
https://doi.org/10.1007/s10489-022-03271-3

A density estimation approach for detecting and explaining
exceptional values in categorical data

Fabrizio Angiulli1 · Fabio Fassetti1 · Luigi Palopoli1 · Cristina Serrao1

Accepted: 18 January 2022
© The Author(s) 2022, corrected publication 2022

Abstract
In this work we deal with the problem of detecting and explaining anomalous values in categorical datasets. We take the
perspective of perceiving an attribute value as anomalous if its frequency is exceptional within the overall distribution of
frequencies. As a first main contribution, we provide the notion of frequency occurrence. This measure can be thought of
as a form of Kernel Density Estimation applied to the domain of frequency values. As a second contribution, we define an
outlierness measure for categorical values that leverages the cumulated frequency distribution of the frequency occurrence
distribution. This measure is able to identify two kinds of anomalies, called lower outliers and upper outliers, corresponding
to exceptionally low or high frequent values. Moreover, we provide interpretable explanations for anomalous data values.
We point out that providing interpretable explanations for the knowledge mined is a desirable feature of any knowledge
discovery technique, though most of the traditional outlier detection methods do not provide explanations. Considering that
when dealing with explanations the user could be overwhelmed by a huge amount of redundant information, as a third
main contribution, we define a mechanism that allows us to single out outstanding explanations. The proposed technique
is knowledge-centric, since we focus on explanation-property pairs and anomalous objects are a by-product of the mined
knowledge. This clearly differentiates the proposed approach from traditional outlier detection approaches which instead
are object-centric. The experiments highlight that the method is scalable and also able to identify anomalies of a different
nature from those detected by traditional techniques.

Keywords Outlier Detection; Outlier Explanation; Categorical Data

1 Introduction

An outlying observation, or outlier, is one that appears to
deviate markedly from other members of the sample in
which it occurs. Their detection can identify system faults
and frauds before they escalate with potentially catastrophic
consequences; it turns out that, in some applications, the
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rare events can be more interesting than the more regularly
occurring ones [2, 26].

As outliers are interesting because they are suspected of
not being generated by the same mechanisms as the rest of
the data, it is important to justify why detected outliers are
generated by some other mechanisms [9, 22, 23]. However,
the border between data normality and abnormality is often
not clear cut; consequently, while some outlier detection
methods assign to each object in the input data set a label
as either “normal” or “outlier”, in this paper we describe
a method able to single out anomalous data bunches by
working on attributes and associated values.

We deal with categorical data where it is generally more
difficult to devise criteria able to discriminate normal and
abnormal data [46, 48]. Moreover, the notion of outlierness
in the field of numerical data has long been analysed [20]
and many approaches have already been designed to define
the exceptional nature of a property, but most of them cannot
be easily generalized to deal with categorical or mixed
categorical/numerical dataset.
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Detecting and explaining exceptional values in categorical data

Some algorithms exist that build an anomaly detection
model specially devised for categorical variables and
transform any numerical variable into a categorical space
through a previous discretization phase [32, 49]; however,
the main drawback of such a strategy is that the result of the
analysis strongly depends on the results of the discretization
process.

As an alternative, some mixed criteria techniques have
been developed which manage numerical and categorical
data separately and then merge the two by providing a
method which encompasses the analysis of an element in
both spaces [28, 30, 39].

In this paper, we specifically focus on problems which
are typical of categorical data. We do that by taking the
perspective of perceiving an attribute value as anomalous
if its frequency occurrence is exceptionally typical or un-
typical within the distribution of frequencies occurrences of
any other attribute value.

However, within the categorical scenario the process of
comparing frequencies poses several challenges. Indeed, if
we take the point of view that the data at hand is the result
of a sampling procedure in which data values are associated
with some pre-defined occurrence probabilities, then the
fact that a certain categorical value is observed exactly f

times is a matter of chance rather than being a hard property
of that value.

This has led us to the definition of the concept of
soft frequency occurrence which, intuitively, consists in
the estimate of the density associated with frequency
occurrences. We obtain this measure by specializing the
classical Kernel Density Estimation technique to the domain
of frequency values.

As a second contribution, we leverage the cumulated
frequency distribution of the above density estimate to
decide if the frequency of a certain value is rare when
compared to the frequencies associated with the other
values. In particular, we are able to identify two kinds of
anomalies, namely lower outliers and upper outliers. A
lower outlier is a value whose frequency is small while,
typically, the dataset objects assume a few similar values,
namely the frequencies of the other values are large. An
upper outlier is a value whose frequency is large while,
typically, the dataset objects assume almost distinct values,
namely the frequencies of the other values are small.

Note that both these definitions look for unexpected
behaviors by establishing a comparison between the
frequency of the outlier value and that of the other values
in the attribute domain. While the notion of lower outlier
shares similarities with the classical concept of anomaly, the
notion of upper outlier is conceptually different and should
not be confused with the concept of mode. Indeed, for a
value, a high frequency is not enough to be an upper outlier,
as the rest of the values must appear with low frequencies.

Consider the example reported in Table 1: as for the
attribute A1, value c is a lower outlier, since it occurs only
once and the other values occur many times; as for the
attribute A2, value e is an upper outliers, since it occurs
many times and the other values occur once or at most twice;
as for the attribute A3, although the value e has the same
frequency both in A2 and A3 and it is the most frequent in
A3, it is not an (upper) outlier since the other values in A3
have comparable frequencies.

Thus, we are able to single out, by one unified outlierness
measure, both exceptionally infrequent and exceptionally
frequent values; this peculiarity clearly differentiates our
proposal from almost all the existing measures of outlier-
ness.

Although values can show exceptional behavior with
respect to the whole population, it must be pointed out that
very often a value emerges as exceptional only when we
restrict our attention to a subset of the whole population [7].
In particular, our method, differently from many others, is
capable of returning to the user not only data bunches which
are anomalous with respect to the entire data population,
but also those records which are normal in general but
anomalous only when contrasted to a sub-population.
Therefore, our technique has been designed to output the so-
called explanation-property pairs (E, p), where E, called
explanation, denotes a condition used to determine the
target subpopulation and p, called property, represents an
attribute pa and a value pv such that pv is exceptionally
frequent or infrequent within the subpopulation selected by
the explanation E.

The output of the algorithm corresponds to the so-called
explanation-property pairs, which allows us to provide an
interpretable explanation for the abnormal values discov-
ered.

However, it must be noticed that, when dealing with
explanations, there exists a risk that the user is overwhelmed

Table 1 An example highlighting the notion of lower (A1) and upper
(A2) outliers

A1 A2 A3

obj1 a e e

obj2 a e e

obj3 a e e

obj4 b e e

obj5 b e e

obj6 b g f

obj7 c h f

obj8 d h f

obj9 d i g

obj10 d j g

obj11 d k g
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by a huge amount of redundant explaining patterns. Thus,
as a further contribution, we define a subtle mechanism
that allows us to single out the explanations encoding the
outstanding exceptionalities in the data, carrying out no
redundant information. Loosely speaking, for a condition to
encode a significant explanation we require the frequency
distribution of the associated sub-population to be unex-
pected given the knowledge of the frequency distribution
of any other of its super-population, where unexpectedness
is measured by means of the chi-squared goodness-of-fit
test. Moreover, for an attribute and a value to encode a sig-
nificant property, we require that the outlierness measured
within the sub-population associated with a given signif-
icant explanation improves the one measured within any
of its super-populations associated with significant expla-
nations. Outlierness improvement must be greater than a
factor which is inversely related to the unexpectedness of
the sub-population frequency distribution. Maximal signif-
icant explanation-property pairs are said to be outstanding.
The output of the algorithm precisely corresponds of the
so-called outstanding explanation-property pairs.

Finally, our technique is knowledge-centric as the search
space we visit is formed by explanation-property pairs and
the outliers we provide can be seen as a product of the
knowledge mined. This is clearly different from traditional
outlier detection approaches which are object-centric.

The rest of the work is organised as follows. Section 2
discusses work related with the present one. Section 3
introduces the frequency occurrence function. Section 4
describes the outlierness function for ranking categorical
values. Section 5 introduces the concept of outstanding
explanation-property pair and describes the goal of our
mining method. Section 6 describes experimental results.

