward signal rt = R(st, at) at time step t+1.

For holonomic robots, the action space consists of the stop

action and 80 discrete actions: 5 speeds evenly spaced in (0,

v0p] and 16 headings evenly spaced in [0, 2π). This work is

easy to extend to car-like robots by limiting their headings.

B. Reinforcement Learning Based on the Q-Value

In this work, a dueling DQN is utilized to directly evaluate

the state-action values (q-values for simplicity) and select

the best action, which takes the agent-level state as input.

There are two main reasons for this. First, the agent-level

state can help the robot to better understand crowd scenarios.

Second, the dimension of agent-level state is much less than

the dimension of raw sensor data, which greatly reduces the

computational cost. The objective is to develop the optimal

deterministic policy, π∗ : st → at, that maximizes the

expected discounted return of the robot in reaching its goal:

π∗(st) = argmax
at

Q∗(st, at) (2)

Q∗(s, a) is the corresponding optimal state-action function,

which satisfies the Bellman equation:

Q∗(s, a) =
∑

s′,r

P (s′, r|s, a)[r + γ△t·vp max
a′

Q∗(s′, a′)]

(3)

where s′ and r are the successor state and the immediate

reward respectively. γ ∈ (0, 1) is the discount factor that

balances the immediate and future rewards, which is nor-

malized by the preferred velocity vp and time step △t [14],

[15]. The transition probability is described by P (s′, r|s, a).

C. Reward Shaping

The reward function is also a highly essential point in deep

reinforcement learning. However, previous works ignore this

point and apply the reward function from [14], which was

originally designed to resolve the noncommunicating two-

agent collision avoidance problem. As the scene continues to

expand, the mismatched reward makes the training process

challenging and results in poor training convergence [18]. In

this work, the reward function is redesigned with three parts:

Rg , Rc and Rs. Rg is designed to navigate the robot moving

towards its goal. Rc is built to penalize collision cases, and

Rs is designed to reward the robot in maintaining a safe

distance from all pedestrians. Formally, the reward function

at time step t can be given as:

Rt = Rt
g +Rt

c +Rt
s (4)

where Rt
g , Rt

c and Rt
s are given by:

Rt
g =

{

rg if ||pt
0 − g0|| < 0.2

0.1(||pt−1
0 − g0|| − ||p

t
0 − g0||) otherwise

(5)

Rt
c =

{

rc if ||pt
0 − pt

i|| < ρ0 + ρi

0 otherwise
(6)

Rt
s =

N
∑

i=1

f(dti, ds)

f(dti, ds) =

{

△ t · (dti − ds)/2 if dti < 0.2

0 otherwise

(7)

Here, p0 and g0 are the position and goal of the robot,

ds denotes the threshold distance that the robot needs to

maintain from pedestrians at all time and dti is the actual

minimum separation distance between the robot and the ith
pedestrian during the time step. Here, rg = 10, rc = −2.5
and ds = 0.2.

III. METHODOLOGY

As shown in Fig. 2, a new framework is proposed to

navigate social robots in a crowd, which can be divided into

three parts. The first part is a two-layer GAT that extracts

an efficient graph representation from the crowd-robot state,

which is the basis of q-value estimators. The second part is

the dueling DQN, which coarsely estimates the q-values of

the current state. The third part is the online planner, which

Fig. 2: The framework of SG-DQN. The crowd-robot state is

described in the form of graph data. Then, the dueling DQN

utilizes a two-layer GAT to extract a high-level representation

and directly evaluates the q-values of the current state. The

core of the online planner is the rollout performance based

on the learned dueling DQN and the environment model,

both of which are optimized with simulated trajectories.

performs rollouts in the near and short-term future based on

the dueling DQN and the environment model.

A. Graph Representation with Social Attention

In this work, a social attention mechanism is introduced

into the GAT to learn a good graph representation of

the crowd-robot state. Unlike [16], attention weights are

computed for all agents, regardless of the robot or pedes-

trians. Both robot-human interactions and human-human

interactions can be modeled via the same graph convolution

operation.

