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Abstract
An important challenge in metric learning is scalability to both size and dimension of input data. Online metric learning
algorithms are proposed to address this challenge. Existing methods are commonly based on Passive/Aggressive (PA) approach.
Hence, they can rapidly process large volumes of data with an adaptive learning rate. However, these algorithms are based on the
Hinge loss and so are not robust against outliers and label noise. We address the challenges by formulating the online Distance/
Similarity learning problem with the robust Rescaled Hinge loss function. The proposed model is rather general and can be
applied to any PA-based online Distance/Similarity algorithm. To achieve scalability to data dimension, we propose low-rank
online Distance/Similarity methods that learn a rectangular projection matrix instead of a full Mahalanobis matrix. The low-rank
approaches not only reduce the computational cost but also keep the discrimination power of the learned metrics. Also, current
online methods usually assume training triplets or pairwise constraints exist in advance. However, this assumption does not hold,
and generating triplets using available batch sampling methods is both time and space consuming. We address this issue by
developing an efficient, yet effective robust one-pass triplet construction algorithm. We conduct several experiments on datasets
from various applications. The results confirm that the proposed methods significantly outperform state-of-the-art online metric
learning methods in the presence of label noise and outliers by a large margin.

Keywords Metric learning . Rescaled hinge loss . Robust algorithm . Label noise . Online distance/similarity learning . One pass
triplet construction

1 Introduction

The performance of many machine learning and data mining
algorithms depends on the metric used to compute the dis-
tance between data. Generic measures such as Euclidean or
Cosine similarity in an input space often fail to discriminate
different classes or clusters of data. Therefore, learning an
optimal Distance/Similarity function from training informa-
tion is actively studied in the last decade.

Distance Metric Learning (DML) methods aim to bring
semantically similar data items together while keeping dissim-
ilar ones at a distance. One major challenge for DML algo-
rithms is scalability to both the size and dimension of input
data [1]. For processing massive volumes of data generated in
today’s applications, online methods are proposed.

Many of these algorithms are based on the PA [2–8]. The
main advantages of PA-based methods are 1) closed-form
solution and 2) adaptive learning rate leading to a high con-
vergence rate. However, the following challenges are still
needed to be addressed:

1- These algorithms are based on the Hinge loss and hence
are not robust against outliers and label noise data.
Nowadays many modern datasets are collected from the
Internet using crowdsourcing or similar techniques. Thus,
examples with wrong labels are usual in these datasets
that can considerably degrade the performance of existing
online DML methods.

2- Most DML algorithms learn a metric from pair or triplet
side information defined as:
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S ¼ xi; xið Þjxi and x j are similar
� �

D ¼ xi; xið Þjxi and x j are dissimilar
� �

T ¼ xi; xþi ; x
−
i

� ���xi should be more closer to xþi than to x−i
� �

Existing online methods [3–8] usually assume training trip-
lets or pairs exist in advance. However, this assumption does
not hold, and generating constraints by available batch sam-
pling methods is both time and space consuming. Thus, we
need an efficient one-pass sampling algorithm for online
tasks.

3- Another important challenge in online DML applications,
particularly in machine vision domain, is the high
dimension of input data. Many existing methods learn
Mahalanobis distance [3, 5, 6, 8] or bilinear similarity
[2, 3] that require O(d2) parameters (d indicates the data
dimension). Therefore, these methods are infeasible in
high dimensional environments.

The main contributions of the paper to overcome these
issues are as follows:

1- We address the first challenge by formulating the online
Distance/Similarity learning task using the robust
Rescaled Hinge loss [9]. The proposed model is rather
general, and we can easily apply it to any existing PA-
basedmethods. It significantly improves the robustness of
existing methods in the presence of label noise without
increasing their computational complexity.

2- The second challenge is tackled by developing an effi-
cient robust one-pass triplet construction algorithm in
our work.

3- Finally, we overcome the third challenge by developing
the low-rank versions of the proposed methods that learn
a rectangular projection matrix instead of a full
Mahalanobis matrix. These approaches not only decrease
the computational cost significantly but also retain the
predictive performance of the learned metrics. Also, we
can easily replace the low-rank projection matrix with a
nonlinear deep neural network model. Therefore, extend-
ing our methods for online deep metric learning is
straightforward.

Table 1 summarizes the main notations used throughout
the paper. The rest of the paper is organized as follows:
Section 2 reviews related work. In Section 3, we present the
formulation of the online Distance/Similarity learning prob-
lem using the Rescaled Hinge loss as well as the development
of the proposed algorithms. Experiments conducted to evalu-
ate the proposed methods are discussed in Section 4. Finally,
Section 5 concludes with remarks and recommendations for
future work.

2 Related work

DML is a well-studied problem and attracts a lot of interest in
the last decade. We refer interested readers to the surveys [1,
10] for a complete review of existing work. In this section, we
only focus on related online Distance/Similarity learning al-
gorithms. Most existing online learning methods learn a
Mahalanobis distance [4–8] or a bilinear similarity [2, 3].
However, some more generic measures such as [5, 11] are
also presented.

Mahalanobis-based methods learn a matrix M ≽ 0 given
by:

dM xi; x j
� �2 ¼ xi−x j

� �⊤
M xi−x j
� � ð1Þ

Since the matrixM ≽ 0, it can be decomposed asM = LLT

where L ∈ ℝd × r and r = rank (M). Therefore,Mahalanobis
distance learning is equivalent to find a linear transformation
L in the input space. Instead, bilinear similarity-based
methods learn a similarity matrixM given by:

SM xi; x j
� �2 ¼ xi⊤Mx j ð2Þ

The optimization problem of both Mahalanobis and bilin-
ear methods is formulated based on the PA approach as
follows:

M tþ1 ¼ arg min
M

reg M ;M tð Þ þ Cξ

subject to l M ;Rtð Þ≤ξ; ξ≥0;………M≽0

whereMt is the current Distance/Similarity matrix at time step
t, reg(M, Mt ) is a regularization term, and l(M, Rt) indicates
the margin-based Hinge loss function. In distance-based
methods, the Hinge loss is defined as:

l M ; pt; p
þ
t ; p

−
t

� �� �
¼ max 0; 1þ dM pt ; p

þ
t

� �2−dM pt ; p
−
t

� �2n o
ð4Þ

whereas it is defined in similarity-based methods as:

l M ; pt; p
þ
t ; p

−
t

� �� �
¼ max 0; 1−SM pt ; p

þ
t

� �2 þ SM pt ; p
−
t

� �2n o
ð5Þ

OASIS1 [2] is a popular bilinear similarity learning method
that uses the Frobenius norm as a regularization term, i.e. reg
M ;M tð Þ ¼ 1

2 M−M tk k 2
F : OASIS eliminates the p.s.d

1 Online Algorithm for Scalable Image Similarity

635



D. Zabihzadeh et al.

(positive semi-definite) constraint for scalability reasons.
However, this property is extremely useful to produce a low-
rank metric as well as to prevent overfitting.

OKS2 [3] extends OASIS in the feature space of an RKHS
kernel. Also, [3] presents OMKS which is the extension of
OKS for multi-modal data.

ODML3 and OMDML4 [4] are similar to OKS and OMKS
respectively, but instead of bilinear similarity, they learn
Mahalanobis distance. To enforce the p.s.d constraint, these
methods use full Eigen value decomposition that involves
O(d3) operations at each stage. Therefore, they are infeasible
for high-dimensional DML tasks. To address this problem,
LSMDML5 [8] utilizes DRP (Dual Random Projection) [12]
in an online multi-modal environment to enforce the p.s.d
constraint.