2 Related work

Categorical data has received relatively little attention as
compared to quantitative data because detecting anomalies
in categorical data is a challenging problem [48]. Generally,
traditional approaches do not handle categorical data in a
satisfactory manner, due to the fact that, in most cases,
there is no concept of sorting for the set of values a
categorical variable can assume; so the development of
specific techniques is needed.We start by noting that there is
little literature about detecting anomalous properties, and/or
related outlier objects, equipped with explanations which
face the task of the identification of both features and
subpopulations which characterize anomalies. Moreover, to
the best of our knowledge, no technique is able to natively
detect upper outliers.

There exist several approaches to detect outliers in the
certain setting, namely statistical - based [14, 25], distance -

based [4, 12, 13, 29, 34], density - based [18, 45], isolation -
based [38], subspace - based [1, 6, 7], knowledge - based [5],
neural network - based [31, 42], and many others [3, 19].

Some anomaly detection techniques depend on the iden-
tification of a representative pattern suggested by the major-
ity observations so that objects that result to be far from
it, according to a suitable distance measure, can be per-
ceived as anomalies. However, designing such a measure in
presence of categorical data is challenging [17].

Different strategies have been proposed to face with
the above problem. In [21] some methods are presented
to map categorical data on numerical data together with
a framework for their analysis. However, the effectiveness
of these techniques is strongly related to the choice of
the mapping function. A different prospective is that of
exploiting for categorical data some traditional approaches
designed for the quantitative domain by choosing an
appropriate distance measure. This is done in [8, 13], where
anomalies are defined as the N observations whose average
distance to the k nearest neighbors are the greatest; instead,
[35] considers as anomalous those observations with fewer
than p observations within a certain distance d .

Many other methods exploit the Hamming distance to
identify anomalies among categorical data [15, 16, 37]
together with a pruning strategy to cope with the quadratic
complexity of evaluating distances.

Recently a new idea of distance suitable for the categor-
ical domain has been introduced to detect and characterize
outliers in a semi-supervised fashion [33]. The key intu-
ition is that the distance between two values of a categorical
attribute can be determined by the way in which they co-
occur with the values of other attributes in the data set: if
two values are similarly distributed with respect to a cer-
tain set of attributes, their distance must be low. A model
defining the distances between categorical values is defined
on the training set and is used to evaluate the outlier score
associated with each test instance t as the sum the distances
between t and a subset of objects known to be normal.

The family of density-based aqpproaches includes those
methods that identify observations having outlying behavior
in local areas, thus result to be inconsistent within their
neighborhood and not necessary with the pattern suggested
by the majority of all other observations.

Local anomaly detection methods for categorical data
include the k-Local Anomalies Factor k-LOF [51] and,
ROAD [47] and WATCH [36] methods.

The k-LOF is a local anomaly detection method for both
categorical and quantitative data [51]. It extends Local
Anomalies Factor (LOF) [18] to categorical domain. The
k-LOF identifies an observation as a local outlier if its
relationships with its neighbors are weaker than the relation-
ships between its neighbors and its neighbors’ neighbors. It
does that by building a similarity graph and by using the
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concept of k-walk, i.e the paths of length k on the similar-
ity graph joining two observations, to provide an outlierness
score.

The ROAD algorithm [47] exploits both distances and
densities. The Hamming distance is used to group objects
into clusters and highlight observations located in sparse
regions; then a density measure is calculated for each object
on the basis of the frequencies of its values, in order to
identify objects whose values are almost infrequent in the
dataset.

Both measures present some limitations: as for Hamming
distance, outliers with few exceptional attributes are not
captured, as for density, they are not compared with expected
values and attributes associated with distinct values, as
primary keys, can affect results.

The WATCH method [36] has been recently designed to
find out outliers in high dimensional categorical datasets
using feature grouping. First, it groups correlated features,
then it looks for outliers in each feature group by calculating
a weighting factor for each categorical variable that takes
into account the correlation between this variable and the
others in the same group.

A completely different prospective is taken by methods
that exploit information - theoretic measures. The idea
behind these approaches relies on the direct relationship
between the existence of anomalies and the amount of noise
in the dataset. This led some authors [32] to formulate the
outlier detection task in terms of an optimization problem,
i. e. finding a subset of k objects such that the expected
entropy of the resultant dataset after the removal of this
subset is minimized. This strategy has to be intended from
a global point of view as the outlierness measure involves
simultaneously all the attributes and is neither able to
detect outliers in sub-populations nor to identify outliers
characterised by one (or few) outlying attributes.

To overcome with the last issue, in [24] an outlier factor
is designed on the basis of the ratio between the probability
of co-occurrence of two sets of attributes and the product
between the probabilities of occurrence of the two sets taken
separately. Here, the authors are interested in properties
consisting in at least two attributes and do not address
sub-populations.

The importance of learning value interactions has shown
to be effective when handling categorical data and some
recent contributions are found in the literature that exploit
such a strategy to detect anomalies.

CBRW [40] estimates the outlierness of each feature
value which can either detect outliers directly or determine
feature selection for subsequent outlier detection. The value
is computed by comparing the frequency of each value with
the most frequent value (the mode). However, this is just a
measure of deviation, explanations are not provided and, by
definition, upper outliers cannot be detected.

As a further drawback, noisy values may significantly
influence the performance of CBRW, thus the same authors
propose HOUR [41], a new outlier detection framework for
data with noisy features. A noise-resilient outlier scoring
function is defined to rank objects based on their outlierness
in a given feature subset and an outlier ranking evaluation
function is proposed to evaluate the quality of the ranking
w.r.t the feature subset. Feature selection and ranking
evaluation are iteratively performed until the best feature
subset is obtained.

Nevertheless, this approach shows to be not particularly
suitable for high dimensional data, thus two further main
improvement have been proposed, namely POP [44] and
OUVAS [50].

The idea of investigating feature subsets has been taken
into account also in [43] but in a completely different way.
Here, the main intuition is that, provided with a random
subsample of the main dataset, those instances with rare
combinations of values on any attribute subset have also a
higher probability of having zero appearances in subsamples
of any size.

Subspaces managment seems to meet our concept of
explanation, but the semantic is completely different. The
problem of outlier explanation [10] we deal with in this
paper consists in finding features that can justify the
outlierness of an object, in a sense that its anomalous state
emerges only as a consequence of the selection we have
made.

Some previous works [9, 10] follow this path and propose
a technique for categorical and numerical domains respec-
tively that, given in input one single object known to be
outlier, provides features justifying its anomaly and subpop-
ulations where its exceptionality is evident. A generalization
is proposed in [11] where a set, required to be small, of
outliers is provided in input.

3 Frequency occurrence

In this section we give same preliminary definitions and
introduce the notation employed throughout the paper.

A dataset D on a set of categorical attributesA is a set of
objects o assuming values on the attributes inA. By o[a] we
denote the value of o on the attribute a ∈ A. D[a] denotes
the multiset {o[a] | o ∈ D}.

A condition C is a set of pairs (a, v) where each a is an
attribute and each v ∈ D[a]. A singleton condition is said
to be atomic. By DC we denote the new dataset {o ∈ D |
o[a] = v, ∀(a, v) ∈ C)}.

A condition C is said to be valid if DC �= ∅. It follows
from this definition that in a valid condition C, for all
(a, v), (a, u) ∈ C, it holds that u = v. Thus, C is valid, the
number |C| of atomic conditions in C is equal to the number
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of attributes involved in C. In the following, if not otherwise
stated, we will take into account only valid conditions.

Definition 1 (Frequency distribution) A frequency distri-
bution H is a multiset of the form H = {f (1)

1 , . . . , f
(w1)
1 ,

. . . , f
(1)
n , . . . , f

(wn)
n } where each f

(j)
i ∈ N is a distinct fre-

quency, f (j)
i = f

(k)
i = fi for each 1 ≤ j, k ≤ wi , and wi

denotes the number of occurrences of the frequency fi . By
N(H) (or simply N whenever H is clear from the context)
we denote w1 · f1 + . . . + wn · fn.

For the sake of simplicity, we will refer to a frequency
distribution as a setH = {f1, f2, . . . , fn} and to the number
of occurrences wi of fi as w(fi). To ease the writing of
expressions, we also assume that the dummy frequency
f0 = 0 with w0 = 0 is always implicitly part of any
frequency distribution.