In the graph representation, the nodes and edges repre-

sent agents and connections between agents. Since agents

often have different types, the nodes’ dimensions are always

different (e.g., s0 ∈ R
9 and si ∈ R

5, i > 0). Therefore,

multilayer perceptrons (MLPs) are utilized to extract the

fixed-length latent state, which will be fed into subsequent

graph convolutional layers. The latent state of the ith node

is given as:

h0 = Ψr(w0;Wr)

hi = Ψp(wi;Wp), i = 1, 2, ..., N.
(8)

where Ψr and Ψp are MLPs with ReLU activations, and their

network weights are represented by Wr and Wp, respectively.

The superscript l is used to denote the layer number. The

input of the first layer is denoted by H0 = [h0
0, h

0
1, · · · , h

0
N].

For all nodes, h0
i = hi.

Then, a social attention mechanism is introduced into

Fig. 3: The layerwise graph convolution operation on the ith
node and its neighborhood (e.g., h0 and hN). l is the layer

number, Q is the query matrix and K is the key matrix.

the spatial graph convolution operation to model interations

in a crowd. First, a query matrix Q and a key matrix K
are built to transform the input features into higher-level

features. Then, these features are concatenated to compute

attention coefficients eij via a fully connected network

(FCN). The FCN is followed by a LeakyReLU nonlinearity

with a negative input slope α = 0.2. Finally, the attention

coefficients are normalized via a softmax function. A sketch

of layerwise graph convolution operation on the ith node and

its neighborhood is shown in Fig. 3 and the corresponding

layerwise graph convolution rule is given as:

eij = LeakyRuLU(a(qi || kj))

αij = softmaxj(eij) =
exp(eij)

∑

k∈N(i) exp(eik)

hl+1
i = σ(

∑

j∈N(i)

αl
ijh

l
j)

(9)

where qi = Ψq(hi;Q), kj = Ψk(hj ,K), a(·) is the attention

function and || is the concatenation operation. A layerwise

FCN Ψa(·;A) is utilized to map concatenated states to

attention weights. αij is the normalized attention weight,

indicating the importance of the j node to the ith node.

N(i) is the neighborhood of the ith node in the graph.

Similar to previous work [14]–[18], all agents can obtain

accurate observable states for other pedestrians. Therefore,

the neighborhood of the ith agent includes all pedestrians.

Considering that there are indirect interactions in a crowd,

the GAT is equipped with two graph convolutional layers to

model both direct and indirect interactions in a crowd. The

final output of the two-layer GAT can be described by:

H = h0 + h1 + h2 (10)

B. Graph-Based Deep Q-learning

Encouraged by the great success of DQNs [19], [20] and

their variants in reinforcement learning, a dueling DQN

is built to estimate q-values in this work. The significant

Algorithm 1: Deep Q-learning

Output: Q-value network: Q(· ; θ)
1 Initialize empty experience replay memory E
2 Initialize target dueling DQN with random weights θ
3 Duplicate DQN Q′(· ; θ′)← Q(· ; θ)
4 for episode← 1 to num of episodes do

5 Initialize random crowd-robot state S0

6 while not reach goal, collide or timeout do

7 at ← argmax
at

Q(st, at; θ)

8 Execute at and obtain rt and st+1

9 st ← st+1

10 Assimilate tuple (st, at, rt, st+1) into E
11 end

12 Sample randomly subset M from E
13 Update Q(· ; θ) with M and Q′(· ; θ′)
14 for every C episodes do

15 evaluate value network Q(· ; θ)
16 Q′(· ; θ′)← Q(· ; θ)
17 end

18 end

difference from the previous state value network is that the

dueling DQN requires only the current state as input. It

is a model-free RL method and does not need to evaluate

subsequent states.

As shown in the bottom of Fig. 2, the dueling DQN

includes three separate modules: MLPs that extract fixed-

length latent states, a two-layer GAT to obtain graph

representations H , and a dueling architecture to estimate

q-values. All these parameters are trained in an end-to-end

manner.