SLMOML6 [5] is the online version of the seminal ITML7

[13] method. It uses the logdet regularization term that auto-
matically enforces the p.s.d constraint at each time step.
However, it has a low convergence rate and still requires
O(d2) parameters.

In [6] a large-scale local online Distance/Similarity frame-
work is presented. It learns multiple metrics for the task at
hand, one metric per class in the dataset. Each metric in this
framework consists of a global and a local component learned
simultaneously. Having a common component for local met-
rics shares discriminating information among them and effi-
ciently reduces the overfitting problem.

OPML8 [7] is an online DMLmethod that learns projection
matrix L (see eq. (1)) directly, so it does not require imposing
the p.s.d constraint. In practice, L has a rectangular form (L ∈
ℝd × r, r ≪ d). However, OPML learns a square d × dmatrix
and obtains a closed-form solution with the O(d2) time com-
plexity. Also, it adopts the Frobenius norm regularization term
and the popular Hinge loss function. An interesting feature of
OPML is its triplet sampling strategy which constructs triplets
from incoming data in an online setting.

OAHU9 [14] aims to dynamically adapt the complexity of
the model and to effectively utilize the input constraints during
the learning process. For this purpose, this method introduces
the Adaptive-Bound Triplet Loss (ABTL) instead of the com-
monly used Hinge loss. Also, it uses an over-complete neural
network model and connects a different MEI (Metric
Embedding Layer) to each hidden layer of the network. The
overall loss is considered as a weighted average loss of each
MEI.

Table 2 summarizes the advantages and limitations of
existing online metric learning methods. As seen, all studied
online Distance/Similarity models are non-roust against label
noise. These methods assume that the input training informa-
tion is perfect. However, this assumption may be wrong in
practical machine vision applications where this information
is collected from the Internet by crowdsourcing or similar
techniques. Although some robust DML methods such as [7,
8, 15, 16] are presented, these methods are focused on batch
settings. Among them, only Bayesian approaches [7, 16] can
be extended for online settings. However, although Bayesian
learning helps to avoid over-fitting in a small or a dataset with
noisy features, it is less effective to deal with the more com-
plicated problem (i.e., label noise).

Many metric learning algorithms such as [8, 11, 17, 18]
generate triplets from training data using the following batch
procedure. Each data point xi is considered similar to its k
nearest neighbors with the same label (named target
neighbors of xi). Suppose xj is a target neighbor of xi. The
imposters of xi are any data point xl of a different class (i.e., yi
≠ yl) which violates the following condition:

d xi; x j
� �þ margin < d xi; xlð Þ

where d is a distance measure such as Euclidean.
The data point xi is set dissimilar to any of its imposters.

Then, the triplets are formed by the natural join of similar and
dissimilar pairs. Figure 1 illustrates the concepts of target
neighbors and imposters.

Generating triplets using this procedure is both time and
space consuming and is not feasible for online tasks. Although
an online triplet construction algorithm presented in OPML
that is very efficient in terms of computational cost, it does not
consider the distribution and structure of data. Therefore, it
has a lower performance in comparison with that of the batch
algorithm.

3 Proposed methods

In this section, we first derive a general form of objective
functions in existing online Similarity/Distance methods.
Then, we propose its robust variant based on the Rescaled
Hinge loss. After, we develop some algorithms that efficiently
solve the problem based on HQ.

3.1 General Form of Objective Functions in Online
Similarity/Distance methods:

As observed, many Distance/Similarity algorithms are based
on the margin-basedHinge loss function (lhinge). Let define the
variable zt as follows:

2 Online Kernel Similarity Learning
3 Online Distance Metric Learning
4 Online Multi-Modal Distance Metric Learning
5 Large-Scale Multi-modal Distance Metric Learning
6 Scalable Large Margin Online Metric Learning
7 Information-Theoretic Metric Learning
8 One-Pass Metric Learning
9 Online metric learning with Adaptive Hedge Update
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zt ¼ SM pt; p
þ
t

� �2−SM pt; p
−
t

� �2
; For similarity−based methods 6ð Þ

dM pt; p
−
t

� �2−dM pt; p
þ
t

� �2
; Mahalanobis−based methods 7ð Þ

(

The Hinge loss is then can be written as:

l M ; pt; p
þ
t ; p

−
t

� �� � ¼ max 0; 1−ztf g ð8Þ

Figure 2 shows the loss function. As seen, the loss linearly
grows for z ≤ 1 with no bound. The unboundedness of the
Hinge loss function causes the noisy labeled data and outliers
to have a large effect on the training process that results in
poor performance for the learned Distance/Similarity
measure.

Most existing Distance/Similarity learning methods can be
formulated as follows:

M tþ1 ¼ arg min
M

reg M ;M tð Þ þ Clhinge ztð Þ
subject toM≽0½ �

ð9Þ

Note that the constraint M ≽ 0 is not adopted in all
methods, so we enclose it by bracket. We can derive many
existing methods from this generic optimization problem. For
example, if we consider reg M ;M tð Þ ¼ 1

2 M−M tk k 2
F and

omit the M ≽ 0 constraint, then by defining zt according to
(6), we obtain the OASIS [2] and OKS10 [3] optimization
problems. Also, if we consider zt equal to (7), the optimization
problem (9) reduces to the OPML [7]. Similarly, by setting
reg M ;M tð Þ ¼ 1

2 M−M tk k 2
F , zt equal to (7), and enforcing

M ≽ 0, we reach the optimization problem in [4]. Finally, if

we set reg M ;M tð Þ ¼ Dld M ;M tð Þ ¼ trace MM−1
t

� �
−logdet

MM−1
0

� �
−d and drop the M ≽ 0 constraint, we obtain the

optimization problem of [5].
One approach to alleviate the effect of label noise data in

PA-based problems (such as eq. (9)) is to select a small value
for the hyper-parameter C. However, it causes lower values
for the adaptive learning rate. Instead, we propose to replace
the Hinge function with the robust Rescaled Hinge loss.

3.2 Robust variant of the General Objective Function:

The Rescaled Hinge loss is defined as:

lrhinge zð Þ ¼ β 1−exp −ηlhinge zð Þ� �� � ð10Þ

Figure 3 shows the diagram of the lrhinge(z) loss function
with different values of η. In this function, η is a rescaling
parameter and β = 1/(1 − exp(−η)) is just a normalizing
constant that ensures lrhinge(0) = 1. As seen, this loss function
is more robust than the Hinge against the outliers and data
contaminated with label noise. We can adjust the degree of
robustness using the η parameter. Also, the Hinge loss can be
regarded as a special case of the Rescaled Hinge. More spe-
cifically, lrhinge(z) becomes lhinge(z) as η → 0.

By replacing the Hinge loss function with the Rescaled
Hinge loss in eq. (9), we obtain the following optimization
problem for online robust Distance/Similarity learning.

Mtþ1 ¼ arg min
M

reg M ;M tð Þ þ Clrhinge ztð Þ
subject toM≽0½ �

ð11Þ

10 Online Kernel Similarity

Table 1 Summary of the main notations

Notation Description

Mt Distance or similarity matrix at time t,Mt∈ℝd×d

Lt Linear projection matrix at time t. M t¼LtL⊤
t , Lt∈ℝd×r, r≪d

Rt ¼ pt; p
þ
t ; p

−
t

� �
Incoming triplet at time t. pt: anchor, pþt : positive, p

−
t :negative

SM(xi,xj) Bilinear similarity function

dM(xi,xj) Mahalanobis distance

M≽0 p.s.d matrixM

lhinge The Hinge loss. lhinge(zt)= max{0,1−zt}
lrhinge The Rescaled Hinge loss

η Rescaled parameter in lrhinge
HQ Half-Quadratic

vt Auxiliary variable of the HQ algorithm at time t

MaxHQIter Maximum number of iterations in the HQ algorithm

ξ Slack variable

Ct Weight of the triplet at time t

τ Adaptive learning rate
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In the next subsections, we derive two efficient algorithms
that efficiently solve the above optimization problem in online
fashion.