Given a multiset V , the frequency f V
v of the value v ∈ V

is the number of occurrences of v in V .
The frequency distribution of the dataset D on the

attribute a is the multiset HD
a = {fD[a]

v | v ∈ D[a]}. Note
that N(HD

a ) = |D|.

Theorem 1 Let H = {f1, . . . , fn} be a frequency
distribution. Then, n ≤ √

N(H).

Proof Since N(H) = w1 · f1 + w2 · f2 + · · · + wn · fn,
n is maximized when (i) f1 = 1, (ii) ∀i, wi = 1, and (iii)
∀i > 1, fi+1 = fi + 1. Thus, the maximum n is such that
1+2+· · ·+n = N(H) and, since 1+2+· · ·+n = n(n+1)

2 ,
it follows that n · (n + 1) = 2 · N(H) and, then, that
n = O

(√
N(H)

)
.

From the above theorem, it immediately follows that the
number of distinct frequencies in HD is at most

√|D|.
Now we define the notion of frequency occurrence as a

tool for quantifying how frequent is a certain frequency.

Definition 2 (Hard frequency occurrence) Given a
frequency distributionH, the frequency occurrence FH(fi)

of fi , also denoted by F(fi) whenever H is clear from the
context, is the product wi · fi .

The above definition allows us to associate with each
distinct value in D[a] a score that is related not only to its
frequency in the dataset but also to how many other values
have its same frequency.

A major drawback of the previous definition is that close
frequency values do not interact with each other and, as a
consequence, small variations of the frequency distribution
may cause sensible variations in the frequency occurrence
values. E.g., consider the case in which the frequencies fi =
49, wi = 1 and fi+1 = 51, wi+1 = 1 are replaced with

f ′
i = 50, w′

i = 2. While in the former case F(fi) = 49 and
F(fi+1) = 51, in the latter case we have that F(f ′

i ) = 100
that is about twice the frequency occurrence associated with
fi and fi+1. Intuitively, we do not desire a similar small
variation in the frequency distribution to impact so largely
on the outcome of the measure. Indeed, if we take the point
of view that the data at hand is the result of a sampling
procedure in which data values are associated with some
pre-defined occurrence probabilities, then the fact that a
certain categorical value is observed exactly f times is a
matter of chance, rather than being an hard property of that
value.

Thus, we refine the previous definition of frequency
occurrence in order to cope with the scenario depicted
above. Specifically, to overcome the mentioned drawback,
we need to force close frequency values to influence
each other in order to jointly contribute to the frequency
occurrence value. With this aim, we inspired to Kernel
Density Estimation (KDE) methods to design an ad-hoc
density estimation procedure.

First of all, we point out that we are working in a discrete
domain composed of frequency values, a peculiarity that
differentiates it from the standard framework of KDE.
We start by illustrating the proposed density estimation
procedure.

A (discrete) kernel function Kfi
with parameter fi is a

probability mass function having the property that supf ≥0
Kfi

(f ) = Kfi
(fi).

Given an interval I = [fl, fu] of frequencies, a
frequency fi , and a kernel function K , the volume of Kfi

in I , denoted as VI (Kfi
), is given by

∑fu

f =fl
Kfi

(f ). The
following expression

F(f ) =
∑

ϕ∈I (f )

{
n∑

i=1

wi · fi · Kfi
(ϕ)

}

.

where I (f ) represents an interval of frequencies centred in
f , provides the density estimate of the frequency occurrence
of the frequency f .

SinceKfi
(·) is a probability mass function, the frequency

fi provides a contribution to the frequency occurrence of f

corresponding to the portion of the volume of Kfi
which

is contained in I (f ), that is VI (f )(Kfi
). Hence, if the

interval I (f ) contains the entire domain of Kfi
then fi

provides its maximal contribution wi · fi . Frequencies fi

whose domain do not intersect I (f ) do not contribute to the
frequency occurrence of f at all.

The above definition needs to properly calibrate the
width I (f ) of the interval to be centred in f . To eliminate
the dependence of the formulation from an arbitrary
interval, we resort to the following alternative formulation
in which frequencies ϕ are not constrained to belong to
the interval I (f ). However, since the generic kernel Kfi

(·)

17538



Detecting and explaining exceptional values in categorical data

could be arbitrarily far from the frequency of interest f , now
its contribution has to be properly weighted

F(f ) =
∑

ϕ≥0

{
n∑

i=1

[
wi · fi · Kfi

(ϕ) · Pr[Xfi
= f ]

Pr[Xfi
= fi]

]}

.

Let Xfi
denote the random variable distributed according

to Kfi
and, hence, having fi as the value that is most

likely to be observed. The ratio
Pr[Xfi

=f ]
Pr[Xfi

=fi ] ≤ 1 represents

a weight factor for the kernel Kfi
(·) which is maximum,

in that evaluates to 1, for f = fi . Hence, the closer the
kernel Kfi

(·) to the frequency of interest f , the larger
its contribution to the frequency occurrence of f . Since
the above probabilities can be directly obtained from the
associated kernel, it can be rewritten as follows

F(f ) =
∑

ϕ≥0

{
n∑

i=1

[
wi · fi · Kfi

(ϕ) · Kfi
(f )

Kfi
(fi)

]}

. (1)

Equation (1) can be rewritten as

F(f ) =
n∑

i=1

⎡

⎣wi · fi · Kfi
(f )

Kfi
(fi)

·
∑

ϕ≥0

Kfi
(ϕ)

⎤

⎦ .

Since Kfi
(·) is a probability mass function, the summa-

tion over the domain of all its values is equal to 1 and, thus,
the above expression can be finally simplified in

F(f ) =
n∑

i=1

[
wi · fi · Kfi

(f )

Kfi
(fi)

]
. (2)

Since F represents a notion of density function asso-
ciated with frequency occurrences, it is preferable that its
volume evaluated in the frequenciesH = {f1, . . . , fn} eval-
uates to N(H). This leads to the following final form of the
frequency occurrence function.

Definition 3 (Soft occurrence function) Given a frequency
distributionH, the frequency occurrence FH(fi) of fi , also
denoted by F(fi) whenever H is clear from the context, is
given by the following expression

F(f ) = N(H)

NF (H)
·

n∑

i=1

[
wi · fi · K̂fi

(f )
]
, (3)

where

K̂fi
(f )= Kfi

(f )

Kfi
(fi)

and NF (H)=
n∑

j=1

{
n∑

i=1

[
wi · fi · K̂fi

(fj )
]
}

.

Figure 1 reports the frequency occurrence values accord-
ing to the hard and soft definition. Note that frequencies
48 and 50 are closer to each other and the soft frequency

occurrence definition for them lead to a value that is more
like the one we would get if we observed a value between 48
and 50 twice in the distribution. The values of the soft occur-
rences are not normalized to improve intelligibility of the
example.

As for the kernel selection, interestingly we can take
advantage of the peculiarity of the frequency domain to base
our estimation on a very natural kernel definition. Indeed,
as kernel Kfi

(·) we will exploit the binomial distribution
binopdf (f ; n, p) with parameter n, denoting the number
of independent trials, equal to N(H), and parameter p,
denoting the success probability, equal to p = fi/N(H).
We argue that this kind of kernel is particularly natural
for our setting and, moreover, note that its use relieve us
from the problem of selecting a suitable kernel bandwidth, a
problem that affects almost all the kernel density estimation
procedures. Indeed, the fact that we observe a certain
number fi of occurrences for a given value v can be
assimilated to the outcome of a sequence of Bernoulli trials
each having success probability pv , which is modeled by
a binomial random variable. Note that, for large sample
sizes N(H), the frequency fi tends to the expected value
N(H) · pv of the above random variable. Hence, fi/N(H)

closely approximates pv and the binomial function with
parameters n = N(H) and p = fi/N(H) represents
the distribution of that variable. This distribution clearly
provides the probability to observe any other frequency
f ′

i �= fi for the same value v.

3.1 Computational cost

Computational complexity of the proposed measure can be
estimated by taking into account the cost of computing the
set of frequency occurrences for each attribute in A and
the cost of evaluating K̂fi

(·) for each frequency in HD .
Theorems discussed in the following provide some results
about time complexity.

Theorem 2 Let D be a dataset and letHD = {f1, . . . , fn}.
Then, the cost of computing the set of frequency occurrences
{FHD (f1), . . . ,FHD (fn)} is O(|D| · CK), where CK

represents the cost of evaluating K̂fi
(·).

