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Abstract
Although using single-instance learning methods to solve multi-instance problems has achieved excellent performance in
many tasks, the reasons for this success still lack a rigorous theoretical explanation. In particular, the potential relation
between the number of causal factors (also called causal instances) in a bag and the model performance is not transparent.
The goal of our study is to use the causal relationship between instances and bags to enhance the interpretability of multi-
instance learning. First, we provide a lower bound on the number of instances required to determine causal factors in a real
multi-instance learning task. Then, we provide a lower bound on the single-instance learning loss function when testing
instances and training instances follow the same distribution and extend this conclusion to the situation where the distribution
changes. Thus, theoretically, we demonstrate that the number of causal factors in the bag is an important parameter that
affects the performance of the model when using single-instance learning methods to solve multi-instance learning problems.
Finally, combining with a specific classification task, we experimentally validate our theoretical analysis.

Keywords Causal inference · Distribution change · Multi-instance learning · Single-instance learning

1 Introduction

Multi-instance learning (MIL) was originally used for
the field of hand-printed numerals identification [1] and
drug activity prediction [2]. Instead of considering a
series of individually labeled instances, MIL focuses
on the labels of sets (or called bags) of instances
and demonstrate strong capabilities in many areas [3],
e.g., speech localization [4], entity classification [5],
protein structure determination [6], biometric authentication
system [7–10], human pose estimation [11], medical
image analysis [12], understanding chest CT imaging of
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COVID-19 [13], and clinical outcome prediction of
COVID-19 [14].

However, the theoretical research of MIL still seriously
lags behind the actual application speed. In other words,
we are not very clear about some potential relationships
between parameters (e.g., the number of instances in the
bag) and the performance of the model. For example, users
always neglect the influence of the number of instances
in the bag. This makes the parameter settings of some
experiments depend on the subjective intuition of the
experimenters rather than interpretable principles. In most
MIL tasks, we often overlook the following two issues:
(1) how does the number of positive instances in the bag
affect the value of the loss function? Most of the MIL
tasks are based on a constraint premise, that the label of
a bag is negative if and only if the bag does not contain
any positive instance. However, this assumption ignores
that the influence of the number of positive instances in
the bag on the performance of the model. Another issue
is that (2) testing instances tend to be assumed to follow
the same distribution as the training instances (for the
brevity of description, we refer to this assumption as the
TTD). However, the TTD assumption is often violated in
many real tasks [15], and whether the TTD assumption
holds directly affects the performance of the model. For
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example, when some real task scenarios cannot support the
TTD assumption, the performance of some models will
degrade [16].

Therefore, how to effectively deal with a series of
MIL problems caused by the above issues has become
a new research hotspot. To this end, many researchers
put forward some methods in recent research, such as
the approach based on the covariate shift setting [17],
and test-distribution-based methods [18]. Unfortunately, the
above methods rely on the prior distribution to improve the
performance of the models and do not provide a rigorous
theoretical explanation of the above two issues [19].

Besides, many researchers pay attention to the relation
between MIL and causal inference. The advantage of
using causal inference theory to study MIL is that causal
inference can describe and explain the complex internal
mechanism of the system by the causal relationship between
data [20]. Moreover, causality helps the model make
stable predictions in unknown environments [21], such
as rain causes slippery roads and excessive
release of carbon dioxide is one of the causes
of global warming. This can be viewed as a stable
mapping from cause to effect, therefore, a causality-
based classifier is more stable than an association-based
classifier [22]. Although causal inference theory opens up
new opportunities for MIL problems, the mathematical
principles behind some tasks have not been well clarified.
Therefore, in a MIL task, we should not only focus on which
instances cause changes in the bag labels (we denote the
instances that affect the bag label change as causal factors),
but also understand the possible connections between the
causal factors and the performance of the model.

Recently, Zhang et al. [23] propose a novel MIL
framework towards robust classification in distributional
biased data. However, they neglect important metrics such
as theoretical guarantees for obtaining causal factors. Feng
et al. [24] attempt MIL from similar and dissimilar bags and
obtain a series of performance analyses on MI classifiers
and SI classifiers. However, they do not explicitly answer
how the number of instances in the bag affects the model
performance during the SIL method to solve MIL problems.
In this paper, we combine the single-instance learning (SIL)
method with the potential outcome framework (POF) [25]
in causal inference to solve the two issues. We obtain a
series of rigorous theoretical analysis results and verified
our conclusions in a specific experimental task.

In brief, the contributions in this paper are summarized
as follows:

– In the MIL task, we provide the lower bound on
the number of samples required to determine causal
factors (also called causal instances in [23]) within 95%
confidence intervals (see Theorem 2).

– Based on the standard MI assumption [26], we capture
that causal factors have a direct effect on the loss
function of the single-instance learning method. We
provide a lower bound on the loss function of the SIL
method when the TTD assumption holds (see Theorem
3). And we extend the conclusion of Theorem 3
to the situation where the distribution changes (see
Theorem 4).

– We provide a rigorous theoretical analysis of the effect
of the parameters in the above theorem on model
performance and validate our conclusions with an
object classification experiment.

2 Related work

Distribution change In general, distribution change refers
to the fact that the training and testing instances do not
follow the TTD assumption, the causes of which are diverse.
Ignoring the difference between the training and testing
samples will lead to a decrease in the predictive ability of
the model built based on the standard supervised approach.
Therefore, how to solve the problem of MIL distribution
change is a research hotspot [16, 27]. The covariate shift
setting is a typical representative, based on which Sugiyama
et al. [17] propose an estimation approach. The advantage
is that this method does not rely on density estimation.
Park et al. [28] propose an algorithm for calibrating
prediction based on the probability of the covariate
shift.

In addition, many researchers also try to resolve the
problem of distribution change in MIL from different
perspectives [15, 29]. For instance, Zhou et al. [30]
present an effective way to analyze the case that the
training instances are not independent identically distributed
in MIL. Wang et al. [31] construct a new MIL-based
neural network to improve its ability to diagnose diseases
based on medical images in the presence of unbalanced
data.