The dueling architecture consists of two streams that

represent the state value and state-dependent advantage

functions [27]. In this work, a two-layer MLP, Ψc(H ;α), is

built as a common convolutional feature learning module,

and two fully connected layers, Ψv(·;β) and Ψd(·; η), to

obtain a scalar V (H ;α, β) and an |A|-dimensional vector

D(H, a;α, η). Here, H is the final graph representation

mentioned in Eq. 10, and α, β and η are the parameters of

the dueling architecture. Finally, the state-action function

Q(H, a; ·) can be described by

Q(H, a;α, β, η) = V (H ;α, β) +D(H, a;α, η) (11)

The learning algorithm is shown in Algorithm 1, where θ
denotes all parameters of the dueling DQN. In each episode,

the crowd-robot state s0 is initialized randomly (line 5).

Afterward, the robot is simulated to navigate in the crowd

using a σ greedy policy (line 7). The experience replay

technique [20], [28] is also used to increase data efficiency

and reduce the correlation among samples. At every step,

the newly generated state-value pairs are assimilated into an

experience replay memory E (line 10) with a size of 105. In

every training, minibatch experiences M are sampled from E
to update the network (line 12). To promote convergence, the

Fig. 4: A two-step rollout on state st. For simplicity, a blue

arrow and a red arrow are used to denote the learned DQN

and the environment model, respectively.

network Q(· ; θ) is cloned to build a target network Q′(· ; θ′)
(line 16), which generates the Q-learning target values for

the next C = 500 episodes. The loss function is defined as:

L(θ) =
∑

(r + γ△t·vp max
a′

Q′(s′, a′; θ′)−Q(s, a; θ))2

(12)

C. Online Planning Based on Rollout Performance

Previous works have proven that a DQN has the potential

to partly address the shortsightedness problem in crowd nav-

igation. However, with unknown human behavior policies, it

is difficult to learn a perfect network model. Inspired by [29]–

[32], the learned DQN is combined with online planning to

refine coarse q-values by performing rollouts on the current

state and reasoning about the coming future. The depth and

width of the rollout performance are denoted by d and k.

A smaller k means that the navigation policy relies more

on model-free RL and has a lower computational burden.

When k = 1, the algorithm degenerates into a pure model-

free RL policy. d is designed to balance the importance of

the current state and future states, which has a similar effect

on the navigation policy as k. A two-step rollout in the look-

ahead tree search diagram is shown in Fig. 4.

In the rollout performance, the learned dueling DQN and

the environment model are applied recursively to build a

look-ahead tree. In particular, at each expansion, the dueling

DQN is used to generate q-values and generate the best

candidate actions (e.g., actions with the top k q-values). The

environment model is utilized to predict the corresponding

rewards and subsequent states based on the current states and

candidate actions. Then, it is possible to refine the q-values

with d-step returns, which can be described as:

Qd(s, a; θ) =



















Q(s, a; θ) if d = 0

d

d+ 1
Q(s, a; θ) +

1

d+ 1
(rd−1

+ γ△t·vp max
a′

Qd−1(s′, a′; θ)) otherwise

(13)

In addition, the environment model and the RL model are

separated here, the environment model can be any model for

crowd state prediction or human trajectory prediction. In this

work, the crowd prediction framework proposed in [18] is

used to learn a environment model from simulted trajectories.

There are three main reasons. First, the environment model

is necessary to perform rollouts. However, it is impossible

and impractical for the robot to query the real environment

model. Second, with Rs encouraging the robot to keep a safe

distance from pedestrians, model fidelity is less important in

the rollout performance. Third, crowd prediction has shown

good performance in previous work.

D. Implementation Details

In this work, the hidden units of Ψr(·), Ψh(·), Ψr, Ψv

and Ψd have dimensions (64,32), (64,32), (128), (128) and

(128). In every layer, the output dimensions of Ψq(·) and

Ψk(·) are 32. In the dueling architecture, Ψr, Ψv and Ψd

have output dimensions of 128, 1, and 81. All the parameters

are trained via reinforcement learning and updated by Adam

[33]. The learning rate and discount factor are 0.0005 and

0.9 respectively. In addition, the exploration rate of ǫ-greedy

policy decays from 0.5 to 0.1 linearly in the first 5000

episodes and remains 0.1 in the remaining 5000 episodes.

In the rollout performance, the planning depth and planning

width are set to 1 and 10, respectively.