Proof Consider (3). The cost of evaluating this Equation for
a given f involves the computation of a summation of n

terms, with n equals to the number of different frequencies.
Due Theorem 1, n = O

(√|D|). Since we have to evaluate
(3) for any distinct f in the dataset, the Equation has to be
computed n times. Then, since each evaluation costs Ck , the
overall cost is O

(√|D| · √|D| · Ck

) = O(|D| · Ck).

Now we take into account the cost of computing the term
K̂fi

(f ) when Kfi
(·) is the binomial kernel.
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Fig. 1 Comparison between hard and soft occurrence

Theorem 3 Given a dataset D and two frequencies fi and
fj in HD, the cost of computing K̂fi

(fj ) is O(1) with a
pre-processing O(|D|).

Proof First of all, we prove that K̂fi
(fj ) can be obtained by

evaluating the following expression:

exp

⎡

⎣

⎛

⎝
fi∑

k=1

ln k

⎞

⎠ +
⎛

⎝
N−fi∑

k=1

ln k

⎞

⎠ −
⎛

⎝
fj∑

k=1

ln k

⎞

⎠

−
⎛

⎝
N−f∑

k=1

ln k

⎞

⎠ + (fi − f ) ln

(
N

fi

− 1

)⎤

⎦ .

To get this equality, consider the logarithm of K̂fi
(fj ).

Since Kfi
(fj ) is a binomial probability function, by

exploiting the properties of logarithms we obtain:

ln K̂fi
(fj ) = ln

Kfi
(fj )

Kfi
(fi )

=

= ln
(N
fj

)
(

fi
N

)fj
(
1− fi

N

)N−fj

(N
fi
)
(

fi
N

)fi
(
1− fi

N

)N−fi
= ln

(N
fj

)

(N
fi
)

+ (fj − fi) ln
(

fi

N

)

+(fi − fj ) ln
(
1 − fi

N

)
=

= ln
(N
fj

)

(N
fi
)

+ (fi − fj ) ln
(
1−fi/N
fi/N

)

= ln
(N
fj

)

(N
fi
)

+ (fi − fj ) ln
(

N
fi

− 1
)
.

Since

ln

(
N
fj

)

(
N
fi

) = ln

(
N !

fj !(N − fj )! · fi !(N − fi)!
N !

)

=
fi∑

k=1

ln k +
N−fi∑

k=1

ln k −
fj∑

k=1

ln k −
N−fj∑

k=1

ln k,

the statement follows. We note that all the above terms can
be pre-computed. Indeed, during the pre-processing step we

can build an array of N elements such that the generic ith

entry stores
∑i

k=1 ln k.

4 Categorical outlierness

In this section we introduce the concept of outlierness and
discuss about the measure we have designed to discover
outlier properties in categorical datasets.

Definition 4 (Cumulated frequency distribution) Given a
frequency distribution H = {f1, . . . , fn}, the associated
cumulated frequency distribution H is

H(f ) =
∑

fj ≤f

FH(fj ).

In the following, we refer to the value H(fi) also as to Hi .

The idea behind the measure we will discuss in the
following is that an object in a categorical dataset can be
considered an outlier with respect to an attribute if the
frequency of the value assumed by this object on such an
attribute is rare if compared to the frequencies associated
with the other values assumed on the same attribute by the
other objects of the dataset.

We are interested in two relevant kinds of anomalies
referring to two different scenarios.

Lower Outlier. An object o is anomalous since for a
given attribute a the value that o assumes in a is rare
(its frequency is low) while, typically, the dataset objects
assume a few similar values, namely the frequencies of
the other values are large.

Upper Outlier. An object o is anomalous since for a
given attribute a the value that o assumes in a is usual
(its frequency is high) while, typically, the dataset objects
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assume almost distinct values, namely the frequencies of
the other values are small.

In order to discover outliers, we exploit the cumulated
frequency distribution associated with the dataset. With this
aim, we use the area above and below the curve of the
cumulated frequency distribution to quantify the degree of
anomaly associated with a certain frequency.

Intuitively, the larger the area above the portion of the
curve included from a certain frequency fi to the maximum
frequency fmax, and the more fi differs from frequencies
that are greater than fi . At the same time, the larger the area
below the portion of the curve included from the minimum
frequency fmin and a certain frequency fi , and the more fi

differs from frequencies that are smaller than fi .
You can evaluate the contribution given by the area

above the cumulated frequency distribution curve to the
outlierness of a certain frequency fi , using the following
expression

A↑(fi) =
∑

j>i

(fj − fj−1) · (
Hn − Hj−1

)
. (4)

The lower outlier score out↓(fi) is given by the the nor-
malised area

out↓(fi) = A↑(fi)/A
↑
max(fi), (5)

obtained by dividing the area A↑(fi) by

A↑
max(fi) = (A↑(f0)−A↑(fi))+(fn−fi)·(Hn−Hi−1) (6)

corresponding to the area above the cumulated frequency
histogram up to the frequency fi , represented by the term
(A↑(f0) − A↑(fi)), plus an upper bound to the area
above the cumulated frequency histogram starting from fi ,
represented by the term (fn −fi) · (Hn −Hi−1). Notice that
the former term is minimised for fi → 1, while the latter
term tends to A↑(fi) for fn → ∞ and, hence, in this case
out↓(fi) tends to its maximum value 1.

The second scenario we are interested in aims to high-
light the upper outliers, namely those objects that, for a
given attribute, assume a value whose frequency is high,
while typically, the dataset objects assume distinct values,
that is the frequencies of the other values are low.

In order to discover such a kind of anomaly we take
into account the area below the cumulated frequency dis-
tribution, starting from the lowest frequency up to the
target frequency fi . The bigger this area, the more this
frequency can be highlighted as anomalous. The contribu-
tion of the frequency fi is computed as

A↓(fi) =
∑

j≤i

(fj − fj−1) · Hj−1. (7)

The upper outlier score out↑(fi) is given by the the
normalised area

out↑(fi) = A↓(fi)/A
↓
max(fi), (8)

obtained by dividing the area A↓(fi) by the term

A↓
max(fi) = (fi − 1) · Hi (9)

representing an upper bound to the area below the cumu-
lated frequency histogram up to the frequency fi . Notice
that A↓(fi) tends to A

↓
max(fi) for fi−1 → 1 and Hi →

Hi−1, or equivalently F(fi) � F(fi−1), so in this case
out↑(fi) tends to its maximum value 1.

The outlierness, or abnormality score, associated with
the frequency fi is a combined measure of the above two
normalised areas:

out(fi) = W
↑
i · out↑(fi) + W

↓
i · out↓(fi)

W
↑
i · Δ(out↑(fi)) + W

↓
i · Δ(out↓(fi))

(10)

Specifically, the (global) outlierness score of fi is the
weighted mean of the upper and lower outliernesses asso-
ciated with fi , with weights W

↑
i = Hi and W

↓
i = (Hn−

Hi−1), respectively. Note that Hi represents the fraction of
the frequencies having value less or equal than fi , while
(Hn − Hi−1) represents the fraction of the frequencies hav-
ing value greater or equal than fi . Thus, when both the
contributions out↑(fi) and out↓(fi) are greater than 0, the
two weights provide their relative importance in terms of
the fraction of the data population used to compute each of
them. As for the function Δ(x), it evaluates to 0 if x = 0,
and to 1 otherwise. Thus, it serves the purpose of ignoring
the weight associated with the lower or upper outlierness if
it evaluates to 0 and, otherwise, of taking it into account in
its entirety.

In order to clarify areas employed for outlierness com-
putation, let us refer to the following example. Consider a
single attribute dataset whose associated set of distinct fre-
quencies is {f1 = 1, f2 = 2, f3 = 3, f4 = 4, f5 = 5, f6 =
6} and the set of weights is {w1 = 3, w2 = 2, w3 = 1, w4 =
2, w5 = 1, , w6 = 2}. Assume that we want to com-
pute the outlierness associated with the frequency f3 = 3.
Figure 2a and b represent the areas exploited to compute
such outlierness.

