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Abstract
A single model usually cannot learn all the appropriate features with limited data, thus leading to poor performance when test
data are used. To improve model performance, we propose a teacher-student collaborative knowledge distillation (TSKD)
method based on knowledge distillation and self-distillation. The method consists of two parts: learning in the teacher net-
work and self-teaching in the student network. Learning in the teacher network allows the student network to use knowledge
from the teacher network. Self-teaching in the student network is to build a multi-exit network based on self-distillation and
provide deep features as supervised information for training. In the inference stage, we use ensembles to vote on the classifi-
cation results of multiple sub-models in the student network. The experimental results demonstrate the superior performance
of our method compared with a traditional knowledge distillation method and a self-distillation-based multi-exit network.

Keywords Knowledge distillation · Self-distillation · Teacher-student collaborative · Ensemble

1 Introduction

With the rapid development of deep learning, convolutional
neural networks have exhibited excellent performance in
various computer vision tasks [1, 2]. In visual datasets, a
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category usually contains multi-view features that are easy
to categorize, and simple models can only learn some of
the features; however, deep neural networks can effectively
handle this problem. As the number of network layers and
parameters increase, models become prone to overfitting,
which affects their performance.

Knowledge distillation is an important method of knowl-
edge transfer; in this process, a lightweight model learns
valid information from a heavy model to enhance per-
formance. This model structure is often considered as a
teacher-student structure. With an experienced teacher net-
work in place, the inferior student network learns from the
valuable information in the teacher network through knowl-
edge distillation and achieves a performance improvement.
Similarly, self-distillation allows a model to learn another
pretrained network with the same structure. Due to the
stochastic nature of feature learning and differences among
model initialization methods, models obtain knowledge in
different ways. The performance of a network can also be
effectively improved by knowledge transfer between mod-
els. A model can learn knowledge from other models or
itself to improve performance. However, it is still unclear
whether a model can achieve performance improvements
under the guidance of both a teacher model and itself.

In this paper, our soft label information comes from
the teacher network and the output of student network,
therefore the student network can be regarded as its own
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second teacher. Similar to multi-teacher distillation, in our
approach, we let a single model learn as many view features
as possible from multiple networks. In the process of human
learning, students guided by teachers can further improve
their abilities with self-reflection. Inspired by this approach,
a combination of teacher-student knowledge distillation and
student self-distillation is used to enhance the performance
of neural networks, and a method called teacher-student
collaborative knowledge distillation (TSKD) is proposed.
This method not only utilizes the category information from
the teacher network but also absorbs student’s knowledge.
To construct the student self-distillation model, the stu-
dent network builds multiple exit classifiers from shallow to
deep. A shallow classifier can be regarded as a young stu-
dent, and each classifier is an independent branch of the
network, with shared convolutional layers. During training,
each classifier receives supervision from the teacher net-
work based on real labels, and the student network deep
classifiers also guide the shallow layers through self-distilla-
tion. During testing, the category probabilities of multiple
weak exits are combined to form a strong network of stu-
dents. We conduct experiments on the CIFAR100 and Tiny-
ImageNet datasets. The experimental results show that the
proposed method can significantly improve the classifica-
tion performance of the model, and the proposed model
outperforms existing knowledge distillation methods and
multi-exit self-distillation methods. Finally, the experimen-
tal results are analyzed in detail.

The main contributions of this paper are summarized as
follows:

1. We propose a teacher-student collaborative distillation
method. In contrast to traditional knowledge distillation
methods in which only the teacher network provides a
priori knowledge, our approach also allows the student
network to learn from itself. The loss function of
collaborative distillation is constructed by combining
knowledge distillation and self-distillation, which fully
exploits the performance of both optimization methods
and thus improves the classification accuracy of the
network.

2. We propose a new architecture incorporating a multi-
exit network and a teacher-student model. Each exit
in the multi-exit network is guided by soft logits from
the teacher network, and thereby the classification
performance of the multi-exit network is improved. At
the same time, the student network benefits from the
multi-exit network based on self-distillation.