IV. EXPERIMENTS

A. Simulation Setup

SG-DQN has been evaluated in both simple and complex

scenarios. The simple scenario is built based on the Crowd-

Nav [16], in which only five pedestrians in a circle of radius

4 m are controlled by ORCA [5]. For each pedestrian, his

initial position and his goal position are set on the circle,

symmetric about the center of the circle. Therefore, they will

likely interact near the center of the circle at approximately

4.0 s. In addition to the five circle-crossing pedestrians,

the complex scenario introduces another five square-crossing

pedestrians, whose initial positions and goal positions are

sampled randomly in a square with a side length of 10 m.

The square shares the same center as the circle. In either the

simple scenario or the complex scenario, once the pedestrian

arrives at his goal position, a new goal position will be reset

randomly within the square, and the former goal position

is recorded as a turning position. The initial position, the

turning position, and the final goal position of pedestrian

0 are marked in Fig. 6(a). Note that the robot is invisible

in both scenarios. As a result, the simulated pedestrians will

never give way to the robot, which requires the robot to have

a more proactive and foresighted collision avoidance policy.

B. Qualitative Evaluation

1) Training Process: SG-DQN is trained in both simple

scenarios and complex scenarios. The resulting training

curves are shown in Fig. 5. At the beginning of training,

it is difficult to complete the crowd navigation task with

a randomly initialized model, and most termination states

0 2000 4000 6000 8000 10000
Episode

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Re

wa
rd

0 2000 4000 6000 8000 10000
Episode

−4

−2

0

2

4

6

8

10

Av
er

ag
e

Re
tu

rn

0 2000 4000 6000 8000 10000
Episode

0

5

10

15

20

25

30

Na
vi

ga
tio

n
Ti

m
e

0 2000 4000 6000 8000 10000
Episode

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Di
sc

om
fo

rt
Ra

te

(a) Trainning in simple scenarios

0 2000 4000 6000 8000 10000
Episode

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Re
wa

rd

0 2000 4000 6000 8000 10000
Episode

−4

−2

0

2

4

6

8

10

Av
er

ag
e

Re
tu

rn

0 2000 4000 6000 8000 10000
Episode

0

5

10

15

20

25

30

Na
vi

ga
tio

n
Ti

m
e

0 2000 4000 6000 8000 10000
Episode

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Di
sc

om
fo

rt
Ra

te

(b) Training in complex scenarios

Fig. 5: Training curves in simple scenarios (Fig. 5(a)) and

complex scenarios (Fig. 5(b)). From top to bottom, the y-axis

corresponds to the total reward, average return, navigation

time and discomfort rate per episode, averaged over the last

100 episodes.

are timeout. As the training continues, the robot quickly

learns to keep a safe distance from pedestrians and slowly

understands the crowd. In the last period of training, SG-

DQN achieves relatively stable performance. The difference

between different scenarios is predictable. The main reason is

that there are more interactions in complex scenarios, which

makes the environment more challenging and difficult. More

detailed quantitative results are described in Sec. IV-C.

2) Collision Avoidance Behaviors: With the learned pol-

icy, the robot is able to reach its goal position safely and

quickly in both simple and complex scenarios. The resulting

trajectory diagrams are shown in Fig 6. In the complex

scenario, the robot has to pay more attention on avoiding

pedestrians, resulting a more rought trajectory and a longer

navigation time. In both simple and complex scenarios, the

robot performs proactive and foresighted collision avoidance

behaviors. The robot can always recognize and avoid the

approaching interaction center of the crowd. For example,

in the simple scenario, the robot turns right suddenly at

approximately 1.5 s to avoid the potential encirclement at

4.0 s. In addition, as shown in Fig. 6(b), even if the robot is

− 4 − 2 0 2 4

x(m)

− 4

− 2

0

2

4

y
(m
)

0.0

0.0

0.0

0.0

0.0

0.0

5.0

5.05.0

5.0
5.0

5.0

9.8

9.8

9.8

9.8

9.8

9.8

0.0

0.0

0.0

0.0

0.0

0.0

5.0

5.05.0

5.0
5.0

5.0

9.8

9.8

9.8

9.8

9.8

9.8
Robot

t=4.0s

pedestrian 0

(a) Trajectory in a simple scenario

− 4 − 2 0 2 4

x(m)

− 4

− 2

0

2

4

y
(m
)

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5

12.5
Robot

t=0.0st=4.0s

(b) Trajectory in a complex scenario

Fig. 6: Trajectory diagrams for a simple scenario (Fig. 6(a))

and a complex scenario (Fig. 6(b)). Here, the discs represent

agents, black for the robot and other colors for pedestrians.