On the left the area A
↓
i together with the area used for

normalisation,Amax↓ , is reported, while, on the right, the area

A
↑
i together with the area used for normalisation, Amax↑ , is

reported.
If W

↓
i > W

↑
i we say that the global score is an upper

score. Conversely if W
↑
i ≤ W

↓
i we say that the global score

is a lower score.
We will use the notation outH(·) whenever it is needed

to highlight the frequency distribution H used to compute
the outlierness. The outlierness outa(v, D) of the value v ∈
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Fig. 2 Outlierness computation
example

D[a] with respect to the attribute a in the datasetD, is given
by outHD[a](fHD[a]

v ).

5 Outstanding explanation-property pairs

Exceptional values v for an attribute a, are those associated
with large values of outlierness outa(v, D). Thus, we are
interested in detecting such exceptional values. However,
it must be pointed out that very often a value emerges as
exceptional for a certain attribute only when we restrict our
attention to a subset of the whole population.

This intuition leads to the definition of the notion of
explanation-property pair.

Definition 5 An explanation-property pair (E, p), or sim-
ply pair for the sake of conciseness, consists of condition
E, also called explanation, and of an atomic condition
p = (pa, pv), also called property. By pa (pv , resp.) we
denote the attribute (value, resp.) involved in the atomic
condition p.

Given a pair π = (E, p), Dπ denotes the set of objects
DE∪{p}. The outlierness out (π) of an explanation-property
pair π = (E, p) is the outlierness outpa (pv, DE) of the
value pv with respect the attribute pa in the dataset DE .

To illustrate definitions, we exploit a running example
derived from the Breast Cancer Wisconsin dataset [32].
The example is based on the Clump Thickness attribute,
referred to as CT . Specifically, Table 2 refers to the
frequency distribution of values in the domain of CT in the
full dataset before any explanation is taken into account.
Conversely, Table 2b shows the frequency distribution of
the same attribute when we focus on the subset of benign
tumors, together with the scores gained by each value
(fourth column). The row there highlighted concerns the
pair (E1, p), with explanation E1 = {(T ype, 2)} and
property p = (CT , 7).

We note that the number of possible explanation-property
pairs is usually very large. So we need a mechanism that
allows us to single out the subset of these pairs encoding
the outstanding exceptionalities in the data and carrying no
redundant information; we do that through the notions of
unexpected, significant, and outstanding pairs defined in the
following.

Given pairs (E, p) and (E′, p), we say that (E, p) is
more specific than (E′, p), or equivalently that (E′, p) is
more general than (E, p), if E′ ⊂ E. In this case, we also
say that the two pairs are related.

Given two related pairs (E, p) and (E′, p), with (E, p)

more specific than (E′, p), we wonder if the frequency
distribution HDE

pa
(also called observed distribution) is

statistically different from the frequency distribution HDE′
pa

(also called reference distribution). We can ask the question
by leveraging a goodness-of-fit test, which establishes if
the observed frequency distribution is unexpected given the
reference distribution.

A suitable test for categorical values is the chi-square
test. The chi-square test relies on the chi-square statistic
X2, which is the sum of the squared difference between
the observed frequencies and the reference frequencies,
normalized on the value of the expected frequencies:

X2(E′, E, p) =
r∑

i=1

[(
hi − h′

i

(
m
n

))2

h′
i

(
m
n

)

]

(11)

where: (i) h′
i (hi , resp.) is the number of occurrences in

DE′ [pa] (DE[pa], resp.) associated with the i-th distinct
categorical value of DE′ [pa], (ii) r is the number of these
distinct categorical values, and (iii) n and m represent the
number of objects in DE′ and DE , respectively.

It is known that the X2 statistics asymptotically approaches
the χ2 distribution with r−1 degrees of freedom, hence, the
X2 value can be used to calculate a p-value by comparing its
value to the proper chi-squared distribution. The p-value is
the probability of obtaining a test statistic at least as extreme
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Table 2 Behaviour of Clump
Thickness attribute in the
dataset portions selected by
different set of conditions (CT
= Clump Thickness, UCS =
Uniformity of Cell Shape,
SECS = Single Epithelial Cell
Size, T = Type)

as the one that was actually observed, assuming that the null
hypothesis, that is that the observed distribution complies
with the reference one, holds. Thus the value Fχ2

r−1
(X2),

where Fχ2
r−1

denotes the cumulative distribution function of

the χ2 distribution with r − 1 degrees of freedom, provides
the desired p-value.

Definition 6 (Unexpected pair) Given related pairs π =
(E, p) and π ′ = (E′, p), with (E, p) more specific than
(E′, p), we say that (E, p) is unexpected given (E′, p),
if out (π) ≥ (1 + α) · out (π ′), where α = 1 −
Fχ2

r−1

(
X2(E′, E, p)

)
.

Note that, the smaller the p-value provided by the cdf
value Fχ2

r−1

(
X2(E′, E, p)

)
and the less expected the distri-

bution of categorical values in DE[pa] given the knowledge
of the distribution of the categorical values in DE′ [pa] and,
consequently, α ∈ [0, 1] is inversely related to the unex-
pectedness of the former distribution. Hence, in order for
the pair (E, p) to represent non-redundant information, we
require that the outlierness of (E′, p) must be improved of a
quantity which is inversely related to unexpectedness of the
distribution of categorical values in DE[pa].

Therefore, the concept of unexpected pair serves the
purpose of avoiding that statistical fluctuations of the fre-
quencies may slightly favor the un-typicality of the property
value. Indeed, while outlierness improvements might be
observed by augmenting the current explanation with some
attribute-value pairs, this circumstance does not necessar-
ily imply that the augmented explanation-property pair is
more relevant than the original one, since the improvement

could be so slight to be associated with statistical fluctu-
ations of the property distribution within the two expla-
nations. Hence, when an explanation is augmented with
some attribute-value pairs, the more is preserved the prop-
erty distribution with respect to the original explanation, the
larger the outlierness improvement required to declare the
augmented explanation-property pair as unexpected.

Consider the running example and suppose you want to
extend the explanation E1 = {(Type, 2)} with a further con-
dition to get the more specific E2 = {(Type, 2), (Uniformity
of Cell Shape, 2)}.

To verify if the pair (E2, p) is unexpected given the pair

(E1, p), the frequency distributions HDE2
CT and HDE1

CT have
to be compared. The plots reported Fig. 3 show the above
distributions and the associated α value demonstrates that a
very weak correlation exists. Thus, for the pair (E2, p) to be
considered unexpected given (E1, p) just a slight increase
in the outlierness score is necessary to satisfy Definition 6:

outCT (7,DE2) = 0.6866 > (1 + 0.0065) · outCT (7,DE1)

= 1.0065 · 0.6530.

Consider now the property p′ = (CT , 2). Also the pair
(E2, p

′) is unexpected given (E1, p
′), indeed

outCT (2,DE2) = 0.5629 > (1 + 0.0065) · outCT (2,DE1)

= 1.0065 · 0.3325.

However, if we consider the explanation E3 = E2 ∪
{(Single Epithelial Cell Size, 2)} although the score of the
pair (E3, p

′) is greater than that of the pair (E2, p
′), the
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Fig. 3 HDE2
CT (yellow) vsHDE1

CT (blue)

former pair is not unexpected given the latter since (Fig. 4):

outCT (2,DE3) = 0.6031 < (1 + 0.9871) · outCT (2,DE2)

= 1.9871 · 0.5629.
It is important to note that, given any pair (E′, p), often

it suffices to augment E′ with a random attribute r to
observe a slight outlierness improvement, that is to have
outpa (pv,DE′∪{r}) ≥ outpa (pv,DE′). To understand why
this is not unusual, assume that r is uncorrelated with

Fig. 4 HDE3
CT (yellow) vsHDE2

CT (blue)

the attributes in E′, then the distribution DE′ [pa] will be
almost preserved in DE′∪{r}[pa]. Thus, we compute α since
it precisely provides a measure of the unexpectedness of
the sub-population distribution: being the value pv fixed,
larger explanations that preserve the original distribution
represent redundant information. Moreover, since statistical
fluctuations of the frequencies may slightly favor the un-
typicality of the property value, the more preserved the
above distribution, the larger the outlierness improvement
required. In the scenario depicted above, this almost
certainly filters out the expended pair (E ∪ {r}, p), even if
the associated outlierness gets larger.