3. To obtain a strong classifier, we use ensembles to vote
on the classification results of multiple sub-models in
the student network during the testing stage. Compar-
ative experiments with multiple datasets and different

teacher-student frameworks demonstrate the effective-
ness and robustness of the proposed method.

2 Related work

2.1 Knowledge distillation

Knowledge distillation (KD), an important method of model
compression [3–5], is effective in transferring “dark knowl-
edge” from a larger model to a smaller model, allowing
the smaller model to approximate the performance level
achieved by the larger model [6–8]. This concept was first
proposed in [9], but then was not explicitly explained. In
2014, [10] proposed an approach that enables a student
network to learn the soft targets output by a teacher net-
work and defined the method as knowledge distillation.
However, conventional knowledge distillation methods only
learn the output of the teacher network, which leads to
the loss of intermediate layer knowledge. Later approaches
attempted to exploit the information contained in middle
model layers by designing different knowledge representa-
tions rather than just using the output information [11–17].
For example, [11] proposed an approach in which the stu-
dent network simulates not only the output of the teacher
network but also the hidden layer characteristics of the
teacher network. [12] used attention transfer mechanisms
to significantly improve its performance by forcing the stu-
dent network to mimic the attention map of the powerful
teacher network. Although the above algorithms utilized
knowledge from the teacher network, they only consider
the output of a specific layer of the teacher network. The
relational knowledge distillation (RKD) approach proposed
by [15] can transfer the structured relationships associated
with the output results obtained by the teacher network to
the student network, which alleviates the above problem.
The correlations among different categories of probabili-
ties may contain useful information to regularize a learning
problem, and [16] found that the generation gap between
teacher and student representation of mutual information
can be minimized through contrastive representation dis-
tillation. Based on an adversarial-based learning strategy
as a supervisor to guide and optimize lightweight student
networks and recover knowledge from teacher networks,
[18] recently proposed a knowledge distillation method for
one-stage object detection . [19] constructed a compressed
model to learn low-dimensional spatial information from
potential representations of teacher networks. Most studies
have focused on the representation of feature knowledge or
methods of maximizing the transfer of teacher network fea-
ture knowledge while ignoring the potential capabilities of
student networks. In this paper, we build a multi-exit student
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model based on the traditional knowledge distillation struc-
ture and use the deep feature and category information in the
student network as supervision information to guide student
network training, which results in improved performance.

2.2 Self-distillation

Self-distillation is a new approach that was developed
from knowledge distillation. Unlike traditional knowledge
distillation architectures, the teacher-student architecture of
self-distillation uses the same model [20–22], or a network
framework without teachers [23–25]. [20] used neural
networks to study knowledge distillation from a new
perspective; instead of compressing the model, the student
network is optimized based on a teacher network with
an equivalent parameter settings. [24] proposed a general
training framework for self-distillation by constructing
a multi-exit network for teacher-free distillation within
the student network itself. [26] argued that self-distillation,
as a regularization method, mitigates the overconfident
predictions of the network and reduces intraclass gaps. All
of the above studies found that self-distillation can
effectively improve the performance of a student network.
Although self-distillation gets rid of the need for a strong
network of teacher, it loses the guidance of teacher
network. In contrast to [24], we use a shared weighting
strategy for the fully connected layer of the applied
multi-branch network to reduce the number of model
parameters. Moreover, each branch receives guidance from
an extra teacher network. In particular, we found that
the introduction of new teacher knowledge in the self-
distillation network further enhances the effectiveness of
self-distillation.

2.3 Ensemble

Ensembles have been widely used to improve model per-
formance [27–29]. Since different models could be com-
plementary, the outputs of multiple models with the same
structure and different initialization training ensembles can
be used to improve test performance. Several studies have
found that ensembles are also effective in improving knowl-
edge distillation performance. [30] found that ensemble
teacher networks can effectively improve student network
classification performance. To overcome offline-distillation
issues, a strong teacher network is needed, [31] combined
knowledge distillation and an ensemble approach to train
a multi-branch network and then built a strong teacher
model based on the branches of the ensemble to enhance
the learning capabilities of the target network. However, this
approach undoubtedly leads to a complex teacher model.
In contrast with multiple teacher network ensembles [32],
our student network constructs multiple exit outputs from

shallow to deep, and only a small number of parameters are
added to achieve the effect of multiple model ensembles.
Finally we use ensembles to vote on the classification results
of multiple sub-models in the student network, and obtain a
strong classifier.