The connection between MIL and causal inference
Recently, it has become a popular trend to explore the
intrinsic connection between causal inference theory [20]
and MIL problems [18, 32, 33]. Kuang et al. [21] develop
an algorithm, called DGBR, which uses causality to achieve
stable predictions. Shen et al. [22] propose an algorithm,
named CRLR, which effectively improves the learning
ability of the model in the presence of agnostic selection
bias. Zhang et al. [23] obtain causal instances by evaluating
the causal effects of the labels of bags and instances. They
define a specific form of causal instance and propose a
novel MIL algorithm that improves the robustness of the
classifier.
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The connection between SIL and MIL Approaches to solv-
ing MIL problems can be broadly classified into two
categories: One class of approaches solves the MIL prob-
lem directly at the bag-level or instance-level. Another type
of approach uses SIL methods to solve MIL problems
(this paper focuses on this type of approach). We briefly
summarize some recent related work in Table 1 that demon-
strates the advantages and disadvantages of SIL and MIL for
different tasks.

Although a large number of prior studies demonstrate the
performance of MIL and SIL separately in different tasks
(e.g., Table 1), most of the conclusions are summarized
by the results of specific experiments, while few studies
critically analyze the rationale behind solving MIL prob-
lems using SIL methods at the theoretical level [16, 23,
24]. Inspired by the above work, in this paper, we first pro-
vide a lower bound on the number of samples required to
identify causal factors using causal inference theory. Sub-
sequently, we demonstrate the superiority and limitations of
the SIL approaches to solving MIL problems by rigorous
theoretical analysis. Finally, we extend our conclusions to
the case of distribution change. Our conclusions reveal to a
certain extent why SIL methods can effectively solve MIL
problems.

3 Preliminaries

In this section, the key notations and some basic notions
about multi-instance learning, causal factor are reviewed.
Table 2 summarizes the key notations commonly used in
this paper and their descriptions.

Definition 1 ([26] Multi-instance Learning (MIL)) Let
finite set Xins = {x} denote the space consisting of all
instances x, and let N(X ) = {o(x)}, where o(x) be the
function that can be described by o(x) : Xins → N. The
goal of MIL can be formalized as learning the function
mapMIL : N(X ) → Y , where Y represents the label set. In
particular, the binary MIL problem can be described as:

BINMIL : N(X ) → {Y+, Y−}.

In our work, we only consider the binary MIL problem,
unless otherwise specified. To simplify the presentation, for
any finite set, we use {·}n to denote the set containing n

elements, i.e., {x1, x2, ..., xn} � {xi}n, equivalently,
|{xi}n| = n (where ‘| · |’ denotes the cardinal number of the
set). Let B = {Bi}r be the set containing r pairs (Bi, Y+/−),
where Bi � {xi}n represents that a bag contains n instances.

Table 1 A brief summary of the work related to MIL and SIL under different tasks

Method Task Description

SIL Gene expression and text categorization [34] SI classifiers outperform MI classifiers when there is not
enough data to train a bag-level classifier.

SIL Object class recognition and drug activity prediction [35] MILES transforms MIL into the SIL, which improves clas-
sification accuracy and robustness to labeling uncertainty
without satisfying the standard assumptions.

SIL Prediction on agnostic test data[21] The classifier constructed based on causality can achieve
stable prediction for unknown test environments.

SIL Classification tasks under positive instance sparsity [36, 37] SI classifiers are inferior to MI classifiers when the bag
with positive labels contains fewer positive instances.

SIL Large-scale MIL problems[38] As an extended version of [35], [38] still follows the
transformation of MIL problems into SIL learning to solve
and enable large-scale MI data efficiently.

MIL MIL with key instance shift [15] When the training and test instances do not follow the
i.i.d. assumption, directly applying the SI distribution
change method to MIL does not effectively improve the
performance of the model.

MIL Robust classification in distributional biased data [23] [23] proposes a MIL framework that does not require
access to unlabeled test data, based on the potential
outcome framework in causal inference.

MIL Medical diagnosis [31] MIL can take advantage of incomplete, fragmented
information in the model to generate reliable diagnostic
results.

MIL MI classification while ignoring standard assumptions [39] Linear programming procedures can perform multi-
instance classification tasks with adjusting instance contri-
butions while ignoring standard assumptions.

MIL Learning from similar and dissimilar bags [24, 40] [24] learns from similar and dissimilar bags and obtains
a series of performance analyses on MI classifiers and SI
classifiers.
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Table 2 Key notations and
descriptions Notation Description

∅ the empty set

Xins = {x} the finite set of instance x

x̂ the causal instances

xcnf the non-causal instances

Y label set, in this paper, we set Y = {Y+, Y−}
Bi the i-th bag

B = {Bi}r the set containing r pairs (Bi, Y+/−)

B(+) the set of all bags with positive label “+”

B(−) the set of all bags with negative label“+”

B+
i ∈ B(+) the i-th bag in B(+), “+” means the bag label is “+”

B−
i ∈ B(−) the i-th bag in B(−), “-” means the bag label is “-”

| · | the cardinal number of the set, e.g., |∅| = 0, |{a, b, c}| = 3

# positive/total instances the number of positive/total instances

{xi}n the abbreviated form of the set {x1, x2, ..., xn}
ψ the labeling function of the bag

(· ∨ ·) the Boolean OR function

ξ(·) the binary classification function

�+ the collection of causal instances from all B+

�+ the collection of non-causal instances from all B+

�− the collection of non-causal instances from all B−

�(x) the causal effect of x on the bag label in Theorem 1

(1 − αc) the confidence interval in Theorem 2

E(·) the expected value of the bag label

H(·) the Heaviside step function in Theorem 3 and Theorem 4

L(x) the loss function in Theorem 3 and Theorem 4

In this paper, we assume that |Bi | = |Bj �=i |, which is
a reasonable extension. For example, for any B−

i , the label
of the bag has no relation with the number of instances
inside the bag. We use B(+) = {B+

i }k+ and B(−) =
{B−

i }k− to represent that the set of all bags labeled Y+
and Y−, respectively. Given a bag Bi = {xi}n, and φ :
Xins → Yi,i∈{+,−}, the MIL function BINMIL � ψ(·) can
be equivalently described in the following form [26]:

ψ(Bi) = (· · · ∨ φ(xi) ∨ φ(xi+1) ∨ · · · )n. (1)

Where ψ is denoted as the labeling function of the bag and
‘(· ∨ ·)’ is the Boolean OR function.

Definition 2 ([23] Causal Factor) If ∃ x ∈ B+, such that

ψ(x ∪ B−) = Y+, ψ(B−) = Y−. (2)

Then the instance x is denoted as causal factor x̂.