3.3 The proposed Robust methods

Since the Rescaled Hinge loss is not convex, we need an efficient
algorithm to solve the optimization problem (11). The proposed
algorithms are based on HQ (Half Quadratic) which is an efficient
alternating approach for optimizing non-convex problems. The
main idea of HQ is to add an auxiliary variable such as v to the
problem using Conjugate theory [19], such that the new optimiza-
tion problem becomes quadratic to the main variable (with the
same optimal solution as the original non-convex problem).

Since lrhinge(z) = β[1 − exp(−ηlhinge(z))], we can obtain the
following problem which is equivalent to (11).

Mtþ1 ¼ arg max
M

− reg M ;M tð Þ þ Cβexp −ηlhinge ztð Þ� �
subject toM≽0½ �

ð12Þ

According to the definition of conjugate function, we have
(refer to the Appendix A of [9]),

exp −ηlhinge zð Þ� � ¼ sup
v<0

ηlhinge zð Þv−g vð Þ� � ð13Þ

where g(v) = − v log(−v) + v, (v < 0). By substituting eq.
(13) in (12), we obtain

f Mð Þ ¼ −reg M ;M tð Þ þ Cβexp −ηlhinge ztð Þ� �
¼ −reg M ;M tð Þ þ Cβ sup

vt<0
ηlhinge ztð Þvt−g vtð Þ� �

¼ sup
vt≺0

−reg M ;M tð Þ þ Cβ ηlhinge ztð Þvt−g vtð Þ� �� �
ð14Þ

The third relation in (14) holds since −reg(M, Mt) is con-
stant regarding v. Using (14), we can rewrite (12) as:

Mtþ1; v*t
� � ¼ arg max

M ;vt
− reg M ;M tð Þ þ Cβ ηlhinge ztð Þvt−g vtð Þ� �

subject toM≽0½ �
ð15Þ

Table 2 Advantages and limitations of existing online metric learning methods

Method Description Advantages Limitations

OASIS [2] Using bilinear similarity measure.
Omitting the p.s.d constraint. Adopting the Hinge

Loss.

Scalable Non-Robust
More prone to overfitting

OKSa [3] Extending OASIS in the feature space of a kernel. Learning non-linear projection in input
space

Non-Robust
Not providing an online triplet sampling

algorithm. More prone to overfitting. The
model size increases over time.

OMKS [3] Extending OKS for multiple kernel learning. It
combines the result of each kernel using the
Hedge algorithm.

Learning non-linear projection in the input
space.

High flexibility of the learned similarity.

Non-Robust. Not providing an online triplet
sampling algorithm. More prone to
overfitting. The model size increases over
time.

ODMLb [4] Similar to OASIS but usesMahalanobis distance.
Considers the p.s.d constraint.

Non-Scalable.
Resistance against overfitting.

Non-Robust. Non-Scalable.
Not providing an online triplet sampling

algorithm.
OMDML [4] Extends ODML for multiple kernel learning.

Combines the result of each kernel using the
Hedge algorithm

Learns a non-linear projection in the input
space. High flexibility of the learned
metric. Resistance against overfitting.

Non-Robust. Non-Scalable.
Not providing an online triplet sampling

algorithm.
SLMOML [5] Online version of the seminal ITML method.

Uses logdet regularization.
Scalable to some extent. Still, it has O(d2)

parameters. Resistance against
overfitting.

Non-Robust. Not providing an online triplet
sampling algorithm.

LPA-ODMLc

[6]
Learnsmultiple metrics. Eachmetric consists of a

global (shared) and a local component.
Utilizes DRP to achieve scalability.

Learns non-linear projection. Good
discrimination power. Resistance against
overfitting.

Non-Robust. Not providing an online triplet
sampling algorithm.

OPML [7] Learns projection matrix directly. Provides a
one-pass triplet construction algorithm

Scalable to some extent. Still, needingO(d2)
parameters.

Non-Robust. The triplet sampling algorithm
does not consider the structure of data.

OAHU [14] An online deep metric learning method. Learns a
metric per layer in the network. Combines the
metrics using the Hedge algorithm.

An end-to-end metric learning. Good
discrimination power. Dynamically
adapts the complexity of the model.

Non-Robust. Non-Convex.
Not providing an online triplet sampling

algorithm. Too many parameters. Needs a
metric embedding per layer.

LSMDML[8] Learns a metric for each source of multi-modal
data. Fuses the metrics using a PA-based
method.

Good discrimination power. Resistance
against overfitting.

Non-Robust. Not providing an online triplet
sampling algorithm.

a Online Kernel Similarity Learning
bOnline Distance Metric Learning
c Local Passive/Aggressive Online Distance Metric Learning

638



Low-rank robust online distance/similarity learning based on the rescaled hinge loss

To solve the above problem, we use the alternating optimi-
zation approach. First, givenM, we optimize (13) over vt and
then given vt, we optimize it over M. Suppose M(s) is given
(the superscript s indicates the iteration number), then (15) is
equivalent to:

v sð Þ
t ¼ arg max

vt
ηlhinge ztð Þvt−g vtð Þ� � ð16Þ

The above equation has a closed-form solution obtained by
setting its derivative with respect to vt equal to zero.

v sð Þ
t ¼−exp −ηlhinge ztð Þ� � ð17Þ

After obtaining v sð Þ
t , we optimize the eq. (15) respecting to

M as follows:

M ¼ arg max
M

− reg M ;M tð Þ þ Cβηvt lhinge ztð Þ
subject toM≽0½ �

ð18Þ

The above problem is equivalent to:

M ¼ arg min
M

reg M ;M tð Þ þ Ctlhinge ztð Þ
subject to M≽0½ �; lhinge ztð Þ≤ξ; ξ≥0

ð19Þ

where Ct = Cβη(−vt). The robustness of the optimization
problem (19) can be explained using the penalty factor Ct.
Suppose the current triplet Rt contains noisy labeled data, so
the hinge function (lhinge(zt)) returns a large loss for Rt. Thus,
Ct = Cβη(−vt) = Cβη exp(−ηlhinge(zt)) approaches zero.
Therefore, Rt has less effect on the learning process.

The obtained optimization problem, unlike existing
models, assigns an adaptive weight (Ct) for each incoming
triplet. By adjusting reg(M, Mt), p.s.d constraint, and zt, we
can obtain a family of robust Distance/Similarity learning
methods. For instance, we develop two proposed algorithms
named Robust_OASIS and Robust_ODML.11 These algo-
rithms can be considered as robust variants of existing
OASIS [2] and ODML [4] respectively.

3.3.1 Robust_OASIS

The robust similarity-based algorithm can be derived from the
general optimization problem (15) by the following settings:

reg M ;M tð Þ ¼ 1
2 M−M tk k 2

F , drop M ≽ 0 constraint, and
define zt according to (6).

Then, the following optimization problem is achieved:

Mtþ1; v*t
� �¼ arg max

M ;vt
−
1

2
M−M tk k2F þ Cβ ηlhinge ztð Þvt−g vtð Þ� � ð20Þ

The solution of the above problem is obtained by iteratively
computing vt from eq. (17) and then optimizingM by solving
the following optimization problem.