The numbers near the discs indicate the time. The time

interval between two consecutive discs is 1.0 s. Here, the

initial positions, the turning positions and the final goal

positions are marked with triangles, squares and five-pointed

stars, respectively.

−4 −2 0 2 4
x(m)

−4

−2

0

2

4

y(
m

)

0

1
2

34

0.81
0.00

0.02
0.01

0.130.03

Time: 4.00

0

1
2

34

Time: 4.00

Robot
Human
Goal

(a) Simple scenario

−4 −2 0 2 4
x(m)

−4

−2

0

2

4

y(
m

)

0

1

2

3

4

5

6

7

8

9

0.56
0.10

0.02

0.04

0.13

0.02

0.02

0.02

0.01

0.06

0.03

Time: 1.75

0

1

2

3

4

5

6

7

8

9

Time: 1.75

Robot
Human
Goal

(b) Complex scenario

Fig. 7: Robot attention weights for agents in a simple

scenario (Fig. 7(a)) and a complex scenario (Fig. 7(b)). The

natural numbers are the serial numbers and the two-digit

decimals are the attention weights the robot gives to agents.

The red arrows indicate the velocity attitudes of agents. The

initial position and goal position of the robot are marked by

a black disc and a red five-pointed star, respectively.

trapped in an encirclement of pedestrians, it has the ability to

escape from the environment safely. Here, the encirclement

of three pedestrians starts at 0.0 s and lasts approximately

4.0 s. The encirclements are indicated by lines with arrows.

3) Attention Modeling: Fig. 7 shows the attention weights

in two test crowd scenes. In both simple and complex

scenarios, the robot pays more attention to pedestrians who

are close or moving towards it, e.g., pedestrian 3 in Fig.

7(a) and pedestrians 0, 3, and 8 in Fig. 7(b). Additionally,

the robot also pays more attention to pedestrians who may

interact with it. An example is the attention weight given to

pedestrian 2 in the complex scenario, which shows that the

robot’s understanding of the crowd is foresighted. Another

interesting point is the self-attention weight of the robot. The

fewer pedestrians there are around the robot, the greater the

self-attention weight. This means that the robot is able to

balance its navigation task and collision avoidance behavior.

TABLE I: Quantitative results in simple secnarios.

Methods Success Collision Nav. Time(s) Disc. Rate Avg. Return Run Time(ms)

ORCA [5] 0.824 0.176 12.07 0.053 4.476 0.05

dueling DQN 0.986 0.013 11.25 0.011 6.120 2.67

LM-SARL [16] 0.997 0.003 10.95 0.013 6.297 42.50

MP-RGL-Onestep [18] 0.997 0.003 10.57 0.017 6.388 23.07

SG-DQN 0.996 0.004 10.15 0.025 6.507 10.18

TABLE II: Quantitative results in complex secnarios.

Methods Success Collision Nav. Time(s) Disc. Rate Avg. Return Run Time(ms)

ORCA [5] 0.769 0.222 13.88 0.095 3.689 0.08

dueling DQN 0.950 0.048 13.66 0.029 5.283 2.76

LM-SARL [16] 0.993 0.007 12.47 0.015 5.860 53.10

MP-RGL-Onestep [18] 0.994 0.006 11.88 0.028 6.033 29.04

SG-DQN 0.992 0.008 11.71 0.032 6.035 14.12

C. Quantitative Evaluation

Three existing state-of-the-art mothods, ORCA [5], LM-

SARL [16] and MP-RGL-Onestep [18], are implemented as

baseline methods. In addition, to verify the effect of the

rollout performance, a dueling DQN version of SG-DQN is

also developed as a contrast algorithm by setting the planning

depth to 0. In the implementation of ORCA, the pedestrians’

radii are set by ds = 0.2 to maintain a safe distance from

pedestrians. For a fair comparison, RL methods apply the

same reward function. The implementation of MP-RGL-

Onestep is different from the original version proposed in

[18]. With two independent graph models, the state value

prediction and the human motion prediction are two sep-

arated modules. In addition, the training process has been

repeated for six times and the resulting models are evaluated

with 1000 random test cases. The random seeds in the 6

training processes are 7, 17, 27,37, 47, and 57. Finally, the

statistical results are shown in Table I (for simple scenarios)

and Table II (for complex scenarios).