By Definition 2, instances in the bag can now be divided
into two categories: One category is the set consisting of
causal factors (denoted as {x̂}, we use causal factors instead
of causal instances here to emphasize the importance of
these instances in the MIL task because x̂ is the unique
factor that causes the bag to be labeled Y+) and the

other category is the set consisting of non-causal instances
(denoted as {xncf }). Obviously, the instance x can be
formalized as:

x =
{

x̂, if ψ(x ∪ B−) = Y+
xncf , otherwise.

(3)

The causal factors ensure that ψ(B) = Y+ holds for any
bag B that contains them, and the non-causal instances do
not affect the label of the bag. For example, we imagine
such an image, a cat playing on the lawn (i.e., Fig. 1). The
classifier will label images based on the presence or absence
of the cat in the image. If there is at least one cat in
the image, the classifier outputs Y+, otherwise, the classifier
outputs Y−. Apparently, the cat in the image is a causal
factor, while the rest, such as lawn, flower, bamboo
basket, etc., are non-causal instances, and these non-
causal instances do not affect the output of an oracle
classifier. Therefore, in this paper, we follow the stander
multi-instance assumption, i.e., the bag is labeled Y−, if and
only if the bag does not contain any causal factor.

Fortunately, causal factors can be obtained by estimating
the causal effect of an instance on the label of the bag.
Specifically, for the label Y , the causal effect of an
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Fig. 1 (1) An example of the standard multi-instance assumption. In
this example, the image is considered as a bag and the cat and other
objects are considered as instances in the bag. As long as the image
has a cat in it, the label of the image is positive (e.g., ), and if

the image does not contain any cat, the label of the image is negative
(e.g., ). (2) In the first picture on the left, the cat is the causal fac-
tor, while flower, bamboo basket, and lawn are non-causal
instances

intervention (e.g., adding or removing a candidate instance
x to or from a bag) is a comparison of the potential outcomes
of the two label states under the POF [23]. Inspired by the
application of causal inference to MIL tasks, in the next
section, we aim to capture the connection between causal
factors and MIL tasks.

4 Theoretical analysis based
on causal inference

In this section, we focus on three main problems.
Specifically, in Section 4.1, we obtain a minimum number
of candidate instances required to determine the causal
factor. In Section 4.2, we analyze the connection between
causal factors and the SIL loss function. In Section 4.3, we
analyze the effect of parameters on the decision threshold of
the classifier.

4.1 Determining the causal factors by estimating
causal effects

In this section, we determine whether an instance x is
a causal factor by estimating the average causal effect
(ACE) [41] (also called average treatment effect (ATE),
denoted as �(x)) on the bag label. Specifically, let YT (x∈B)

be the potential label of bag B if x ∈ B. T (x ∈ B) can be
viewed as a treatment of B. (i.e., adding x to B). Similarly,
let YT (x /∈B) be the potential label of bag B if the instance x

is not present in B. Therefore, the �(x) can be defined as:

�(x) = E[YT (x∈B)] − E[YT (x /∈B)], (4)

where E(·) represents the expected value of the bag label.

Note that T (x ∈ B) can be obtained by adding the
candidate instance to B (we use C+ = {x|x ∈ B+} = {xi}q
to denote the candidate set and the x̂ to denote the causal
factor in C+). Similarly, T (x /∈ B) can be obtained by
removing the candidate instance from bag B. Therefore, in
the MIL task, (4) can be equivalently described as:

�(x) = E[Ŷ |BT (x∈B)] − E[Ŷ |BT (x /∈B)], (5)

where Ŷ be the new label of bag B after being treated. Note
that if the performance of the classifier is good enough (e.g.,
a perfect classifier), (5) can assist the classifier to effectively
distinguish whether an instance x is a causal factor or a
non-causal instance. The specific conclusion is shown in
Theorem 1.

Theorem 1 ([23] Causal effect of instance x on label
Y+/−) Given an instance x, the estimated value of �(x) can
be approximated as:

�(x) ≈ E[Ŷ |YB = Y−, Bx∈B ] · Pr(YB = Y−) (6)

This theorem is elaborated upon in [23]. Theorem 1
describes the causal relationship between the label of the
bag and the instances it contains under an ideal experimental
situation.

The key is how to estimate the value of E[Ŷ |YB =
Y−, Bx∈B ] in actual tasks. An intuitive idea is to traverse
all the instances, and finally obtain the value of �(x).
However, even in a relatively small dataset, the cost of this
calculation is very huge. Therefore, a certain number of
samples are usually collected to estimate the value of �(x).
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For example, we use the sample average to estimate the first
term in Theorem 1 (i.e., E[Ŷ |YB = Y−, Bx∈B ]) as:

�̂(x) = 1

q

q∑
i=1

ξ(B−
i (xi)), (7)

where ξ(·) is a classifier with B−
i (xi) (B−

i (xi) = {B−
i ∪

xi}, xi ∈ C+, i = {1, 2, ..., q}) as input and a label as output.
The core idea of this approach is to determine whether xi is
a causal factor by using the label of B−

i (xi). Because if xi is
(not) a causal factor, then the ideal classifier will predict the
label of B−

i (xi) as 1 (0). In the MIL task, we can determine
which instances are causal factors by estimating (7). For
example, by setting the threshold t , and we select the higher-
scoring x as the causal factor x̂ (this goal can be achieved
by Algorithm 1 proposed in [23]).

However, [23] ignores a crucial constraint on the C+.
In other words, to obtain a valuation of (7) within an
appropriate confidence interval, we need to determine how
many instances the candidate set C+ contains at least. To
achieve the determination of causal factors at the lowest
possible cost. We prove a lower bound of the samples
required to estimate (7), which is the minimum value
of q = |C+| of the candidate set, by the following
theorem.

Theorem 2 (Minimum sample cost of obtaining causal
factors within 95% confidence interval) In an ideal MIL
task, the sample lower bound for acquiring the 95%-
confidence interval at a sub-linear cost is q ≥ log 40

2ε2 .

Proof Given the instance xi ∈ C+, we assume
E[ 1

q

∑q

i=1 ξ(B−
i (xi))] = δc. Utilizing Hoeffding’s inequal-

ity [42], we have

Pr

(
1

q

q∑
i=1

ξ(B−
i (xi)) − δc ≥ ε

)
≤ e−2ε2q . (8)

Furthermore, (8) can be extended to the form of the two-
sided variant as follows [43]:

Pr

(∣∣∣∣∣ 1q
q∑

i=1

ξ(B−
i (xi)) − δc

∣∣∣∣∣ ≥ ε

)
≤ 2e−2ε2q . (9)

Let [δc−ε, δc+ε] be the confidence interval and let αc be the
level of significance for [δc − ε, δc + ε] (i.e., the probability
of making an error), then we have

αc = Pr

(
1

q

q∑
i=1

ξ(B−
i (xi)) /∈ [δc − ε, δc + ε]

)
≤ 2e−2ε2q .