11 Robust Online Distance Metric Learning

Fig. 1 Illustration of target
neighbors and imposters of xi [17]

Fig. 2 The margin-based Hinge loss function. The loss linearly grows for
z ≤ 1 with no bound
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M ¼ arg min
M

1

2
M−M tk k2F þ Ctξ

subject to l pt; p
þ
t ; p

−
t

� � ¼ 1−SM pt; p
þ
t

� �þ SM pt; p
−
t

� �
≤ξ; ξ≥0

ð21Þ

The problem (21) has a similar solution to that obtained in
[2].

M tþ1 ¼ M t þ τAt

where τ ¼ min Ct;
l pt; p

þ
t ; p

−
t

� �
Atk k2F

 !
and At ¼ pt p

þ
t −p

−
t

� �⊤
ð22Þ

The main difference is that now the learning rate τ is bounded
to the adaptive triplet weight Ct instead of the constant C in the
OASIS. Algorithm 1 summarizes the steps of Robust-OASIS.

3.3.2 Robust_ODML

The robust Mahalanobis distance learning algorithm can be
derived from the general optimization problem (15) by the
following settings:

reg M ;M tð Þ ¼ 1
2 M−M tk k 2

F , enforce M ≽ 0 constraint,
and define zt according to (7).

We then obtain the following optimization problem:

Mtþ1; v*t
� � ¼ arg max

M ;vt
−
1

2
M−M tk k2F þ Cβ ηlhinge ztð Þvt−g vtð Þ� �
subject to M ≽ 0

ð23Þ

In a similar way to the Robust-OASIS, we obtain the solu-
tion by iteratively computing vt from the eq. (17) and then
optimizingM by solving the following optimization problem.

M ¼ arg min
M

1

2
M−M tk k2F þ Ctξ

subject to l pt; p
þ
t ; p

−
t

� � ¼ 1þ d2M pt ; p
þ
t

� �
−d2M pt ; p

−
t

� �
≤ξ; ξ≥0; M≽0

ð24Þ

The solution of the above problem is similar to that of [4].

M tþ1 ¼ M t þ τAt

where τ ¼ min Ct;
l pt; p

þ
t ; p

−
t

� �
Atk k2F

 !
and

At ¼ pt−p
−
t

� �
pt−p

−
t

� �⊤− pt−p
þ
t

� �
pt−p

þ
t

� �⊤
ð25Þ

Algorithm 2 summarizes the steps of Robust-ODML.
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To enforce the p.s.d constraint, the naive approach is to
perform the full Eigen value decomposition of matrix M and
then set its negative Eigen values to zero. This approach
requires O(d3) operations, so it is infeasible for high-
dimensional DML tasks. Although some improved methods
are available [6, 8, 12], we address this problem by developing
the low-rank versions of the proposed algorithms in the fol-
lowing subsections.

3.4 Low-rank Robust Distance/Similarity learning
methods

Instead of a full Mahalanobis matrix M ∈ ℝd × d , the
proposed low-rank methods learn a rectangular projection
matrix L ∈ ℝd × r where M = LL⊤and r is the rank of M.
We follow this approach to achieve the low-rank variants
of the proposed method since: 1) it automatically enforces
the p.s.d constraint, 2) in many real applications data lie
on a latent subspace with dimensionality r ≪ d. Thus, this
approach requires fewer parameters. An important prob-
lem is how to adjust the hyper parameter r. While some
sophisticated methods like Bayesian variational inference
[16] or low-rank approximation [20] exist that can auto-
matically adjust the value of r; here, we simply use the
cross-validation.

The optimization problem for low-rank online Distance/
Similarity learning is formulated as:

Ltþ1¼ arg max
L

−reg L;Ltð Þ þ Cβ ηlhinge ztð Þvt−g vtð Þ� � ð26Þ

If we rewrite both the bilinear similarity and the
Mahalanobis distance as functions of L as follows:

SL p; qð Þ2 ¼ p⊤Mq ¼ p⊤LL⊤q ¼ LTp
� �⊤

L⊤qð Þ ð27Þ
dL p; qð Þ2 ¼ p−qð Þ⊤M p−qð Þ ¼ p−qð Þ⊤LL⊤ p−qð Þ ¼ L⊤p−L⊤qk k22; ð28Þ

Then, the bilinear similarity learning is equivalent to find-
ing a linear projection L and then applying dot product to the
inputs in the projected space. Similarly, Mahalanobis distance
learning corresponds to compute the Euclidean distance after
transforming the inputs by L.

The zt variable can be expressed in terms of SL and dL as:

zt ¼ SL pt; p
þ
t

� �2−SL pt; p
−
t

� �2
; For similarity−based methods 29ð Þ

dL pt; p
−
t

� �2−dL pt; p
þ
t

� �2
; Mahalanobis−based methods 30ð Þ

(

Now, we can easily derive the proposed low-rank robust
similarity learning algorithm named Robust-LOSL12 from the
generic optimization problem (26) with the following settings:

reg L;Ltð Þ ¼ 1
2 L−Ltk k 2

2, define zt according to (29).
The obtained optimization problem can be solved by itera-

tively computing vt from the eq. (17) and then optimizing L by

12 Robust Low-rank Online Similarity Learning
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solving the following optimization problem:

Ltþ1¼ argmin
L

1

2
L−Ltk k2F þ Ctlhinge ztð Þ ð31Þ

The above unconstrained optimization problem is non-
convex. However, we can solve it efficiently by optimizing
a simple linear neural network model parameterized by L as
illustrated in Fig. 4.

The sub-gradient of the loss function with respect to L can
be computed from the following equation:

∂lt
∂L

¼ L−Ltð Þ þ Ct ptp
−⊺
t þ p−t p

⊺
t −ptp

þ⊺
t −pþt p

⊺
t

� �
L

¼ L−Ltð Þ−Ct pt p
þ
t −p

−
t

� �⊺ þ pþt −p
−
t

� �
p⊺t

h i
L

L−Ltð Þ−Ct At þ A⊺
t

� �
L

where At ¼ pt pt−p
þ
t

� �⊺
ð32Þ

Thus, we can train the network using backpropagation or
more sophisticated algorithms such as Adams. The steps of
Robust-LOSL are summarized in Algorithm3.

Similarly, we can derive the proposed low-rank robust dis-
tance learning algorithm named Robust-LODML13 from the
generic optimization problem (26) with the following settings:

reg L;Ltð Þ ¼ 1
2 L−Ltk k 2

F , define zt according to (30).
We solve the obtained problem iteratively by computing vt

from the eq. (17) and then updating L by optimizing the neural
network model presented in Fig. 4. The sub-gradient of the

loss function with respect to L can be computed from the
following equation:

∂lt
∂L

¼ L−Ltð Þ þ 2Ct pt−p
þ
t

� �
pt−p

þ
t

� �⊺− pt−p
−
t

� �
pt−p

−
t

� �⊺h i
L

���
¼ L−Ltð Þ þ 2CtAtLj

where At ¼ pt−p
−
t

� �
pt−p

−
t

� �⊺− pt−p
þ
t

� �
pt−p

þ
t

� �⊺
ð33Þ

13 Robust Low-rank Online Distance Metric Learning

Fig. 3 The Robust Rescaled hinge loss function vs z with different η
values
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Algorithm 4 summarizes the steps of Robust_LODML.
We can easily replace the linear module in the proposed
low-rankmodel with a nonlinear deep neural networkmodule.
Thus, extending our methods for online deep Distance/
Similarity learning is straightforward. Also, the experimental
results in the next section confirm that Robust_LODML re-
duces the computational cost significantly while preserving
the predictive performance of the learned metric.