In the quantitative evaluation, the metrics includes: "Suc-

cess", the success rate of robot reaching its goal safely;

"Collision", the rate of the robot colliding with pedestri-

ans; "Nav. Time", the navigation time to reach the goal

in seconds; "Disc. Rate", the ratio of the number of steps

cause discomfort (the robot violates the safety distance of

the pedestrians) to the total number of steps; "Return", the

discounted cumulative return averaged over stpes; and "Run.

Time", the running time per iteration in milliseconds. Here,

all metrics are averaged over steps across all episodes and

test cases.

As expected, the ORCA method has the highest collision

rate, the longest navigation time and the best real-time

performance in both simple and complex scenarios. This is

because that the ORCA method is a totally reactive policy,

which easily induces the robot to fall into the inevitable

collision states (ICS) [34] and causes the freezing robot

problem [13]. The results of ORCA show the necessity of a

foresighted policy.

The dueling DQN acheives better performance than ORCA

but worse performance than the other three RL algorithms.

On the one hand, this shows that even though the dueling

DQN is a reactive policy, it can help the robot to make fore-

sighted decisions after being trained with much experience.

On the other hand, it illustrates that as the scenario becomes

increasingly complex it will be increasingly challenging to

learn a simple control policy mapping the raw state to the

best option directly. It is necessary to integrate the dueling

DQN with online planning.

All of LM-SARL, MP-RGL-Onestep and SG-DQN

achieve performance far superior to that of dueling DQN,

with success rates higger than 0.99. In simple scenarios, SG-

DQN performs better than all others, achieving the shortest

navigation time and the largest discounted cumulative return.

It can be attributed to the dueling DQN, which stores some

shortcuts and is independent of the learned environment

model. In complex scenarios, the performance of SG-DQN is

at least equivalent to, if not better than, others. The increased

crowd interactions requires the robot to pay more attention

to avoiding pedestrians, and narrows the gap between SG-

DQN and the other two algorithms. Next, let us turn our

attention to the metric of Run. Time. Regardless of whether

the scenario is simple or complex, SG-DQN requires a much

lower computational cost, taking 10.18 ms and 14.12 ms per

iteration in simple and complex scenarios, respectively. It

is approximately half of the time of MP-RGL-Onestep and

a quater that of LM-SARL. In addition, SG-DQN causes

a slight decrease in Success and an slight increase in Disc.

Rate. Considering the halved computational cost, this is quite

valuable.

V. CONCLUSION

In this paper, we propose SG-DQN, a graph-based rein-

forcement learning method, for mobile robots in a crowd,

with a high success rate of more than 0.99. Compared against

the state-of-the-art methods, SG-DQN achieves equivalent, if

not better, performance in both simple scenarios and complex

scenarios, while requiring less than half of the computational

cost. Its success can be attributed to three innovations pro-

posed in this work. The first innovation is the introduction of

a social attention mechanism in the spatial graph convolution

operation. With the improved two-layer GAT, it is available

to extract an efficient graph representation for the crowd-

robot state. The second innovation is the application of a

dueling DQN, which can directly evaluate coarse q-values

of the current state and quickly generate the best candidate

actions. It greatly reduces the computational cost. The third

innovation is the integration of the learning method and

online planning. By performing rollouts on the current state,

the coarse q-values generated by the dueling DQN are refined

with a tree search. These innovations may also be useful in

other similar applications.

REFERENCES

[1] D. Helbing and P. Molnár, “Social force model for pedestrian dynam-
ics,” Phys. Rev. E, vol. 51, pp. 4282–4286, May 1995.

[2] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded
environments,” in 2013 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, pp. 1688–1694, 2013.

[3] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-

search, vol. 17, no. 7, pp. 760–772, 1998.

[4] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 1928–
1935, 2008.