(10)

Solving the above inequality, we require at least q ≥
log( 2

αc
)/2ε2 samples to acquire (1−αc) confidence interval

[δc − ε, δc + ε]. In particular, let αc = 0.05, we have
q ≥ log 40

2ε2 .

The above theorem provides the cost of acquiring the
confidence interval. Therefore, we can use Theorem 2 to
obtain a lower bound (i.e., log 40

2ε2 ) on the number of samples
(i.e., q) used to determine the causal factor x̂ within 95%
confidence interval.

4.2 Connection between causal factor
and loss function

Using the SIL approach to solve MIL problems is a
popular way [21]. Therefore, in this section, we follow
the framework proposed by [23] for further theoretical
analysis of MIL using the SIL approach. Specifically, we
will explore the potential connection between the number
of causal factors in the bag and the loss function of the SIL
method. Please note that in our subsequent analysis, we do
not care about the specific experimental details of the model
in determining causal factors (this problem is elaborated
upon in [23]). Therefore, we assume that the model has
determined the causal factor x̂, i.e., there exists an ideal
classifier ξ(·) to determine causal factors.

The core of our study is to describe the effect of the
number of causal factors in the bag on the loss function
in different situations where the TTD assumption holds
or not. And further explains why using SIL methods to
study MIL problems is an effective tool. Specifically, in
Theorem 3, based on the TTD assumption, we use rigorous
mathematical language to perfect the conclusion in [16].
Furthermore, we extend the conclusion of Theorem 3 to
the case where the distribution changes (see Theorem 4).
These conclusions help us to capture more thoroughly the
connection between data distribution, causal factors, and
loss function.

For a clearer description, we complement some notations
and their descriptions. Let (B+

i , B−
i ) denote the pair of B+

i

and B−
i , and one B+

i corresponds to one B−
i . Let �+ denote

the collection of causal factors from positive bags, i.e.,

�+ = {x̂|x̂ ∈ B+}, and |�+| = τ+
c , (11)

where ‘+’ indicates that the label of the bag is Y+, the
subscript ‘c’ means that the causal factors. Similarity, let

�− = {xncf |xncf ∈ B−} and |�−| = τ−
n , (12)

where ‘−’ indicates that the label of the bag is Y−, the
subscript ‘n’ represents the non-causal instances.

For the sake of computational simplicity, we assume
that all bags contain the same number of instances, i.e.,
|Bi | = |Bi �=j |. Note that, according to the definition of
causal factor, for any B+

i , no matter whether there are one or
more causal factors in B+

i , the label of bag B+
i is always Y+.
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Therefore, we set each bag B+
i to have the same number of

causal factors (This setting is just to simplify the theoretical
calculations, and in real experimental scenarios in Section
5, we estimate the proportion of causal factors in each B+).
Formally, let P +

i ⊆ �+ (P +
j ⊆ �+) denote the subset of all

causal factors in B+
i (B+

j ), we can set |P +
i | = |P +

j | < τ+
c .

Similarly, the number of remaining non-causal instances in
B+

i is defined as |N+
i |. Since B− does not contain any

causal factors, i.e., P −
i = ∅ (P −

i ⊆ �− represents the
subset of all causal factors in �−), based on the above
analysis, we have |B−

i | = |B−
j | < τ−

n .
This is a reasonable extension of n in B = {xi}n.

Specifically, for B+
i , no matter how many non-causal

instances are included in B+
i , they do not affect YB+

i
= Y+.

Similarly, for B−
i , no matter how many non-causal instances

are included in B−
i , they do not affect YB−

i
= Y−.

Let

�+ = {xncf |xncf ∈ B+} (13)

be the set of non-causal instances in the B+, and |�+| =
τ+
n , where ‘+’ means the label of the bag is Y+, the subscript

‘n’ means the non-causal instances. Intuitively, we have that

|�+| + |�+| = |�−| and |�+| = τ+
n = τ−

n − τ+
c . (14)

Assuming that the instances in bag B+ contain causal
factors and non-causal instances, we have that for each B+

i ,
|B+

i | = |P +
i | + |N+

i | holds. To sum up, we have the
following assumptions, i.e.,

|�+| = τ+
n , |�−| = τ−

n , |�+| = τ+
c , τ+

c + τ+
n = τ−

n .

(15)

Based on the above analysis, in the next, we consider a
situation that the instances in �+ and �− follow the TTD
assumption. Based on the TTD assumption, we obtain the
lower bound of the SIL loss function.

Theorem 3 (Minimal value of the SIL loss function when
the IID assumption holds) Let ξ(·) denote the Heaviside
step function such that ξ(x ∈ �+) = 1, and ξ(x /∈ �+) =
0. If the instances in �+ and �− follow TTD assumption,
then the SIL loss function L(x) can be minimized by linear
function ξm of ξ such that

inf{L(x)} = − log
(

βτ+
n · (1 − β)τ

−
n

)
. (16)

where β = τ+
n · (τ+

n + τ−
n )−1.

Proof First, we introduce the Heaviside step function1 ξ(·)
and a linear function ξm(·) of ξ(·). Since ξ(x) = 1 if and
only if x ∈ �+, i.e., ξ(x̂) = 1, ξ(·) can be denoted as

1The Heaviside function may be defined as a piecewise function,
which can describe the ideal binary classification.

ξ(·) � H[·], where H[·] be the Heaviside step function.
Given the linear function

ξm(x) = αξ(x) + β(1 − ξ(x)), (17)

where α is the weight of the causal factors in the B+ and
β is the weight of non-causal instances. Intuitively, for α,
since all causal factors are only in B+, α = 1 in (17). For
β, we have at least two alternative forms for the value of β,
which are

β =
{

β1 = |�+| · (|�+| + |�−|)−1

β2 = |�−| · (|�+| + |�−|)−1
(18)

Next, we need to determine β (whether β = β1 or
β = β2) by calculating the extreme value of loss functions
L(x) [16],

L(x) = −
∑
x=x̂

log ξσ (x)

−
⎛
⎝∑

x∈�+
log ξσ (x) +

∑
x∈�−

log(1 − ξσ (x))

⎞
⎠ . (19)

We first determine the specific form of ξ(·). Assuming that
ξ(·) be a composite function about ξσ (·),
ξ(·) � H(ξσ (·))
s.t.