3 Proposedmethod

In this section, we start by reviewing the classical knowl-
edge distillation algorithms and then introduce the overall
framework of the teacher-student collaborative knowledge
distillation network proposed in this paper.

3.1 Knowledge distillation

The teacher network function t and the student network
function s are defined as follows:

t = f t (x, wt ) (1)

s = f s (x, ws) (2)

where x represents the network input, wt and ws are the
parameters of the teacher network and the student network,
respectively. For convenience, t and s also represent the
logits of the teacher network and student network outputs.
LKL refers to Kullback–Leibler divergence, x(j) denotes the
j-th input image in N data samples. The Kullback–Leibler
divergence measures the distance between the student and
teacher output logits, which can be measured as:

1

N

N∑

j=1

LKL

(
f s

(
x(j), ws

)
, f t

(
x(j), wt

))
(3)

LCE refers to cross-entropy loss, and yj represents the true
label of the j-th input image. The distance between the
predicted value of the student network and the true label is
defined as:

1

N

N∑

j=1

LCE

(
f s

(
x(j), ws

)
, yj

)
(4)

The optimization goal of knowledge distillation is to
minimize the gap between the output of students and the
prediction of teacher, as well as that between the output and
the true label [10]:

argmin
ws

∑(
ατ 2 · LKL + (1 − α) · LCE

)
(5)

Where ws denotes the parameters of the student, α denotes
the weight of KL divergence. Here, τ is defined as the
distillation temperature, which is used as a hyper-parameter
related to the degree of target softening.
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3.2 TSKD

The whole framework of the teacher-student collaborative
knowledge distillation method proposed in this paper is shown
in Fig. 1, and it consists of two parts: a teacher network and
a multi-exit output student network, in which the teacher
network is usually a large pretrained network and only the
student network is involved in training and testing.

Given C categories of N data samples, for the input sam-
ple x ∈ {xi}Ni=1, zk represents the output of the fully con-
nected layer about k category, k means category index. the
k category probability of the teacher model output is expressed
as:

tk = exp
(
zk/τ

)
∑C

k exp
(
zk/τ

) (6)

Similarly, the output of the student model can be represented
as sk . τ = 1 indicates the standard SoftMax function.

Our model constructs n exit classifiers, and the training
loss for any m ∈ [1, n) classifier has two components. The
first component is the loss associated with regular knowledge
distillation, which is based on the KL divergence between
teacher and students and the cross-entropy between student
outputs and labels. The second part is related to self-distillation
loss. The deepest classifier (exit n) in the multistage classi-
fier is used as the second teacher, and it promotes the use

of valuable knowledge of logits and features to guide shal-
low classifier learning.

LossmKD = ατ 2 · LKL (sm, t) + (1 − α) · LCE (sm, y) (7)

LossmSD = ατ 2 · LKL (sm, sn) + β · ‖μm (Fm) − Fn‖2 (8)

In the above equation, sm and t represent the m-th classi-
fier in the student network and the soft logits of the teacher
network output based on the temperature τ , respectively. y
stands for true label, Fm and Fn denote the feature output
before the fully connected layer in the m-th classifier and
deepest exit branch of the student network, respectively. To
ensure the scales of Fm and Fn are consistent, an adaptive
bottleneck layer is added to each exit network, which is sim-
ilar to the bottleneck layer structure in ResNet50, consisting
of a downsampling layer with a 3x3 convolution kernel and
a bottleneck structures with 1x1, 3x3, 1x1 convolution ker-
nels. On the one hand, we succeeded in maintaining the
scale consistency, and on the other hand, we managed to
reduce the number of parameters as much as we could.
Adaptability is guaranteed as the use of different numbers
of bottleneck modules depends on the size of feature map.
we denote the m-th module as μm (Fm). The L2 loss func-
tion is used to minimize the gap between the feature maps
of the shallower network and the deepest convolution layer,
and α and β is defined as the Kullback–Leibler divergence