3.5 Convergence Analysis

This subsection establishes the convergence of our methods
with a similar analysis in [9]. According to (14),

f M ; vð Þ ¼ −reg M ;M tð Þ þ Cβ ηlhinge ztð Þvt−g vtð Þ� �
¼ −reg M ;M tð Þ þ Cβexp −ηlhinge ztð Þ� �

≤Cβ

The inequality holds since reg(M, M t) ≥ 0 and
exp(−ηlhinge(zt)) ≤ 1. Thus, our objective function f(M, v) is

upper bounded. Let f M sð Þ
t ; v sð Þ

t

	 

indicates the objective

function in the s-th iteration of the HQ loop. According to
(16) and (19), we have

f M sð Þ
t ; v sð Þ

t

	 

≤ f M sð Þ

t ; v sþ1ð Þ
t

	 

≤ f M sþ1ð Þ

t ; v sþ1ð Þ
t

	 

It means that the sequence

f M sð Þ
t ; v sð Þ

t

	 

; s ¼ 1; 2;…;MaxHQIter

n o
generated by our

algorithms is nonincreasing. Consequently, by considering the

convergence property of gradient descent methods [21], the
convergence of the proposed algorithms are established.

3.6 Run Time Analysis

As seen, the proposed robust online Distance/Similarity learn-
ing model is general and can easily be applied to the existing
online Distance/Similarity algorithms. Let A be an online

Distance/Similarity algorithm with the time complexity TA.
By applying our method to A, besides optimizing the
Distance/Similarity measure, we require to compute the
weight of the incoming triplet (Ct) using the eq. (17). As seen,
Ct requires evaluation of lhinge(zt) which is also needed for
updating the metric. Therefore, it does not imply additional
costs, and the overall time complexity of the robust method
will be O(MAXHQIter × TA). The experimental results con-
firm that the convergence of the alternating loop is fast, and
the best results are obtained by takingMAXHQIter ≤ 3 in all
experiments. Therefore, the obtained robust method has the
same time complexity as the corresponding algorithm (A).

3.7 Online Triplet Constructing Algorithm

Generating triplets using available batch algorithms is both
time and space consuming. Also, the one-pass triplet con-
structing strategy adopted in OPML has low performance,
especially in noisy environments. To this end, we propose
an online triplet constructing algorithm namedOCTG14which

14 Online Cluster-based Triplet Generator
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is not only very efficient but also effective in comparison with
the available batch methods. By utilizing the distribution and
clusters of input data, the proposed algorithm can effectively
detect outliers and noisy labeled data. Therefore, its perfor-
mance surpasses existing methods in noisy environments.

Suppose {Vi| i = 1, 2, …, K} is the set of cluster centers
initialized by a sample of data at the beginning of the online
algorithm. Here, we use the k-means algorithm to obtain c
cluster centers per class in the dataset. OCTG receives incom-
ing data (xt, yt) at time step t and finds its closest cluster center
Vtwith the same class. Then, it considers any cluster center Vi

from a different class (i.e., yi ≠ yt) which violates the follow-
ing condition as an imposter (see Fig. 5):

d xt;Vtð Þ þ margin < d xt;Við Þ

The triplet set constructed at time step t is formed as:

Tt ¼ xt;V t;Við Þj where Vi is an imposterf g

As seen, the proposed methods assign a weight denoted byCt

to each incoming triplet. We assign weight wt to xt equal to the
minimum weights of the generated triplets at time t. The small
value for wtmeans that xt is a potential outlier or a noisy labeled
instance. The weight and input data are then used to update the
cluster centers using any existing online clustering methods.

The obtained weights can be used to enhance the perfor-
mance of any metric-based algorithms such as kNN or CBIR
(Content-Based Information Retrieval) in noisy environments.
For example, we use the following version of kNN named
Robust-kNN (instead of the standard kNN) to classify the
objects in the experiments.

Figure 6 depicts the system flow of the proposed learning/
test schemes.

4 Experimental Results

This section deals with the experiments performed to evaluate
the performance of proposed methods in noisy environments.
First, we study the effect of label noise on the generated trip-
lets and then discuss how these noisy triplets affect the perfor-
mance of online DML methods. Subsequently, we evaluate
the performance of proposed methods on real datasets at dif-
ferent levels of label noise. The results are compared with peer
methods.

The Bilinear or dot product similarity learning is equivalent
to Mahalanobis distance learning when each instance of the
input triplet has a unit norm (i.e., ‖p‖2 = 1). Thus, the exper-
iments focus on the Mahalanobis distance learning.

4.1 Effect of Label Noise on the Generated Triplets

As depicted in Fig. 7, we can distinguish between three dif-
ferent types of noisy triplets: anchor, positive, and negative
noisy triplets.

To study the effects of different types of noisy triplets, we
apply 10% label noise to theWine dataset. The noisy dataset is
visualized using the T-SNE algorithm [22] in Fig. 8.

The statistics of the generated triplets using both batch [17]
and OCTG methods are summarized in Table 3.

As the results in Table 3 indicate, by applying only 10%
label noise, 68% and 46% of generated triplets by the batch
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and OPML triplet construction methods are contaminated re-
spectively. On the other hand, OCTG only constructs 25%
contaminated triplets (just from anchor noisy type). It is due
to the fact that OCTG selects positive and anchor points from
cluster centers, not data instances that may have been contam-
inated by label noise. The generated noisy triplets by OCTG
have large losses in comparison with that of normal ones
(1.67 vs 0.39). It can be explained by the fact that a labeled
noise example is often far away from its cluster center while it
is close to a center from other classes. Hence, the proposed
robust methods assign very small weights (Ct = Cβη
exp(−ηlhinge(zt))) to them in the learning process and so they
have a negligible effect on the learned metric.

To analyze the effect of different types of triplet noise in a
typical DML task, we run the ODML [4] with the following
settings on the generated triplets by the batch method.

ODML: The ODML algorithm.
Ideal ODML: The ideal algorithm which knows the noisy

triplets in advance and so ignores them in the training process.
Anchor Ideal ODML: The ideal algorithm that only

knows the anchor noisy triplets in advance.
Pos Ideal ODML: The ideal algorithm that only knows the

positive noisy triplets in advance.
Neg Ideal ODML: The ideal algorithm that only knows

the negative noisy triplets in advance.
In this experiment, we divide the dataset into train/test with

a 70/30 ratio and run the above algorithms ten times on the
dataset. Figure 9 depicts the mean of obtained results by var-
ious algorithms.

For small values of C, the results indicate that the
learned metric by ODML has no meaningful difference
with that of Euclidean. For large values of C, ODML
performs worse than Euclidean, and its accuracy substan-
tially degrades in this noisy environment. Also, among the
ideal methods (cannot be implemented in practice), the
Anchor Ideal ODML has the same performance as Ideal
ODML, and others (Pos Ideal ODML, Neg Ideal ODML)

Fig. 4 The proposed neural
network model for Low-rank
Robust Online Distance/
Similarity learning

Fig. 5 Illustration of imposters of the data point xt
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are ineffective. Thus, anchor noisy triplets are the main
reason for low performance in this experiment.

We repeat the experiment by running Robust-LODML
using the triplets generated by our mechanism. The mean-
accuracy of kNN-Robust-LODML15 (k = 3, η = 3) and
the weights assigned to instances by Robust-LODML are
depicted in Figs. 10 and 11 respectively. As the results
show, the proposed method is robust against label noise
and its performance surpasses Euclidean metric even for
the large values of C. Also, Robust-LODML effectively
identified the contaminated instances and considerably re-
duces their weights (Ct) in the training process.