{
ξ(x) = ξσ (x) = 1, if x = x̂

ξ(x) = 0, 0 < ξσ (x) < 1, otherwise.

(20)

where 0 < ξσ (x) < 1 ensures that the loss function L(x)

has extreme value in the interval (0, 1).
According to the definition of ξ(·), (20) can be

equivalently described as
∑

x=x̂ log ξσ (x) = 0. ξσ (x) can
be expressed as a scalar that follows the distribution Dis

(denoted as ξσ ∼ Dis). Therefore, L(x) can be represented
as:

− L(x) = |�+| ·
(∑

x∈�+ log ξσ (x)

|�+|
)

+|�−| ·
(∑

x∈�− log(1 − ξσ (x))

|�−|
)

. (21)

Assuming that
∑

i log ξσ (xi) be a large sample data, thus
we can use the expected value of data to replace the average
of
∑

i log ξσ (xi) as:

1

i

∑
i

log ξσ (xi) ≈ Eξσ ∼Dis[log ξσ (xi)]. (22)

Then we have

− L(x) = |�+| · Eξσ ∼Dis log ξσ (x)

+|�−| · Eξσ ∼Dis log(1 − ξσ (x))

= Eξσ ∼Dis

[|�+| · log ξσ (x)

+|�−| · log(1 − ξσ (x))
]

. (23)
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To simplify the presentation, we let

h(ξσ (x)) = |�+| · log ξσ (x) + |�−| · log(1 − ξσ (x)). (24)

Next, we obtain the extreme value h(ξσ (x)) by solving the
derivative h′(ξσ (x)). After a simple calculation, we obtain
that

h(ξσ (x))max = h
( |�+|

|�+|+|�−|
)

= h(β1)

s.t. 0 < ξσ (x) < 1.
(25)

Therefore, the coefficient β in ξm(x) can be determined to
be β1.

Next, we calculate the minimum value of L(x).
Specifically,

min{L(x)} = −Eξσ ∼Dis [h(ξσ (x))]ξσ (x)=β1= −Eξσ ∼Dis

[|�+|·log β1+|�−|·log(1 − β1)
]

= −Eξσ ∼Dis

[
τ+
n · log β1 + τ−

n · log(1 − β1)
]

= −Eξσ ∼Dis

[
log
(

βτ+
n

1 · (1 − β1)
τ−
n

)]
.

(26)

Obviously, all parameters in Eξ∼Dis [·] are constants, thus
(26) is equivalent to

inf{L(x)} = − log
(

βτ+
n

1 · (1 − β1)
τ−
n

)
, (27)

which proves the theorem.

In particular, we consider an extreme case where there is
only one causal factor in the bag, i.e., τ+

c = 1. According
to our previous assumption, there is τ+

n ≈ τ−
n , Thus, we

obtain a minimum value of L(x) is τ−
n log 4.

Based on the TTD assumption, Theorem 3 shows that
the function ξm(·) can optimize the loss objective function
L(x) to a minimum value. However, the TTD assumption
is often violated in most real-world applications. Therefore,
we extend the conclusion of Theorem 3 to the situation
where the distribution changes. The conclusion is shown in
Theorem 4.

Theorem 4 (Minimal value of the SIL loss function when
the TTD assumption does not hold) Let ξ(·) denote a
Heaviside step function such that ξ(x ∈ �+) = 1,
and ξ(x /∈ �+) = 0. If instances in �+ and �−
are drawn from the different distributions D�+(x) and
D�−(x), respectively, then the SIL loss function L(x) can
be minimized by linear function ξm of ξ such that

inf{L(x)} = −E

ξσ ∼D̂is

[
τ+
n · δ · log(β1 · δ)

+(τ+
n + τ−

n − τ+
n · δ) · log(1 − β1 · δ)

]
. (28)

Where D̂is = β1 · D�+(x) + β2 · D�−(x), and D�+(x) =
δ · D̂is.

Proof According to Theorem 3 and (22), we know that

−L(x)=Eξσ ∼Dis

[|�+|·log ξσ (x)+|�−|·log(1−ξσ (x))
]
,

s.t. ξσ (x = x̂) = 1.

(29)

Since D�+(x) �= D�−(x), we assume that the new
distribution D̂is is an affine combination of distribution
D�+(x) and D�−(x), i.e.,

D̂is = β1 · D�+(x) + β2 · D�−(x)

s.t. β1 + β2 = 1,
(30)

where β1 and β2 are the coefficients in (18).
Given a Heaviside step function ξ(·) � H[ξσ (·)], which

implies that

�+ ∩ (�+ ∪ �−) = ∅. (31)

According to (17) in Theorem 3, we can determine that the
function ξm(·) has the following form,

ξm(x) = α̂ξ(x) + β̂(1 − ξ(x)),

where α̂ = 1(because all causal factors are only in B+).
Similar to the setting of parameters β1 and β2 in Theorem 3,
we assume that

β̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β̂1 = τ+
n ·D�+ (x)

τ+
n ·D�+ (x)+τ−

n ·D�− (x)
, or

β̂2 = τ−
n ·D�− (x)

τ+
n ·D�+ (x)+τ−

n ·D�− (x)

β̂1 + β̂2 = 1.

(32)

According to (30), it is not difficult to find that

β̂1 = β1 · D�+(x)

D̂is(x)
and β̂2 = β2 · D�−(x)

D̂is(x)
. (33)

Note that the coefficient β̂ is a coefficient function β̂ �
β(D̂is) about the distribution D̂is. Therefore, ξm(x̂) = 1
and ξm(x /∈ �+) = β̂1 or β̂2.

According to (22) and the D̂is contains the distribution
information of D�+(x) and D�−(x), we have

− L(x) = Eξσ ∼D̂is

[
|�+|D�+(x)

D̂is(x)
log ξσ (x)

+|�−|D�−(x)

D̂is(x)
log(1 − ξσ (x))

]
= Eξσ ∼D̂is [h1(ξσ (x))] . (34)

We obtain the extreme value of the function h1(ξσ (x)) by
solving the derivative h′

1(ξσ (x)). For a determined instance

x,
D�+ (x)

D̂is(x)
and

D�− (x)

D̂is(x)
can be regarded as ratio constants,

the extreme solution of h1(ξσ (x)) is

h1(ξσ (x))max = h1

( |�+| · D�+(x)

(|�+| + |�−|) · D̂is(x)

)

= h1

(
β1

D�+(x)

D̂is(x)

)
= h1(̂β1)

s.t. 0 < ξσ (x) < 1. (35)
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Therefore, the coefficient β̂ in the function ξm(x) can be
determined to be β̂1.