Fig. 1 The details of our approach. The whole framework consists
of an offline teacher network and a student network. (i) The teacher
network transfers soft logits to guide the student network. (ii) The
student network adds a bottleneck layer and a fully connected layer

after each block to build a multi-exit network from shallow to deep.
(iii) Each shallow classifier receives supervision from the teacher net-
work, its own deepest classifier and the true labels. (iv) Each classifier
is combined in an ensemble to form a strong classifier

2000 C. Xu et al.



and L2 loss weights, respectively, 1 − α is defined as LCE

weights is for weight normalization.
Thus, the total student network loss can be expressed as:

Loss =
n∑

m=1

(
LossmKD + LossmSD

)
(9)

For testing, in the student network, we use an average
ensemble algorithm to fuse the exits with different classi-
fication performance. Different from multi-teacher network
ensembles and multi-student collaborative ensembles, we
averagely integrate the multi-exit outputs of the student
network without introducing additional models, which can
effectively reduce model complexity. Sm represent the out-
put of the m-th classifier exit, and f represents the final
output of the model.

f = 1

n

n∑

m=1

Sm (10)

4 Experiments

This section first introduces the datasets and hyper-parameter
settings used in the experiments. Then we compare the
benchmark method, the traditional knowledge distillation
method and a multi-exit network.

4.1 Benchmark datasets and implementation details

1. CIFAR100 [33]: This dataset was collected by Alex
Krizhevsky, Vinod Nair and Geoffrey Hinton, with a
total of 60k color images of size 32x32 divided into 100
categories; additionally, the dataset includes 50k train-
ing samples and 10k test samples. The data preprocess-
ing method used was based on the CRD [16] process-
ing method. The training set images were filled with
4 pixels on each side and then randomly cropped to
32x32 with random horizontal flipping at a probabil-
ity of 0.5. For testing, the original images were used
for evaluation. The experiments were performed using
SGD optimization, and the weight decay and momen-
tum were set to 0.0001 and 0.9, respectively. The batch
size was set to 128, the initial learning rate was 0.1, the
epoch was reduced to 0.1 times the previous value at
150, 180 and 210 epochs, and the training ended after
240 rounds. The temperature (T) for computing soft tar-
gets was set to 3.0. We set α = 0.3 and β= 0.03 in
knowledge distillation loss function. The exit number
(n) was set to 4. All the experiments were implemented
in PyTorch on GPU (RTX2080s) devices.

2. TinyImageNet [34]: A subset of ImageNet released by
Stanford University in 2016 was used in this study.

A total of 120k RGB images of size 64x64 were
divided into 200 categories, there are 100k training
samples, 10k validation samples and 10k test samples
were used. Preprocessing involved a simple random
horizontal flip, and training and testing were performed
at the original image size. The optimization approach
and hyper-parameter settings were the same as those for
the CIFAR dataset.

4.2 Comparison with the benchmarkmethod

The traditional ResNet [2], VGG [35], WRN [36] and Shuf-
fleNet [37, 38] were chosen as the backbone networks for
the experiments. To fuse the different stages of knowl-
edge learning in the teacher network and student network,
we constructed a multi-exit output student network under
regular teacher guidance. For convenience, three indepen-
dent classifier branches were inserted between blocks with
decreasing feature space resolution, and each branch con-
tained a bottleneck layer and a fully connected layer. The
bottleneck layer ensured that the output feature map size
remained consistent and mitigated the impact of varia-
tions among shallow classifiers. Table 1 shows the per-
formance result of each branch of the student network on
CIFAR100, and we found that semantic features were cap-
tured differently due to the different depths of the networks.
Comparatively, the deep classifier possessed higher classi-
fication accuracy than the shallow classifier. An ensemble
was applied during testing, and the highest weights were
assigned to the classification exits with high classification
accuracy. The experimental results show that the final test
accuracies of our method are all improved by 4%-7% com-
pared to those of the baseline methods. In addition, we
found that our teacher-student collaborative knowledge dis-
tillation method outperformed the baseline methods in the
early stage.