As shown in Fig. 3, the parameter η controls the robustness
of the loss function against outliers and data with noisy labels.
To study its effect on the noisy data in a real experiment, we
apply 20% label noise on the Wine dataset. Then, we evaluate
Robust-LODML in a 5-fold cross-validation setting.
Figure 12 depicts the mean accuracy of kNN-Robust-
LODML (k = 3) on the dataset. As the result show, the lower
η values considerably degrade the performance of Robust-
LODML. Also, by properly setting the η value, the perfor-
mance of our method substantially increases in the noisy
environment.

The results are obtained by using only one dataset. In the
next subsections, we evaluate the proposed methods on the
variety of datasets in different label noise levels. Also, the
results are compared with state-of-the-art methods.

4.2 Experimental Setup

Table 4 summarizes the statistics of evaluated datasets in the
experiments. Here, all datasets except Letters are normalized
so that the mean and standard deviation of each attribute be-
comes 0 and 1, respectively. Also, the dimension of images in
Extended Yale Faces has been reduced to 100 by applying
PCA to alleviate the feature noise effects. The parameter d
in Table 4 denotes the input dimension after feature reduction.

In the experiments, triplet side information is generated
using OCTG for the proposed methods whereas the one-pass
triplet construction [7] is adopted for the other methods.

The results are obtained by k-fold cross validation (k = 5 is
set for Letters and Extended Yale Faces and k = 10 for other
datasets). The results are compared with peer distance-based
methods: ODML [4], LPA-ODML16 [6], and OPML [7].

The hyperparameters of the competing methods are adjust-
ed by k-fold cross-validation as follows. The parameter C in
ODML and the proposed methods are selected from (10−6,
30). The η in the proposed methods is chosen from the
range (0.01, 5). Also, λ in OPML is selected from (10−6,

0.05). We evaluate the performance of the learned metrics
by the kNN classifier with k = 3 in the experiments.

4.3 Results and Analysis

Table 5 presents the classification accuracy of the kNN
using the learned metrics of the competing methods. Here,
the parameter nl shows label noise level (in percent).
Figure 7 depicts the mean of 5-fold cross validation accu-
racy of competing methods versus nl (ranging from 0% to
20%). To make the comparison meaningful, the statistical
analysis test with p − value = 5% was performed on the
results. In Table 5, we marked our results by * when
differences with other methods were statistically signifi-
cant. Also, boxplots of some statistically different results
are depicted in Fig. 14.

As the results in Table 5 and Fig. 13 indicate, the proposed
robust methods (i.e., Robust-ODML and Robust-LODML)
significantly outperform other DML methods in the presence
of label noise. Also, the performance of these methods de-
clines more slowly than other ones with the increase of noise
level. That confirms our claim that using the robust loss func-
tion and robust sampling preserves the discrimination of the
learned metric in a noisy environment.

Besides, the low-rank version of the proposed method (i.e.,
Robust-LODML) almost has the same accuracy as Robust-
ODML. That confirms in real datasets, data lie on a latent
subspace with dimensionality r ≪ d. Thus, learning the pro-
jection matrix Ld × r instead of full Mahalanobis matrix M
results in the same performance while it is more efficient in
terms of time and space requirements.

In the next subsection, we evaluate our proposed methods
in a more challenging dataset for identifying COVID-19 pa-
tients from Chest-X-ray images.

4.4 Detecting COVID-19 Patients from Chest-X-ray
images

4.4.1 Dataset description

The dataset used in our experiments is publicly available in the
kaggle repository17 [25]. Figure 15 depicts some examples
from both classes. It contains 219 COVID-19 cases and
1341 normal images. As seen, the dataset is imbalanced and
is too small to train a deep CNN model from scratch.

4.4.2 Experimental setup

To extract features from the images, we use the pretrained
Resnet18 [26]. This network was trained on the ImageNet

15 The kNN classifier using the learned metric of Robust-LODML method.
16 Local Passive/Aggressive Online Distance Metric Learning

17 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database?
select=COVID-19+Radiography+Database
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dataset (with 1.4 million labeled images and 1000 different
classes). It has 71 layers, and the input layer requires images of
size 224-by-224-by-3. We resize the images to the specified
size and obtain 512 features from the global pooling layer,
‘pool5’, at the end of the model.

In addition of online methods, we also compared the pro-
posed methods with the BLMNN [18] batch method. The λ
and maxIter hyperparameters of BLMNN are selected from
the ranges {1, 3, 5, 10, 20} and {1, 3, 5} respectively using 5-
fold cross-validation.

We use 5-fold cross-validation to obtain the results in the
experiments. The main concern in this task is to limit the
number of missed COVID-19 cases. Hence, in addition to
accuracy, we utilize a variety of metrics to evaluate our work.

These metrics are Sensitivity (Recall), Precision, F1 Score,
and G-mean (Geometric-mean). Here, COVID-19 and
Normal are considered as positive and negative classes, re-
spectively. The metrics are defined as follows:

Accuracy ¼ TP þ TNð Þ=All Predictions ð34Þ
Sensitivity Recallð Þ ¼ TP= FN þ TPð Þ ð35Þ
Precision ¼ TP= TP þ FPð Þ ð36Þ
F1−Score ¼ 2 Precision� Sensitivityð Þ= Precisionþ Sensitivityð Þ

ð37Þ
Specificity ¼ TN= TN þ FPð Þ ð38Þ
G−mean ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� Specificity

p
ð39Þ

Fig. 7 Three different types of noisy triplets in the form (xi, xj, xl): (a) Anchor noisy triplet where xi is contaminated with label noise, (b) Positive noisy
triplet where xj has label noise, and (c) Negative noisy triplet where xl has a wrong label

Fig. 6 The system flow of the proposed learning/test schemes
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4.4.3 Results and analysis

Table 6 presents the classification results of the kNN using the
learned metrics in the different levels of label noise. The re-
sults of both sensitivity and precision of the competing
methods versus noise level are shown in Fig. 16(a). Since
sensitivity is more important in this task, we multiply it by
2. Also, Fig. 16(b) presents the G-mean results versus noise
level. The high value of G-mean indicates that accuracy in
both classes is high and balanced.

As the results indicate, all methods obtain a high perfor-
mance in a low-level label noise setting. However, with the

increase of noise level, the performance of the competing
methods declines sharper than our proposed methods.
Especially, while the BLMNN (batch method) has the advan-
tage of processing each data multiple times, it does not per-
form well in high-level noise settings. It can be explained as
follows: 1) the batch triplet sampling utilized in BLMNN is
vulnerable to label noise as discussed in subsection 4.1, 2)
while Bayesian learning is effective to deal with feature noise,
it is less helpful to deal with the more complicated problem
(i.e., label noise).

The proposed methods achieve high sensitivity for
COVID-19 patients in noisy environments. It is very im-
portant since the primary goal of this task is to limit the

Fig. 8 T-SNE Visualization of
the Wine dataset after applying
10% label noise

Table 3 Statistics of generated
triplets in the Wine dataset
contaminated with 10% label
noise

Method Batch OPML OCTG (Ours)

Feature # Mean Hinge loss # Mean Hinge loss # Mean Hinge loss

Instances 178 – 178 – 178 –

Classes 3 – 3 – 3 –

Triplets 413 0.92 85 140 0.71

Normal triplets 131 0.85 46 0.45 105 0.39

Noisy triplets 282 0.96 39 0.51 35 1.67

Anchor noisy triplets 38 1.01 17 0.57 35 1.67

Positive noisy triplets 23 1.02 17 0.51 0 –

Negative noisy triplets 249 0.95 14 0.42 0 –
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number of misclassified COVID-19 cases as much as pos-
sible. For example, the Confusion matrices of the pro-
posed methods at Noise Level = 20% are shown in
Table 7. As seen, only 1.8 and 1 (as the average of 5-
fo ld c ross va l ida t ion ) COVID-19 pa t i en t s a re
misclassified as Normal by the proposed methods. Also,
our methods obtain good precision (or predictive positive
value). High precision is crucial since high FP (False

Positive) increases the burden of the healthcare system
for additional care and tests such as PCR (Polymerase
Chain Reaction). Therefore, based on the results, we can
conclude the proposed methods perform well in detecting
COVID-19 cases in the presence of label noise. However,
the difference between sensitivity and specificity values
indicates further improvements are possible by adopting
balancing techniques in this imbalanced dataset.