Furthermore, according to (30), we have that

1 = β1 · D�+(x)

D̂is(x)
+ β2 · D�−(x)

D̂is(x)
. (36)

To make the expression more concise, we set
D�+ (x)

D̂is(x)
= δ,

then we have

D�−(x)

D̂is(x)
= 1

β2
·
(

1 − β1 · D�+(x)

D̂is(x)

)
= 1 − β1δ

β2
. (37)

Thus h1(ξσ (x))max can be rewritten as:

h1(ξσ (x))max = h1(̂β1)

= D�+(x)

D̂is(x)
|�+| · log

(
β1 · D�+(x)

D̂is(x)

)

+D�−(x)

D̂is(x)
|�−| · log

(
1 − β1 · D�+(x)

D̂is(x)

)

= τ+
n · δ · log(β1 · δ) + τ−

n ·
(

1 − β1δ

β2

)
· log(1 − β1 · δ)

= τ+
n ·δ ·log(β1 · δ)+(τ+

n +τ−
n −τ+

n · δ) · log(1 − β1 · δ).

(38)

Therefore, we obtain that

inf{L(x)} = −E

ξσ ∼D̂is

[h1(ξσ (x))max]

= −E

ξσ ∼D̂is

[
τ+
n · δ · log(β1 · δ)

+(τ+
n + τ−

n − τ+
n · δ) · log(1 − β1 · δ)

]
, (39)

which completes the proof.

4.3 Effect of parameters on the decision threshold
of classifier

In this section, we discuss the effect of different parameters
on the decision threshold (denoted as dt ) of the classifier
when the TTD assumption holds and does not hold,
respectively.

(1) The effect of parameters τ−
n , τ+

n on function ξm(x) when
TTD assumption holds As Theorem 3 reveals, we find that
τ−
n and τ+

n have a direct effect on the extremes of the
loss function L(x), which can be minimized by ξm(x).
This implies that the performance of the classifier can be
improved with the aid of ξm(x). Therefore, we explore the
essential connection between the parameters τ−

n and τ+
n and

ξm(x).
Note that ξm(x) is a new classifier developed from ξ(x),

and ξm(x) can be formalized as:

ξm(x) =
{

1, if x = x̂

β1, otherwise
, (40)

where β1 = |�+| · (|�+| + |�−|)−1 = τ+
n · (τ+

n + τ−
n )−1.

Since τ+
n and τ−

n take different values for different bags,
this directly affects the range of β1 and the determination
of the decision threshold dt for the classifier in real task.
Therefore, our goal is to find a stable decision threshold dt

such that max(β1) < dt < 1. Specifically, if the instances in
�+ and �− follow TTD assumption, in terms of Theorem 3,
we have

β1 = τ+
n

τ+
n + τ−

n

= 1

1 + τ−
n

τ+
n

. (41)

For the sake of descriptive brevity, we set τ−
n

τ+
n

= kτ , then we

obtain that

β1 = 1

1 + kτ

, (42)

As discussed previously, we set the number of instances in
all bags to the same number, hence, according to (15), kτ

can be rewritten as:

kτ = τ−
n

τ−
n − τ−

c

. (43)

Note that in a real experiment, τ−
n is a certain number

(e.g., if the image is considered as a bag, the image can
be partitioned into a certain number of patches), and the
more causal factors in the bag (i.e., τ+

c ), the closer to
0 β1 is. Therefore, in this case, the decision threshold
dt is empirically chosen as dt > 0.5. Besides, we
consider another special case where the bags with positive
labels contain fewer causal instances (i.e., sparse positive
instances), and we introduce the witness rate (WR [44]) to
analyze the dt selection of the classifier in the case of sparse
causal instances (i.e., low witness rate).

Decision threshold selection at low witness rate. In
MIL, the witness rate describes the ratio of the number
of positive instances to the total number of instances.
Therefore, in this paper, WR can be equivalently written as:

WR = #Causal factors

#Total instances
= |�+|

|�+| + |�+| + |�−| . (44)

When the WR is high, the classification task can be trained
by a conventional supervised learning algorithm. However,
the performance of the algorithm is affected at a low
WR [45].

Obviously, in our task, when the total number of
instances are determined, the value of WR depends only on
|�+|. According to (15), we have that

|�+| = τ+
c = τ−

n − τ+
n , (45)

which is equivalent to

WR ∝ τ−
n

τ+
n

= kτ . (46)
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Thus, if |�+| is small, we have that τ−
n ≈ τ+

n , i.e., kτ ≈ 1.
This means that even at a low WR, β1 can still reach 0.5. In
summary, the decision threshold dt > 0.5 can stably satisfy
the classifier in the experiment. In other words, ξm(x) shows
a more stable classification performance at a low witness
rate.

(2) The effect of parameters τ−
n , τ+

n , D�− (x) and D�+ (x)
on function ξm(x) when TTD does not hold. Similar to the
analysis of (40) in Theorem 3, we analyze the effect of
�+ and �− on ξm(x) if the instances in �+ and �− are
drawn from the different distributions D�+(x) and D�−(x),
respectively.

In this scenario, ξm(x) is a new classifier constructed by
ξ(x), and ξm(x) can be formalized in the form of

ξm(x) =
{

1, if x = x̂

β̂1, otherwise
, (47)

where β̂1 = τ+
n ·D�+ (x)

τ+
n ·D�+ (x)+τ−

n ·D�− (x)
.

Specifically, if the instances in �+ and �− do not follow
the TTD assumption, then we have

β̂1 = τ+
n · D�+(x)

τ+
n · D�+(x) + τ−

n · D�−(x)
= 1

1 +
(

τ−
n

τ+
n

)
·
(D�− (x)

D�+ (x)

) .

(48)

In contrast to (41), the value of function ξm(x) depends on

both τ−
n

τ+
n

(denoted as kτ ) and
D�− (x)

D�+ (x)
(denoted as k�).