Definition 7 (Significant pair) A pair (∅, p) is significant
by definition. Moreover, a pair (E, p) with E �= ∅ is said to
be significant if there exists a more general significant pair
(E′, p) such that (E, p) is unexpected given (E′, p).

Thus, a pair is significant if it is unexpected given at
least one other more general significant pair. The notion of
significant pair is implemented by requiring unexpectedness
of pairs with respect to a subset of the given explanation
that resulted to be unexpected itself. To better understand
this notion, consider the explanations E′′, E′ = E′′ ∪
{(a′, v′)}, and E = E′ ∪ {(a, v)} and the three related pairs
(E′′, p), (E′, p), and (E, p), with (E′′, p) a significant
pair. Often neither (E, p) is unexpected given (E′, p) nor
(E′, p) is unexpected given (E′′, p). This can be understood
since atomic conditions may not in general carry sufficient
additional correlations.

However, a more complex condition, like E \ E′′, could
sensibly alter the initial distribution of values. Thus, if
(E, p) is unexpected given the pair (E′′, p), and (E′′, p) is
itself significant, we say that also (E, p) is significant, no
matter of the expectedness of (E, p) given (E′, p) which is
more specific than (E′′, p), for otherwise chains as the one
described above will prevent almost all pairs to be identified
as significant.

Definition 8 (Strongly significant pair) A pair (E, p) is
said to be strongly significant if, for any more general
significant pair (E′, p), the pair (E, p) is unexpected given
(E′, p).

In the running example, the pair (E3, p
′) is significant

since it is unexpected given the pair (∅, p′), which is
significant by definition, indeed:

outCT (2,DE3) = 0.6032 > (1 + 0.0288) · outCT (2,D)

= 1.0288 · 0.3416.
However, it is not strongly significant, since (E3, p

′) is not
unexpected given the more general significant pair (E2, p

′).
Note that the pair (E2, p

′) is also significant (since it is
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unexpected given (∅, p′)) and, hence, it will be strongly
significant provided that any other more specific significant
pair is not unexpected given (E2, p

′).
Strongly significant pairs are those unexpected given any

other more general significant pair. While the definition
of significant pair serves the purpose of identifying those
pairs that represent interesting information, the definition of
strongly significant pair serves the purpose of identifying
those pairs that carry no redundant information. Indeed, if
a significant pair (E, p) is not unexpected given a more
specific significant pair (E′, p) then, from what has been
stated above, it follows that the same information can be
obtained from the more general pair (E′, p).

Definition 9 (Outstanding) Maximal strongly significant
pairs (E, p) are said to be outstanding pairs. Given
threshold θ , a pair is said θ -outstanding if it is outstanding
and has outlierness not smaller than θ .

Outstanding pairs can be thought of as the maximal
interesting non-redundant explanation-property pairs in the
dataset at hand. Outstanding pairs form the output of the
technique. Specifically, we are interested in outstanding
pairs associated with the highest outlierness values.
Thus, given parameter N and threshold θ , the technique
outputs the top–N θ -outstanding explanation-property pairs
π = (E, p) together with the associated sets of objects
Dπ .

This strategy greatly reduces sensitivity of our outlier-
ness measure to variations of the explanation. Moreover, by
means of the strongly significant and outstanding defi-
nitions, we present to the analyst only the explanation-
property pairs that are unexpected with respect to any other
more general pair, thus avoiding she/he to be overwhelmed
by useless information.

5.1 The FDEOut algorithm

In this section we describe the FDEOut algorithm. In order
to detect outstanding pairs, the algorithm performs the
exploration of the set enumeration tree associated with the
explanations according to a depth-first strategy.

At a given iteration, the algorithm analyses pairs com-
posed by an explanation E and, simultaneously, all the
possible properties p concerning attributes not involved in
E. The depth-first strategy is adopted for reducing the cost
of the search.

In order to evaluate the score of a given pair (E, p), the
dataset objects have to be grouped according to E and this
can be directly exploited also to group objects according to
E ∪ {e} due to the depth-first visit.

It follows from the adopted strategy that the algorithm
works with partial information, since when the algorithm
analyzes the pair δ = (E, p) it has not yet explored all the
pairs (E′, p) with E′ ⊂ E.

The algorithm builds the result set composed by out-
standing pairs, denoted as OP , as follows. When δ =
(E, p) is evaluated, consider the set Δ⊂ of pairs (E′, p)

with E′ ⊂ E currently in OP and the set Δ⊃ of pairs
(E′, p) with E′ ⊃ E currently in OP . Note that each pair
Δ⊂ is more general than δ and that each pair Δ⊃ is more
specific than δ, thus, δ′ ∈ Δ⊂ can be exploited to evaluate
the significance of δ and δ can be exploited to evaluate the
significance of δ′ ∈ Δ⊃. In more details:

(i) if the score of δ is lower than the threshold θ or lower
than at least one pair in Δ⊂ then δ is dropped since it
is not significant;

(ii) if δ is significant with respect to at least one pair in
Δ⊂ then δ is candidate to be strongly significant and
is inserted in OP as marked;

(iii) if δ is significant with respect to no pairs in Δ⊂,
then δ is not strongly significant and is inserted inOP
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as not marked; note that it has to be inserted since,
being significant, it can be relevant to disprove the
significance of an other pair;

(iv) if the score of δ is larger than that of a δ′ ∈ Δ⊃ then
δ′ is dropped since it is no more significant;

(v) if δ′ ∈ Δ⊃ is marked and is not significant with
respect to δ then the mark of δ′ is removed since δ

disprove the strongly significance of δ′.

Once the explanation set enumeration tree is explored,
only the maximal marked pairs are kept in OP .

6 Experimental results

In this section, we describe experimental results obtained by
using the FDEOut algorithm.

First of all, to study the applicability of our method to
real datasets, we have tested its scalability by varying the
number of objects, the number of attributes, and the depth
of the analysis.

Then, to clarify the different nature of the anomalies
we detect w.r.t those returned by classical outlier detection
methods, we have performed two families of experiments
to test whether classical techniques are able to detect
anomalies pointed out by our approach and to compare the
detection ability of our method with related ones on known
outliers.

Specifically, in Section 6.2 we employ as target the top-
10 lower and upper anomalies detected by our approach for
different datasets and compute their outlier scores according
to the distance-based and density-based detection approaches
we choose as competitors.

In Section 6.3 we inject outliers into the datasets by
selecting objects within the majority class and replacing, for
each attribute, the value each selected object assumes with a

different value randomly picked from the attribute domain.
Then, we evaluate the change in the outlierness score of
the alterated objects to highlight the sensitivity of each
techniques in identifying such anomalies.

Finally, in Section 6.4 we discuss knowledge mined by
means of our approach.

6.1 Scalability

Figure 5 shows the scalability analysis of our method on the
Mushrooms dataset from UCI Machine learning repository
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Fig. 5 Scalability analysis

[27]. In the experiment reported in Fig. 5a, we varied the
number of objects n in {500, 1000, 2000, 5000, 8000} and
the number of attributes m in {7, 14, 22} , while the depth
parameter has been held fixed to δ = 3. The dashed lines
represent the trend of the linear growth estimated exploiting
regression. This estimation confirms that the algorithm
scales linearly with respect to the dataset size. As for the
number of attributes, as expected for a given number of
objects, the execution time increases due to the growth of
the associated search space. On the full dataset the execution
time is rather limited, as it amounts to about 2 minutes.
In the experiment reported in Fig. 5b, we varied both the
number of objects n and the depth parameter δ in {1, 2, 3, 4},
while considering the full feature space. Also in this case,
the linear growth is represented by the dashed lines, so
similar considerations can be drawn.

Table 3 reports the number of outstanding explanation-
property pairs returned by the algorithm on the following
dataset: Zoo (n = 101 objects and m = 18 attributes),
Mushrooms (n = 8, 124 objects and m = 22 attributes),
Cars (n = 1, 728 objects and m = 8 attributes).