[5] J. van den Berg, G. S.J., M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics Research, pp. 3–19, 2011.

[6] S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. Lau, M. C. Lin, and
D. Manocha, “Brvo: Predicting pedestrian trajectories using velocity-
space reasoning,” The International Journal of Robotics Research,
vol. 34, no. 2, pp. 201–217, 2015.

[7] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 961–971, 2016.

[8] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling
attention in human crowds,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA), pp. 4601–4607, 2018.

[9] A. Rudenko, L. Palmieri, S. Herman, K. M. Kitani, D. M. Gavrila,
and K. Arras, “Human motion trajectory prediction: a survey,” The

International Journal of Robotics Research, vol. 39, pp. 895–935,
2019.

[10] K. D. Katyal, G. D. Hager, and C. M. Huang, “Intent-aware pedestrian
prediction for adaptive crowd navigation,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA), pp. 3277–3283,
2020.

[11] J. Sun, Q. Jiang, and C. Lu, “Recursive social behavior graph for
trajectory prediction,” in 2020 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 657–666, 2020.

[12] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Tra-
jectron++: Dynamically-feasible trajectory forecasting with heteroge-
neous data,” 2021, arXiv:2001.03093.

[13] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in 2010 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp. 797–803, 2010.

[14] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE International Conference on Robotics

and Automation (ICRA), pp. 285–292, 2017.

[15] Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pp. 1343–1350, 2017.

[16] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and

Automation (ICRA), pp. 6015–6022, 2019.

[17] Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot navigation in crowds
by graph convolutional networks with attention learned from human
gaze,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2754–
2761, 2020.

[18] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 10007–
10013, 2020.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” in NIPS Deep Learning Workshop, 2013.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[21] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and
D. Manocha, “Densecavoid: Real-time navigation in dense crowds
using anticipatory behaviors,” in 2020 IEEE International Conference

on Robotics and Automation (ICRA), pp. 11345–11352, 2020.
[22] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards

optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp. 6252–6259, 2018.
[23] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among

dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 3052–3059, 2018.
[24] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance in

pedestrian-rich environments with deep reinforcement learning,” IEEE

Access, vol. 9, pp. 10357–10377, 2021.
[25] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “So-

cial gan: Socially acceptable trajectories with generative adversarial
networks,” in 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 2255–2264, 2018.
[26] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and

Y. Bengio, “Graph attention networks,” in 6th International Confer-

ence on Learning Representations, 2018.
[27] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,

“Dueling network architectures for deep reinforcement learning,”
in Proceedings of The 33rd International Conference on Machine

Learning, vol. 48, pp. 1995–2003, 2016.
[28] L. J. Lin, Reinforcement Learning for Robots Using Neural Networks.

PhD thesis, Carnegie Mellon University, Pittsburgh, January 1993.
[29] J. Oh, X. Guo, H. Lee, R. Lewis, and S. Singh, “Action-conditional

video prediction using deep networks in atari games,” in Proceedings

of the 28th International Conference on Neural Information Processing

Systems, vol. 2, pp. 2863–2871, 2015.
[30] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in Advances

in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems, pp. 6118–6128, 2017.
[31] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature,
vol. 550, pp. 354–359, 2017.

[32] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
and D. Silver, “Mastering atari, go, chess and shogi by planning with
a learned model,” Nature, vol. 588, pp. 604–609, 2020.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
2015.

[34] T. Fraichard and H. Asama, “Inevitable collision states — a step
towards safer robots?,” Advanced Robotics, vol. 18, pp. 1001–1024,
2004.

	I INTRODUCTION
	II Problem Formulation
	II-A Crowd Navigation Modeling
	II-B Reinforcement Learning Based on the Q-Value
	II-C Reward Shaping

	III Methodology
	III-A Graph Representation with Social Attention
	III-B Graph-Based Deep Q-learning
	III-C Online Planning Based on Rollout Performance
	III-D Implementation Details

	IV Experiments
	IV-A Simulation Setup
	IV-B Qualitative Evaluation
	IV-B.1 Training Process
	IV-B.2 Collision Avoidance Behaviors
	IV-B.3 Attention Modeling

	IV-C Quantitative Evaluation

	V Conclusion
	References