We visualize the effect of parameters τ−
n

τ+
n

and
D�− (x)

D�+ (x)
on

the decision threshold of the classifier by a simple example.
Suppose that D�−(x) ∼ N1(μ1, σ1) and D�+(x) ∼
N2(μ2, σ2). For the sake of computational simplicity, we
assume that distributions N1 and N2 share an identical
variance, i.e., σ1 = σ2 = σc. In this scenario, we have

k� = D�−(x)

D�+(x)
=

1
σc

√
2π

e
− 1

2

(
x−μ1

σc

)2

1
σc

√
2π

e
− 1

2

(
x−μ2

σc

)2

= exp

(
μ1 − μ2

2σ 2
c

(2x − μ1 − μ2)

)
. (49)

Let μ2
μ1

= kμ, then (49) can be rewritten as:

k� = exp
[

(1−kμ)μ1

2σ 2
c

· (2x − (1 + kμ)μ1
)]

= exp

[(
μ2

1
2σ 2

c

)
k2
μ +
(−xμ1

σ 2
c

)
kμ +
(

−μ2
1+2xμ1

2σ 2
c

)]
� exp

[
f (kμ | μ1, σc, x)

]
.

(50)

Therefore, for fixed instance x, mean μ1 and standard

deviation σc, −xμ1
σ 2

c
and

−μ2
1+2xμ1
2σc

in (50) are considered

constants. f (kμ | μ1, σc, x) is a quadratic function with kμ

as the independent variable, and since μ1
2σc

> 0, there exists
a minimal value of the function f (kμ | μ1, σc, x). After a
simple calculation, we can obtain that the minimum value
of the function f (kμ | μ1, σc, x), i.e.,

min k� = min

(D�−(x)

D�+(x)

)
= exp

[
−1

2

(
μ2 − μ1

σc

)2
]

,

(51)

when kμ = x
μ1

(i.e., x = μ2).

Through the previous analysis, we confirm that both τ−
n

τ+
n

and
D�− (x)

D�+ (x)
have minimum values. Thus, we conclude that

– When
(

τ−
n

τ+
n

)
·
(D�− (x)

D�+ (x)

)
is large, β̂1 tends to 0, and dt

can be empirically chosen as dt > 0.5.

– When one of τ−
n

τ+
n

and
D�− (x)

D�+ (x)
is small, the result for(

τ−
n

τ+
n

)
·
(D�− (x)

D�+ (x)

)
is difficult to determine, fortunately,

it is then only necessary to set the dt to a larger value

(between 0.5 and 1). For example, if
(

τ−
n

τ+
n

)
·
(D�− (x)

D�+ (x)

)
≥

1, then dt > 0.5 is still a valid decision threshold.

– When τ−
n

τ+
n

and
D�− (x)

D�+ (x)
are small, we consider an extreme

case where
D�− (x)

D�+ (x)
reaches a minimum value and τ−

n

τ+
n

tends to 1 (i.e., low witness rate). In this case, the value
of β̂1 will be close to 1, and the dt should be relatively
large, e.g., dt > 1

1+min(k�)
. In other words, the decision

threshold of the classifier should be set as large as
possible when the TTD assumption is violated.

5 Experiments

5.1 Task and remark

In this section, we perform experiments on the object
classification task to validate our theoretical conclusion.
Without exact coordinates for each object in the image, the
object classification task can be seen as a classic standard
MIL problem, the overview of the classification framework
is shown in Fig. 2.

The following experiments will focus on verifying the
conclusion of Theorem 3 in a real task scenario. Since
Theorem 4 is a reasonable extension on Theorem 3
and the only difference is that the training data and
the testing data are from different distributions. This
means that experimentally verifying Theorem 4 is only a
minor difference from verifying Theorem 3 at the level
of experiment setup and model training, and is easy to
implement. Therefore, in the rest of this paper, we do
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Fig. 2 An overview of the main differences between our framework (green) versus the comparison framework (red) in the object classification
task. Best viewed in colors

not repeat similar experimental repetitions to verify the
conclusion of Theorem 4.

5.2 Dataset

COCO [46]. The experiments to verify our conclusions are
conducted on dataset COCO,2 which is a large-scale dataset
for object detection, segmentation, and captioning tasks
published by Microsoft. COCO contains 1.5 million object
instances. In addition, this dataset provides 5 captions per
image. We use all nouns in the captions as labels of the
object classification task.

5.3 Experimental setting

– Image Processing: we consider each image I (size of
576 × 576) as a bag containing a certain number of
objects (12 × 12 patches of size 224 × 224 with stride
32, i.e., each image contains 144 patches).

– Model Setup: we adopt the VGG16 network [47] (the
parameters are shown in Fig. 2) to obtain the feature
maps (size of 12 × 12), and we use a one-dimension
convolution followed by a sigmoid to generate the
probability of 80 words for every image patch.

– Labels: captions are parsed to tokens, and 80 noun
tokens with bounding boxes are selected as class labels.

– Training and Testing dataset: the number of training
images is 82,783, the number of validation images is
20,252, and the number of testing images is 20,252.

– Learning rate: we set the learning rate to 0.0005.
Training runs until the performance on the validation
set does not improve.

– Parameters: an important parameter in the comparison

experiment is τ+
n

τ+
n +τ−

n
in Theorem 3. In the multi-label

classification task of images, the number of positive
and negative samples in the bag cannot be directly
determined. Therefore, we have the area ratio of object

2https://cocodataset.org/#home

region and non-object region in the COCO as the values
of τ+

n and τ−
n .

5.4 Experimental method

Let {yi}l be the label set, according to the experimental
setup, we have l = 80. For a fixed label yj , the MIL
objective can be obtained by

Oyj
(I ) = 1 −

144∏
i=1

(
1 − ξyj (xi)

)
, (52)

where ξyj (xi) is the output of the classifier ξ(·) (in
Theorem 3) with xi as input, under the label yj , xi is a patch
(144 in total) of an image I . Hence, we can obtain the total
cost by summing all Oyj

(I ), i.e.,

MIL(I ) =
80∑

yj ,j=1

CE(Oyj (I), Gyj
(I )), (53)

where Gyj
(I ) is ground truth corresponding to label yj , CE

stands for cross-entropy.
Similarly, for a specific label yj , the SIL objective can be

obtained by

SIL(I ) =
80∑

yj ,j=1

144∑
xi ,i=1

CE(ξ
yj
m (xi), Gyj

(I )), (54)

where ξ
yj
m (xi) is the output of classifier ξm(·) (i.e, (17)

in Theorem 3) corresponding to the label yj . Then, we
compare the performance of the model at the bag level.
Specifically, for an image I and a specific label yj , we use

Syj
(I ) = max

i
ξ

yj
m (xi) (55)

as the bag level score. Finally, we compare Syj
(I ) with

Gyj
(I ) using four popular metrics, which will be given in

the next section.
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5.5 Metrics

We compare the performance of the model with ξ(·) and
the optimized model with ξm(·) by four metrics [48], mean
average precision (mAP), hamming loss (HL), coverage
(COV), and ranking loss (RL).