We consider increasing values of the depth parameter
δ ∈ {1, 2, 3, 4, 5}. The column #Pairs reports the total
number of pairs forming the search space up to the depth
level δ. The column #Outstanding reports the number of
outstanding pairs and the percentage of these pairs on the
total number of pairs (within brackets). The latter column
reports the number of outstanding pairs of size δ, that are
the novel pairs introduced by exploring the last level of
the current search space, together with their percentage on
the total number of pairs (within brackets). From the table,
it can be seen that the fraction of novel patterns rapidly
decreases with the depth, thus suggesting that meaningful
analyses do not require large values for the parameter δ.
Indeed, the number of outstanding pairs settles for depth
δ = 3 on all the datasets. Moreover, it can be seen that
the notion of outstanding pair is able to greatly reduce the
number of potential explaining patterns to be presented to
the user, since the percentage of these patterns on the whole

search space rapidly decreases with the depth. E.g., for
Mushrooms the outstanding pairs represent the 0.96% of the
pairs of size up to δ = 5.

We further note that outstanding pairs are not necessarily
associated with large values of outlierness. Thus, it is
sensible to determine how many of these outstanding
pairs are indeed θ -outstanding, for suitable values of the
threshold parameter θ . Figure 6 reports the distribution
of the outliernesses associated with the outstanding pairs
obtained for δ = 3. Plots on the left concern the lower
scores (that we recall are outlierness scores having weights
W

↑
i ≥ W

↓
i in (10)), while plot on the right concern the

upper scores (having weights W
↓
i > W

↑
i in (10)), We

can notice that the top lower scores are always likely to

Table 3 Outstanding pairs vs depth analysis δ

δ #Pairs #Outstanding #Outstanding (size=δ)

Zoo

1 7,138 5,887 (82.47%) 5,320 (74.53%)

2 67,318 8,686 (12.90%) 3,958 (8.02%)

3 237,169 9,199 (3.88%) 899 (0.38%)

4 603,998 9,284 (1.54%) 181 (0.03%)

5 1,209,569 9,296 (0.77%) 43 (0.00%)

Cars

1 24,373 12,643 (51.87%) 12,277 (50.37%)

2 71,081 18,307 (25.76%) 14,462 (20.35%)

3 141,830 18,231 (12.85%) 4,719 (3.33%)

4 192,973 18,142 (9.4%) 1,280 (0.66%)

5 207,829 18,233 (8.77%) 534 (0.26%)

Mushrooms

1 1,292,236 1,119,911 (86.66%) 1,113,508 (86.17%)

2 7,475,244 1,457,732 (19.5%) 1,004,863 (13.44%)

3 27,672,066 1,551,032 (5.61%) 454,084 (1.64%)

4 75,453,759 1,566,458 (2.08%) 158,423 (0.21%)

5 163,210,877 1,567,825 (0.96%) 39,730 (0.02%)
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Fig. 6 Outstanding pairs outlierness distribution

reach high values of outlierness, close to 1. As for the
upper scores, they are in general less pronounced, due to
the different nature of these two kinds of anomalies. In any
case, it is interesting to notice that only a little fraction
of the outstanding pairs is associated with the largest
score values and, hence, only a reduced fraction of the
outstanding pairs are indeed θ -outstanding pairs. Usually,
the 0.1% or 1% of the outstanding pairs are associated with
outlierness values comparable to the maximum outlierness
scores by any pair. It is easy to check that the number

of these pairs amounts to some hundreds in the general,
being about 100 for Zoo and Cars, and about 1,000 for
Mushrooms.

6.2 Comparison with classic distance and density
based outlier detectionmethods

We compare our method with two of the main categories
of outliers: (i) distance-based approaches, that are used
to discover global outliers, i.e. objects showing abnormal
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behaviour when compared with the whole dataset popula-
tion; (ii) density-based approaches, which are able to single
out local outliers, i.e. objects showing abnormal behaviour
when compared with a certain subset of the data with their
neighbourhood.

As distance-based definition, we use the average KNN
score, representing the average distance from the k-nearest
neighbours of the object [13]. As density-based, we use
Local Outlier Factor or LOF [18]. Both methods employ the
Hamming distance. Moreover, we compare our method with
the ROAD algorithm [47] that exploits both densities and
distances, namely it establishes two independent rankings:
(i) each data object is assigned to a frequency score and
objects with low scores are considered outliers (Type-1
outliers); (ii) the k-mode clustering is performed in order
to isolate those objects that are far from big clusters
(i.e. clusters containing at least α% of the whole dataset)
according to Hamming distance (Type-2 outliers). The
goal of these experiments is to highlight that we are able
to detected anomalies of different nature and to provide
evidence that our method is knowledge-centric, since it
concentrates on anomalous values, as opposed to classical
methods which are instead object-centric.

To compare the approaches, we ranked the dataset objects
o by assigning to each of the them the largest outlierness
of a pair π such that o ∈ Dπ . We determined our top–10
outliers by selecting the objects associated with the largest
outliernesses. Then we selected these objects, containing
values deemed to be exceptional by our method, with the
purpose of verifying how they are ranked by popular object-
centric techniques. Hence, we computed their outlier scores
according to the KNN, LOF and ROAD definitions.

All the chosen competitors require an input parameter
k, representing the number of k nearest-neighbors or the
number of clusters to be taken into account. Since selecting
the right value of k is a challenging task, we computed the
KNN, LOF and ROAD outlier scores for all the possible
values of k and determined the ranking positions associated
with our top–10 outliers. Particularly, all the integers from
1 to the number of objects n have been considered for
KNN while 30 log-space values between 1 and n have been
considered for LOF due to its higher temporal cost. For
ROAD algorithm, we stopped at the value of k such that at
least one big cluster is obtained and use the frequency score
to rank those objects having the same distance from their
nearest big cluster.

Figures 7 and 8, report the box-plots for k varying in
[1, n] of the KNN, LOF and ROAD Type-2 outliers rankings
associated with our top–10 outliers. Plots on the top concern
lower outliers, while plots on the bottom concern upper
outliers. From these plots it can be seen that the median
ranking associated with our outliers can be far away from
the top and also that, within the whole ranking distribution,

the same outlier can be ranked in very different positions.
In general, it seems that lower outliers are likely to be
ranked better than upper outliers by our competitors, and
this witnesses for the peculiar nature of upper outliers. On
the Zoo dataset there is no apparent correlation between
our outliers and KNN, LOF and ROAD outliers. On the
Mushrooms dataset some of our lower outliers are, on the
average, ranked very high also by the other algorithms.
Some of them are almost always top outliers for all methods
(see the top 1st, 2nd, 5th, and 7th outliers) thus witnessing
that these outliers have both global and local nature.
However, most of our outliers are not detected by these
techniques.

Before concluding this comparison, it must be pointed
out that the best rankings associated with the selected
objects are obtained for very different values of the param-
eter k. Since, the output of the KNN, LOF and ROAD
methods are determined for a selected value of k, it is very
unlike that, even in presence of some agreement between
our top outliers and local and global outliers, they are simul-
taneously ranked in high positions for the same provided
value of k.

6.3 Comparison with other techniques

In this section, the proposed technique is compared with
other methods.

To this aim, for a given dataset, we selected the objects
within its majority class and then generated a family of
altered datasets as follows. For each of the above objects and
for each attribute, we generated a novel dataset by altering
the value the object assumes on that attribute with a different
value randomly picked from the attribute domain. Thus, the
total number of datasets of the family is given by n·d , where
n is the number of objects within the majority class and d is
the number of dataset attributes.

Due to the heavy computations required by this kind of
experiment, we selected the following datasets from theUCI
Machine learning repository [27]: Zoo (n = 101 objects
and m = 18 attributes), Breast cancer (n = 286 objects
and m = 9 attributes), House votes (n = 232 objects and
m = 16 attributes).

On each family, we then ran the FDEOut algorithm and
KNN [13], LOF [18], ROAD [47], CBRW [40], WATCH
[36], and KLOF [51].

To make scores comparable, we determined the stan-
dardized outlier score z = (sc − μsc)/σsc of the altered
object both before (say z0 this value) and after (say z1 this
value) the alteration, where μsc and σsc are, respectively,
the mean and standard deviation of the outlier score dis-
tribution before the alteration. As for FDEOut we used as
outlier score the maximum outlierness associated with an
outstanding pair involving the object. Moreover, since no
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Fig. 7 Comparison with KNN, LOF and ROAD on Zoo

other method is designed to detect upper outliers, in the
comparison we considered only our lower outliers.