4.3 Comparison with traditional knowledge
distillationmethods

To show the effectiveness and robustness of the teacher-
student collaborative distillation method proposed in this
paper, we chose seven different teacher-student architec-
tures with both homogeneous and heterogeneous models
and compared them with some mainstream knowledge dis-
tillation methods. Most of the experimental methods were
implemented based on the original open-source codes, and
a few methods were based on the information in [16] for
both the CIFAR100 and TinyImageNet datasets. The clas-
sification accuracy and number of parameters were used as
evaluation metrics, and the classification accuracy is shown
in Tables 2 and 3. The number of model parameters is
shown in Table 4. Since we construct a multi-exit network
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Table 1 Comparison of the accuracy of the proposed method and benchmark methods

Neural Networks(T/S) Baseline(T/S) Classifier1/4 Classifier2/4 Classifier3/4 Classifier4/4 Ensemble

ResNet152/ResNet50 80.88/77.98 80.30 81.18 81.40 81.63 83.09

ResNet152/ResNet18 80.88/77.09 75.01 76.87 79.35 80.46 81.27

ResNet152/ResNet10 80.88/75.37 75.39 76.22 76.44 77.87 79.34

ResNet50/VGG8 79.34/70.36 68.98 69.49 70.12 73.23 75.63

VGG13/VGG8 76.64/70.36 68.05 69.13 69.58 72.65 75.42

WRN40-2/ShuffleNetV1 75.61/70.50 72.43 76.80 75.21 73.31 77.98

ResNet32x4/ShuffleNetV2 79.42/71.82 70.63 74.27 75.56 74.51 78.16

based on the student network, which leads to a slightly
higher number of parameters than considered in the tradi-
tional KD algorithm but considerably fewer parameters than
considered in the teacher network, we can also achieve a
good model compression effect. Moreover, in terms of clas-
sification accuracy, our method is slightly lower than the
SOTA HSAKD on the ResNet series networks. However,
our approach exhibits outstanding performance on VGG
and ShuffleNet. Bold and underline denote the best and the
second best results, respectively.

4.4 Comparison with themulti-exit networks

Our student network can also be considered a kind of multi-
exit classification network based on knowledge distillation.
The main difference from the past multi-classifier networks
proposed in [24] is that each of our classifiers receives
supervision from the teacher network rather than just the
deep classifier. Deeply supervised net (DSN) [45], on the

other hand, constrains the intermediate layer with real
labels to improve classification accuracy by mitigating gra-
dient explosion or gradient disappearance. To verify the
effectiveness of the proposed method, the two methods
were experimentally compared. ResNet152 was selected as
the teacher network, and ResNet18 and ResNet50 were
used as the backbone networks of the multi-exit model.
The experimental results are shown in Table 5. For both
the shallow classifier and the final output of the model,
the multi-exit student network based on collaborative dis-
tillation in this paper exhibited superior performance. In
particular, the output of the first classifier is improved by
7.78% and 7.16% for ResNet18 and 12.43% and 12.07% for
ResNet50, respectively. Knowledge distillation allows the
multi-exit network to learn effectively knowledge from an
additional teacher network. Our method effectively demon-
strates the potential of shallow networks, thus enabling
flexible deployment with limited hardware resources. Bold
denote the best results.

Table 2 Comparison of the accuracy of the proposed method and knowledge distillation methods on CIFAR100