– Mean average precision evaluates the mean of average
precision for all classes, where average precision (AP)
can be formalized as:

AP = 1

n

n∑
i=1

1

|Yi |

×
∑
y∈Yi

∣∣{ŷ | rank
(
xi, ŷ
)
� rank (xi, y) , ŷ ∈ Yi

}∣∣
rank (xi, y)

,(56)

where ŷ is the ground truth and rank (xi, y) refers to
the ranking of the object xi predicted to be y. n is the
total number of samples in the testing data. The value
of mAP ranges from 0 to 1. The closer to 1 the value is,
the better the performance of the model is.

– Hamming loss measures the number of times a label
is misclassified, e.g., a label belonging to a sample is
not correctly predicted, or a label that does not belong
to a sample is incorrectly predicted as belonging to that
sample. It can be formalized as:

HL = 1

n

n∑
i=1

1

T
|f (xi) SD(Yi)| , (57)

where f (·) is a multi-label classifier and SD(·)
evaluates the symmetric difference between two sets. T
is the total number of labels. The value of HL ranges
from 0 to 1. The closer to 0 the value is, the better the
performance of the model is.

– Coverage denotes the mean of the least ranked true
label among all samples. It can be formalized as:

COV = 1

n

n∑
i=1

max
y∈Yi

rank (xi, y) − 1. (58)

The value of CE ranges from 0 to 1. The closer to 0 the
value is, the better the performance of the model is.

– Ranking loss measures the number of times that the
predicted probability value of a relevant label is smaller

than the predicted probability value of an irrelevant
label. Ranking loss (RL) can be formalized as:

RL = 1

n

n∑
i=1

|{(y1, y2) | f (xi, y1) � f (xi, y2) |
|Yi ||Y c

i | ,

(y1, y2) ∈ Yi × Y c
i . (59)

Where Y c
i is the complementary set of Yi . The value of

RL ranges from 0 to 1. The closer to 0 the value is, the
better the performance of the model is.

5.6 Experimental results and analysis

The core of the experiment is to compare ξ(·) in the MIL
approach (i.e., Fig. 2) with ξm(·) in the SIL approach (i.e.,
Theorem 3). The results are given in Table 3.

As shown in Table 3, we find that the model ξm(·)
outperforms the original multi-instance classification model
in all four metrics. Overall, the results in Table 3 indicate
that:

– The model with ξm(·) improves mAP by 2.92%. This
is a good indication of the validity of the model with
ξm(·).

– Model with ξm(·) also achieves 0.035, 0.353, and 0.003
improvements in metrics HL, COV, and RL. The results
show that the improvement of mAP does not come at
the expense of other metrics, which sufficiently proves
the conclusion of our theoretical analysis.

– Causal factors have two effects on multi-instance
learning, one is that the causal factors in a bag
determine the bag label, and the other is that
their number affects the performance of the model.
Specifically, we know that the main difference between
the model with ξ(·) and the model with ξm(·) is the
coefficient β = τ+

n · (τ+
n + τ−

n )−1. When the number
of instances in the bag is determined (e.g., each image
is divided into 144 patches in our experiments), then
the coefficient β will strictly depend on the number of
causal factors in the bag (because τ+

n = τ−
n − τ+

c ). To
our surprise, the coefficient τ+

n plays a positive role in
all four of these main evaluation metrics.

– Together, these results provide important insights into
capturing the inner relationship between multi-instance
learning and causal factors.

Table 3 Comparison of model performance between ξm(·) and ξ(·)
Model Method mAP(%)↑ HL↓ COV↓ RL↓

The model with ξ(·) MIL (i.e., (52)) 57.20 0.172 9.583 0.045

The model with ξm(·) SIL (i.e., (55)) 60.12 0.137 9.230 0.042

Larger mAP indicates better model performance, while smaller HL (Hamming loss), COV (Coverage), and RL (Ranking loss) indicate better
model performance
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6 Conclusion

In this paper, we conduct a theoretical analysis of MIL
problems by using causal inference theory and the SIL
method. We first analyze the role of positive factors in
the bag using causal inference theory. In Theorem 2, we
prove a lower bounder of the number of sample instances
needed to effectively determine the causal factors within
a certain confidence interval. We then analyze the impact
of data distribution on the multi-instance learning problem.
Most of the previous MIL tasks are based on a strong
constraint (i.e., the TTD assumption) on data distribution.
However, in many real applications, the TTD assumption
is not followed. We capture the relationship between the
number of instances in the bag and the loss function when
the TTD assumption holds and does not hold, respectively
i.e., Theorem 3 and Theorem 4.

Specifically, we exhaustively analyze the number of
instances in the bag and the advantages of using a single-
instance approach to solve multi-instance tasks. Although
some previous studies have illustrated the drawbacks of the
single-instance approach in multi-instance learning tasks,
our conclusions show that the single-instance approach
demonstrates good robustness in solving multi-instance
learning problems with acceptable time costs. In addition,
an important detail is that we tend to ignore the effect of
the number of positive and negative instances in the bag on
the model when constructing the bag. Our conclusions show
that although the number of positive instances in the bag
does not affect the bag label (based on the definition of bag
label in multi-instance learning), it has a direct impact on
the performance of the model.

In addition, we analyze the effect of some parameters
on the decision threshold of the classifier. The theoretical
analysis shows that when the training and testing samples
follow independent identical distributions, the decision
threshold can be empirically chosen to be 0.5, while when
the training and testing samples do not follow independent
identical distributions, the decision threshold should be
appropriately increased to ensure the performance and
effectiveness of the classifier.

Finally, we verify our above theoretical analysis by a
classical MIL task, the experimental results and the theo-
retical analysis provide important insights for researchers
using causal inference theory and the SIL method to study
multi-instance learning tasks.
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