Fig. 9 The kNN (k = 3) accuracy
of the learned metric of various
algorithms in the Wine dataset
with 10% label noise

Fig. 10 The kNN accuracy of the learned metric by Robust-LODML algorithm (η = 3) in the Wine dataset with 10% label noise
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Also, we studied themean run time of the competingmethods
in a 5-fold cross-validation setting. The results are depicted in
Fig. 17. Also, Table 8 shows the summary of statistics in the
experiment. Here, in the “hyper-parameters” column, we only
report the value of time-related hyper-parameters. The parameter
r indicates the number of columns in the projection matrix L ∈
ℝd × r. Note that, OPML only can learn a square projection
matrix (r = d = 512 in these experiments), while Robust-
LODML can learn a rectangular low-rank matrix. For Robust-
LODML, we adjust the value of r from {128, 256, 512}. The
#active column shows the mean number of active triplets.18 It

also indicates the number of times that the algorithm should
update the metric.

The overall execution time of a DML method depends on
the efficiency of the triplet sampling mechanism, the required
time to update the metric, and its convergence rate. In the
noise-free experiment, the average number of generated trip-
lets by the one-pass triplet construction algorithm is 1231
(refer to Table 8). However, only a few of them violate the
margin constraint. The mean number of active triplets for
LPA-ODML, ODML, and OPML are 65.00, 100.60, and
33.20, respectively. Thus, OPML achieves a low runtime in
this experiment. On the other hand, the OCTG utilized in our
methods only generates an average of 43.40 triplets. The

18 Triplets that violate the margin and so have none zero loss.

Fig. 11 The tSNE visualization of the Wine dataset with 10% label noise where data points are displayed (a) with equal sizes (b) with the sizes
proportional to their weights

Fig. 12 Mean accuracy of kNN-
Robust-LODML (k = 3) vs. η
values on the Wine dataset with
20% label noise
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Table 4 Statistics and explanations of evaluated datasets

Data Set #classes n #dim d Description

Wine [23] 3 178 13 13 Standard UCI classification dataset.
https://archive.ics.uci.edu/ml/datasets/wine

Letters [23] 26 20,000 16 16 includes 20,000 examples of 26 English capital letters. Images of letters
are generated from 20 different fonts and then 16 numerical attributes
are extracted from these images. https://archive.ics.uci.edu/ml/datasets/letter+recognition

Extended Yale Faces
[24]

38 2414 1024 200 is a standard face recognition dataset that contains 2414 face images of 38 classes.
For each person, at most 64 images are taken under extreme illumination conditions.

http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/ExtYaleB.html
Ionosphere [23] 10 351 34 33 Standard UCI classification dataset.

https://archive.ics.uci.edu/ml/datasets/Ionosphere
WDBC [23] 2 569 32 30 Breast Cancer Wisconsin (Diagnostic) Data Set

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
Australian 2 690 14 14 was used in a competition on click-through rate prediction jointly hosted by Avazu

and Kaggle in 2014. The participants were asked to from the first 10 days of advertising
log, estimate the click probability for the impressions on the 11th day.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
German Credit 2 1000 24 24 Each instance represents a person who takes a credit from a bank and is classified as good

or bad credit risks according to the set of attributes.
https://www.kaggle.com/uciml/german-credit

Table 5 The classification accuracy of the kNN using the learned metric of the competing methods