In order to evaluate the ability of the method to detect the
contaminated data, we measured the increase Δz = z1 − z0
of standardized outlier score associated with altered objects
and compared the Δz of each method with that of FDEOut.
We note that objects with large standardized outlier score
z0 in almost one of the two compared methods are less
interesting for this analysis, since they already show an
exceptional value of outlierness and their Δz is unlike to
achieve large values. Clearly this will unfairly favor one
of the two methods and, hence, objects whose standardized
outlier score exceeds the mean by more than one standard
deviation, i.e. such that z0 > 1, are not considered in the
comparison. We further note that this corresponds to focus
on the normal objects that become anomalous due to the
performed alteration.

Figures 9, 10 and 11 show the comparison between the
distribution of the Δzs associated with FDEOut and the
same distribution associated with each other method. On the

ordinate there are the Δz values sorted in decreasing order,
while each value on the abscissa corresponds to a dataset of
the family.

The plots highlight that FDEOut is more sensitive to
perturbations of the data, since in all cases the most
pronounced variations of standardized score associated with
FDEOut amount to about 3 standard deviations, while rarely
the other methods exceed 1.5. As for the other methods,
their quality vary with the data characteristics and, hence,
they show a comparable performance on altered data. This
seems to suggest that our method is able to detect also subtle
anomalies.

6.4 Knowledgemined

In this section we present some knowledge mined by our
method. For ease of interpretation, we report the outstanding
pairs mined on the Zoo and Breast cancer. It is worth
pointing out that our measure is defined at the value level,
thus it does not allow us to state that an object is anomalous

17550



Detecting and explaining exceptional values in categorical data

Fig. 8 Comparison with KNN, LOF and ROAD on Mushrooms

in an absolute sense. As our score refers to 〈Explanation,
Property〉 pairs, we label as anomalous all objects, in the
dataset portion isolated by the explanation, whose value
pv for attribute pa receives a reasonable high score in
such a dataset projection. Note that these objects result to
be anomalous w.r.t that specific pair and not in a general
sense.

Information provided by the top lower pairs we get from
the Zoo dataset is summarized below:

– The scorpion is the only invertebrate with a tail.
– Among vertebrates without fins, the seasnake is the

only one that does not breathe.
– Among non-acquatic animals, the clam is the only one

that breathes.
– The platypus lays eggs although it provides milk.
– Among predators without feathers, the ladybird is the

only airborne.
– Among catsized animals, the octopus is the only

invertebrate.
– The stingray is a catsize animal, but it is venomous.

– Among animals which don’t lay eggs, the seasnake and
the scorpion are the only ones that do not breastfeed
offspring.

– The crab is the only invertebrate having four legs.
– Among vertebrate breathing animals, the pitviper and

the frog are the only venomous ones in the dataset.

Table 4 clarifies how such knowledge is mined. We
report the outstanding pairs from which we have deduced
the information above, together with the objects selected by
each pair.

It is interesting to note that the same object can be
considered anomalous with respect to different pairs, as in
the case of the scorpion and the seasnake. Furthermore, a
pair can isolate multiple objects as for the 8th and 10th pair.

As for the upper outliers, we find out that the dataset
contains the frog twice, the former is venomous and the
latter is non-venomous. However, the animal names are like
primary keys for the dataset, so having the same name twice
can be pointed out as anomalous. Our technique is able
to highlight such a situation. Other curiosities about the
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Fig. 9 Comparison on the Zoo dataset

animal world are spotted by our upper outliers, including the
following:

– Among breathing not catsized predators, the most
frequent are non-flying birds.

– Most no-feathers no-toothed animals have six legs.
– Among no-flying breathing catsized animals, the most

frequent are mammals.
– Most gastropods have no legs.
– Most no-toothed have two legs.

Fig. 10 Comparison on the Breast cancer dataset
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Fig. 11 Comparison on the House votes dataset

Table 4 Lower Outlier pairs detected no the Zoo dataset

Property Explanation Animals

Backbone=NO Tail=YES Scorpion

Breathes=NO Backbone=YES,
Fins=NO

Seasnake

Breathes=NO Aquatic=NO Clam

Milk=YES Eggs=YES Platypus

Airborne=YES Feathers=NO,
Predator=YES

Ladybird

Backbone=NO Catsize=YES Octopus

Venomous=YES Catsize=YES Stingray

Eggs=NO Milk=NO Seasnake, Scorpion

Backbone=NO Legs=4 Crab

Venomous=YES Breathes=YES,
Breathes=YES

Pitviper, Frog

Table 5 Upper Outlier pairs detected no the Zoo dataset

Property Explanation

Name=Frog ∅
Type=No-flying birds Predator=YES, Breathes=YES, Catsize=NO

Legs=6 Feathers=NO, Toothed=NO

Type=Mammals Airborne=NO, Breathes=YES, Catsize=NO

Legs=0 Type=Gastropods

Legs=2 Toothed=YES

Table 6 Lower Outlier pairs detected on the Breast Cancer Wisconsin
dataset (UCZ = Uniformity Cell Size; UCS = Uniformity Cell Shape;
BN = Bare Nuclei; BC = Bland Chromatin; MA =Marginal Adhesion;
NN = Normal Nucleoli)

Property Explanation Number of Objects

Mitoses=5/7/8 UCZ=1 1 object each

Type=malign UCS=1 2 objects

Type=malign BN=1, BC=2 1 objects

Type=malign BN=1, MA=1 3 objects

Type=malign BN=1, NN=1 3 objects

The table reports the number of objects sharing the anomalous
property value

Table 7 Upper Outlier pairs detected no the Breast Cancer Wisconsin
dataset (UCZ = Uniformity Cell Size; UCS = Uniformity Cell Shape;
BN = Bare Nuclei; BC = Bland Chromatin; MA =Marginal Adhesion;
NN = Normal Nucleoli, CT=Clump Thickness)

Property Explanation

ID=1276091 ∅
ID=1182404 ∅
NN=10 UCS=10

BN=10 MA = 1, Type=malign

NN=10 UCZ=10

BN=10 CT=8

MA=10 UCS = 10
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To infer this type of knowledge we consider the best ranked
outstanding pairs identifying upper outliers. Table 5 outlines
the 〈Explanation, Property〉 pairs we take into account. Note
that in this case more objects have the value reported as
anomalous, but what makes them special is the fact that the
frequency of such values is atypical within the distribution.

As for the Breast cancer Wisconsin, information pro-
vided by the top lower outlier pairs is summarized below:

– When uniformity of cell size is 1, the value of attribute
mitoses is almost equal to 1, except for three samples
having mitoses equal to 5, 7, and 8.

– When uniformity of cell shape is 1, the tumor is always
benign except for two samples.

– Among samples having bare nuclei equal to 1 and Bland
Chromatin equal to 2, only one is malign.

– Among samples having both bare nuclei and marginal
adhesion equal to 1, only three are malign.

– Among samples having bare nuclei and normal nucleoli
equal to 1, only three are malign.

Mining upper outliers, the technique identified that there
are two duplicated identifiers. Other upper outliers are dis-
cussed below:

– Among samples having uniformity of cell shape equal
to 10, most have normal nucleoli equal to 10.

– Among malignant tumor having marginal adhesion
equal to 1, most have bare nuclei equal to 10.

– Among samples with uniformity of cell size equal to 10,
most have normal nucleoli equal to 10.

– Among samples with clump thickness equal to 8, most
have bare nucleoli equal to 10.

– Among samples with uniformity cell size equal to 10,
most have marginal adhesion equal to 10.

The explanation-property pairs we take into account to
discuss the knowledge are reported in Table 6 for lower
outliers and in Table 7 for the upper ones.

7 Conclusions

In this work we have provided a contribution to single out
and explain anomalous values in categorical domains. We
perceive frequencies of attribute values as samples of a
distribution whose density has to be estimated. This leads to
the notion of frequency occurrence we exploit to build our
definition of outlier: an attribute value is suspected to be an
outlier if its frequency occurrence is exceptionally typical or
un-typical within the distribution of frequencies occurrences
of any other attribute value. As a second contribution,
our technique is able to provide interpretable explanations
for the abnormal values discovered. Thus, the outliers we
provide can be seen as a product of the knowledge mined,

making the approach knowledge-centric rather than object
centric.

The performances have been evaluated on some popular
benchmark categorical datasets and a comparative view is
proposed.

We notice that our method could be possibly combined
with techniques that deal with outlier detection in numerical
domains, in the spirit of what was done in [28, 30, 39], and
we leave this as a subject of future research.
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