Teacher ResNet152 ResNet152 ResNet152 ResNet50 VGG13 WRN40-2 ResNet32x4

Student ResNet50 ResNet18 ResNet10 VGG8 VGG8 ShuffleNetV1 ShuffleNetV2

Baseline 80.91 80.91 80.91 79.35 74.64 75.61 79.42

77.98 77.09 75.37 70.36 70.36 70.50 71.82

KD [10] 79.69 79.86 77.85 73.81 72.98 74.83 74.45

FIT [11] 80.51 79.24 78.02 73.24 73.22 73.73 73.54

AT [12] 80.41 80.19 78.45 74.01 73.48 73.32 72.73

SP [13] 80.72 79.87 78.25 73.52 73.49 74.52 74.56

CC [39] 79.89 79.82 78.06 73.48 73.04 71.38 71.29

VID [14] 79.24 79.67 77.80 73.46 72.97 73.63 73.40

RKD [15] 80.22 79.60 77.90 73.51 73.19 72.21 73.21

PKT [40] 80.57 79.44 78.41 73.61 73.25 73.89 74.69

AB [17] 81.21 79.50 78.18 73.65 73.35 73.34 74.31

FT [41] 80.37 79.26 77.53 72.98 73.44 72.03 72.50

CRD [16] 80.53 79.81 78.60 74.58 74.29 76.27 76.05

SSKD [42] 80.29 80.36 78.60 75.36 75.27 77.32 77.45

HSAKD[43] 83.33 82.17 79.75 75.20 75.07 77.51 77.89

TSKD(ours) 83.09 81.27 79.34 75.63 75.42 77.98 78.16

2002 C. Xu et al.



Table 3 Comparison of the accuracy of the proposed method and
knowledge distillation methods on TinyImageNet

Teacher ResNet34 ResNet50

Student ResNet18 ResNet10

Baseline 65.64 66.26

62.86 58.70

KD [10] 66.54 60.34

FIT [11] 67.18 61.30

AT [12] 66.66 61.94

SP [13] 67.56 62.18

CC [39] 66.80 61.90

VID [14] 67.56 62.32

RKD [15] 66.92 61.84

AB [17] 65.42 62.58

FT [41] 65.92 62.26

CRD [16] 67.66 61.96

AFD[44] 68.10 62.52

TSKD(ours) 68.86 63.64

Table 4 Comparison of the number of parameters (M) in the student
network (ResNet152 and VGG13 were used as teacher networks with
no change in the number of parameters)

Methods KD TSKD

ResNet152 58.348 58.348

VGG13 9.923 9.923

ResNet50 23.712 37.812

ResNet34 21.798 22.055

ResNet18 11.227 12.334

ResNet10 4.957 5.859

VGG8 4.426 5.383

Table 5 Comparison of the
accuracy of the proposed
method and multi-exit
networks on CIFAR100

Network Method Classifier1/4 Classifier2/4 Classifier3/4 Classifier4/4 Ensemble

ResNet18 Baseline - - - 77.09 -

DSN [45] 67.23 73.80 77.75 78.38 79.27

SD [24] 67.85 75.57 78.23 78.64 79.67

TSKD(ours) 75.01 76.87 79.35 80.46 81.27

ResNet50 Baseline - - - 77.98 -

DSN[45] 67.87 73.80 75.54 80.27 80.67

SD [24] 68.23 74.21 75.23 80.56 81.04

TSKD(ours) 80.30 81.18 81.40 81.63 83.09

Fig. 2 Ablation experiments on CIFAR100 and TinyImageNet
datasets
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Table 6 The results of ablation
experiments with different
strategies on CIFAR100

Method Model Accuracy (%)

Teacher ResNet152 80.91

Student ResNet18 77.09

Logits(T) ResNet152- ResNet18 79.37

Logits(T)+Logits(S) ResNet152- ResNet18 80.37

Logits(T)+Logits(S)+Features(S) ResNet152- ResNet18 81.03

Logits(T)+Logits(S)+Features(S)+Ensemble ResNet152- ResNet18 81.27

5 Analysis

In this section, we further analyze the observations from the
experiment. Firstly, the performance of each strategy is exam-
ined with ablation experiments. Secondly multi-exit network
features for dimensionality reduction visualization. Finally,
the effectiveness of ensemble modules are analyzed.

5.1 Ablation study

Since our method is implemented based on knowledge dis-
tillation between teacher and student and the self-distillation

of the student network, it is unclear whether the improve-
ment is associated with knowledge distillation or self-distil-
lation. Different networks and datasets are selected, and
three methods, including stochastic gradient descent (SGD),
knowledge distillation (KD) and self-distillation (SD), are
implemented for comparison, with classification accuracy
as the evaluation metrics. The experimental results are
shown in Fig. 2, and the proposed method significantly
outperforms conventional knowledge distillation and self-
distillation.