Data Set nl % Robust-LODML Robust-ODML LPA-ODML ODML OPML Euclidean

Wine 0
5
10
15
20

97.65±4.11
97.65±3.04
96.47±4.96
97.65±4.11
95.29±6.68

96.47±6.32
97.06±3.10
97.06±5.00
95.88±5.58
95.29±5.41

97.06±4.16
97.06±5.00
96.47±4.11
94.71±6.47
90.00±6.82

98.29±1.56
96.00±4.78
93.14±3.26
90.86±6.52
89.14±3.73

97.06±4.16
95.88±4.84
96.47±4.11
94.12±5.55
91.18±8.43

95.29±5.41
93.53±5.154
94.12±4.80
92.35±6.82
85.88±8.41

Letters 0
5
10
15
20

96.80±0.25
96.41±0.35
95.39±0.35*
94.19±0.40*
93.18±0.48*

96.68±0.37
95.85±0.61
94.36±0.44
93.27±0.63
92.20±1.04

96.88±0.25
96.08±0.29
93.57±0.34
91.78±0.28
88.69±0.30

96.76±0.29
95.98±0.28
94.08±0.32
91.53±0.71
88.46±0.40

96.78±0.34
96.02±0.37
94.29±0.31
91.57±0.40
88.32±0.32

95.39±0.36
94.53±.50
92.64±0.51
90.03±0.55
86.67±0.81

Extended Yale Faces 0
5
10
15
20

96.02±0.31*
95.56±0.45*
94.94±1.01*
94.90±1.20*
93.11±1.40*

95.52±1.12
94.27±1.12
93.69±1.02
92.70±1.78
92.37±0.68

93.94±0.90
92.86±0.84
92.78±1.24
91.33±0.90
88.88±1.26

93.82±.82
92.82±1.05
91.70±1.41
88.51±1.19
85.56±0.91

93.57±0.88
92.53±0.62
90.95±1.23
88.71±1.32
85.23±1.28

93.36±0.89
92.57±0.27
91.54±0.86
88.63±1.03
85.56±0.91

Ionosphere 0
5
10
15
20

93.14±3.35
93.14±4.09
90.86±4.82
90.00±4.90
88.86±4.75

92.00±3.24
91.43±5.39
91.43±4.47
89.14±9.31
88.00±5.35

94.00±4.94
91.71±4.75
88.86±4.56
87.14±6.06
83.71±4.68

90.29±4.09
89.71±3.61
87.71±3.82
87.71±5.23
84.29±6.35

86.57±5.05
87.43±4.30
86.57±3.31
84.35±7.31
82.32±7.25

84.86±3.29
86.00±3.41
84.57±4.89
81.43±2.26
79.43±6.29

WDBC 0
5
10
15
20

95.71±2.41
94.29±3.01
94.46±3.31
94.11±3.04
91.07±2.92

95.36±2.55
95.54±2.70
93.57±2.41
92.32±3.67
92.50±4.67*

95.18±3.04
94.82±2.59
93.04±2.59
90.18±3.69
85.89±3.62

95.00±2.64
93.93±3.17
92.68±2.97
88.39±6.08
85.00±5.60

95.00±3.84
93.75±3.88
93.57±2.94
88.93±2.35
85.89±3.81

92.86±3.15
92.32±3.37
89.11±3.81
85.71±5.26
83.93±6.63

Australian 0
5
10
15
20

85.51±5.11
86.09±5.17
84.78±2.49
85.07±4.88
85.51±3.92

86.23±3.82
87.25±5.24
86.67±4.72
85.07±4.32
85.80±3.19*

86.67±4.72
85.94±5.68
83.77±5.01
82.32±4.92
79.42±5.10

85.51±3.98
84.93±4.44
81.45±4.62
78.26±5.68
74.64±6.84

83.62±6.11
83.33±5.08
81.45±4.92
81.45±3.54
78.84±4.94

82.03±5.43
81.30±5.31
78.99±7.43
76.81±5.76
73.19±5.12

German Credit 0
5
10
15
20

74.60±2.07
74.60±2.55
73.20±4.44
73.20±3.58
72.60±3.50

74.70±2.21
73.40±5.42
74.00±3.40
73.30±4.90
71.50±4.14

76.10±3.60
73.50±4.40
72.70±3.13
71.20±5.09
70.30±5.54

73.90±2.38
72.40±4.20
71.10±5.22
68.60±2.95
65.70±3.68

72.20±3.79
70.30±4.50
69.40±5.21
65.20±3.88
63.30±5.14

69.40±4.14
67.90±5.26
66.50±5.99
64.30±4.79
62.30±6.20
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Fig. 13 Comparison of the classification accuracy of RDML with other DML methods versus label noise
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average number of active triplets for Robust ODML and
Robust LODML are 21.00 and 26.80, respectively. As seen,
the execution time of both Robust-ODML and Robust-
LODML are acceptable in this experiment.

In the high-level noisy environment (nl = 20%), the con-
vergence rate of non-robust methods (i.e., LPA-ODML,
ODML, and OPML) is low. Therefore, the number of active

constraints is high, and their execution times exceed the robust
algorithms. Here, we found that the best hyper-parameters
setting for Robust-LODML is r = 128, MaxHQIter = 1.
Hence, the number of its parameters is a quarter of other
methods. Also, it only has an average of 292.60 active con-
straints. Thus, its run time is considerably smaller than other
competing methods.

Fig. 14 Boxplots of some statistically different results with p-value = 5%
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Fig. 15 Four images from the
COVID-19 dataset. First row:
Normal cases, Second row:
COVID-19 patients

Fig. 16 2×Sensitivity + Precision and G-means of the competing methods on the COVID-19 dataset
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5 Conclusion and Future work

Existing online Distance/Similarity learning methods are
usually formulated by the Hinge loss and so are not robust

against outliers and label noise data. Also, they often have
the wrong assumption that training triplets or pairwise
constraints exist in advance. Generating triplets using
available batch algorithms is both time and space consum-
ing. To address these challenges, we formulate the online
Distance/Similarity learning problem using the robust
Rescaled Hinge loss [9]. Also, we develop an efficient
robust one-pass triplet sampling algorithm that takes data
distribution and its clusters into account.

We further extend our work by providing the low-rank
variants of proposed methods that learn a rectangular projec-
tion matrix instead of a full Mahalanobis matrix.

We studied the effects of label noise in a DML task
and conducted several experiments to measure the perfor-
mance of the proposed methods at different noise levels.
Extensive experimental results show that the proposed
methods can effectively detect wrong label data and re-
duce their influences in DML tasks. Thus, they consistent-
ly outperform other related online Distance/Similarity
learning algorithms in noisy environments.

We intend to extend the work for online deep distance/
similarity learning. Some other directions for future work are:

Fig. 17 Mean run time of evaluated methods in 5-fold validation setting
in the COVID-19 dataset

Table 6 Classification metrics of kNN using the learned metrics of competing methods on the COVID-19 dataset

Method nl% Accuracy Sensitivity Precision Specificity G-mean F1-Score

Robust-ODML
Robust-LODML
LPA-ODML
ODML
OPML
BLMNN

0 99.23±0.66
99.42±0.57
99.49±0.37
99.36±0.23
99.29±0.42
99.23±0.70

95.35±3.52
96.54±3.80
97.33±3.06
97.33±3.06
96.62±2.61
96.29±3.77

99.65±0.78
99.50±1.12
99.13±1.25
98.10±2.18
98.60±2.29
98.57±0.97

99.92±0.18
99.93±0.17
99.85±0.21
99.70±0.31
99.78±0.33
99.93±0.17

97.59±1.83
98.20±1.96
98.57±1.50
98.50±1.42
98.18±1.25
97.62±2.10

97.43±1.99
97.97±2.16
98.19±1.32
97.66±0.88
97.56±1.10
97.40±1.96

Robust-ODML
Robust-LODML
LPA-ODML
ODML
OPML
BLMNN

5 99.10±0.48
98.97±0.35
99.17±0.62
98.97±0.42
98.53±0.49
98.59±0.87

96.11±2.61
96.99±3.01
94.71±4.12
96.50±3.37
93.81±3.21
92.64±3.06

97.75±1.30
95.83±1.25
99.52±1.06
96.29±2.26
95.72±5.45
97.23±3.73

99.62±0.28
99.33±0.17
99.93±0.17
99.40±0.33
99.34±0.79
99.55±0.62

97.84±1.30
98.14±1.47
97.26±2.13
97.93±1.64
96.52±1.41
96.02±1.78

96.90±1.13
96.37±1.08
97.02±2.32
96.34±1.39
94.62±1.97
94.86±3.02

Robust-ODML
Robust-LODML
LPA-ODML
ODML
OPML
BLMNN

10 98.46±0.80
98.46±0.83
98.21±1.23
97.50±0.89
98.08±0.60
97.88±1.12

94.90±2.03
94.97±2.98
88.95±7.19
92.53±4.39
90.53±5.19
89.90±7.86

94.78±3.34
94.31±3.53
99.07±1.30
90.20±7.81
96.04±4.68
94.76±2.82

99.00±1.01
99.02±0.64
99.85±0.21
98.37±1.22
99.41±0.66
99.18±0.49

96.92±0.87
96.96±1.66
94.18±3.73
95.38±2.00
94.83±2.44
94.35±4.15

94.79±1.32
94.62±2.78
93.59±3.62
91.09±3.33
93.00±1.19
92.10±4.48

Robust-ODML
Robust-LODML
LPA-ODML
ODML
OPML
BLMNN

15 97.95±0.66
97.76±1.96
98.21±0.98
95.90±0.83
96.03±0.18
96.28±2.03

96.96±2.46
95.68±3.36
90.78±3.68
93.69±4.61
93.41±2.71
86.19±10.62

89.16±4.22
90.52±7.72
96.87±2.13
79.84±5.70
80.84±4.63
87.38±7.07

98.14±0.62
98.09±1.80
99.47±0.45
96.29±0.75
96.50±0.48
97.91±1.21

97.54±1.32
96.87±2.46
95.01±1.99
94.96±2.35
94.93±1.16
91.72±5.87

92.84±2.59
92.97±5.58
93.70±2.35
86.09±3.79
86.56±1.86
86.57±7.55

Robust-ODML
Robust-LODML
LPA-ODML
ODML
OPML
BLMNN

20 96.73±0.69
97.31±1.03
97.50±1.66
92.63±0.93
92.44±1.41
93.91±1.55

97.94±2.03
96.08±4.67
89.82±4.86
90.45±3.36
91.40±5.26
81.31±7.12

82.06±5.47
86.35±5.73
92.88±7.40
67.32±5.37
66.55±7.70
76.70±4.70

96.57±0.93
97.54±0.97
98.80±1.30
92.99±0.71
92.64±1.62
95.97±0.81

97.24±0.82
96.78±2.38
94.18±2.90
91.70±1.91
91.98±2.59
88.27±4.19

89.17±2.67
90.82±3.51
91.23±5.36
77.09±3.93
76.75±5.41
78.88±5.55
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I. Examining the performance of the proposed methods in
other applications like CBIR.

II. Extension of the proposed methods in imbalanced
environments.

III. Enhance the performance of the proposed online triplet
sampling algorithm.
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