In addition, the teacher-student collaborative distillation
method proposed in this paper incorporates three types of

Fig. 3 Feature dimensionality reduction visualization. a - d represent the feature output of exit 1 - exit 4 in the student network
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Table 7 (a) Example ’lizard’ on CIFAR100

Category Kangaroo Rocket lizard Snail Dolphin Shark Rabbit Baby Ray

Classifier1/4 0.529 0.188 0.083 0.044 0.029 0.011 0.009 0.007 0.006

Category rocket lizard ray shark rabbit snail kangaroo turtle crocodile

Classifier2/4 0.512 0.098 0.048 0.044 0.034 0.030 0.029 0.018 0.016

Category shrew mouse shark lizard snail rocket ray trout chair

Classifier3/4 0.510 0.199 0.069 0.031 0.030 0.025 0.023 0.020 0.015

Category shark lizard seal trout shrew snail rocket whale turtle

Classifier4/4 0.406 0.264 0.050 0.044 0.316 0.289 0.017 0.011 0.008

Category lizard rocket shark snail shrew mouse kangaroo ray trout

Ensemble 0.211 0.180 0.136 0.073 0.042 0.038 0.036 0.034 0.024

supervised learning: (i) the logits output from the teacher
network to the student network (Logits(T)), (ii) the logits
transferred from the deepest layer of the student network
to the shallow classifier (Logits(S)), and (iii) the features
from the shallow layer of the student network matched
to deep features (Features(S)). In addition, the average
ensemble strategy is used. To evaluate the effectiveness of
each type of supervised learning, we chose ResNet152 and
ResNet18 as the teacher and student networks, respectively,
and conducted ablation experiments on CIFAR100. The
experimental results are summarized in Table 6. It is found
that each strategy has different degrees of improvement
for classification accuracy, and has a large improvement
over the traditional knowledge distillation method using
only Logits(T). Notably, our method even outperforms the
teacher network.

5.2 Multi-exit network features for dimensionality
reduction visualization

In this paper, we construct a student network with multi-
ple exits based on self-distillation. Similar to multi-teacher
distillation, in this approach, the deepest output of the back-
bone network is considered as the second teacher, different
networks learn different view features, and the student

network matches the feature representation knowledge of
multiple models through knowledge distillation and self-
distillation. Finally we use ensembles to vote on the clas-
sification results of multiple sub-models in the student net-
work, and obtain a strong classifier. We visualize the high-
dimensional features input into the fully connected layer
in the three branch networks and the backbone network by
dimensionality reduction. As shown in Fig. 3, the classifica-
tion effect of each exit of the student model is remarkable,
and the classification accuracy of the shallow layer even
approaches that of the deep layer.

5.3 Ensemble validity and sensitivity analysis

In this section, we discuss the validity of multiple exit
ensembles and how the number of exits affects the results.
In the student network, we construct multiple output chan-
nels, each of which is a separate classification network.
Although our sub-models are uniformly optimized by the
same teacher and share some weights, the structure of each
sub-model is different. Firstly, the depth of the backbone
network is different, secondly, the bottleneck layer is differ-
ent. Due to the different depths of sub-networks and the dif-
ferent number of nonlinear functions introduced, each sub-
model has different ability to fit data, so the classification

Table 8 (b) Example ’castle’ on CIFAR100

Category Castle Skyscraper Rocket House Mountain Mushroom Lamp Pear Forest

Classifier1/4 0.700 0.210 0.034 0.013 0.007 0.004 0.003 0.003 0.002

Category castle skyscraper pear pine tree rocket mountain house orchid road

Classifier2/4 0.424 0.110 0.069 0.059 0.051 0.040 0.024 0.017 0.016

Category pear pine tree forest castle skyscraper house orchid road lamp

Classifier3/4 0.530 0.138 0.134 0.074 0.031 0.021 0.020 0.010 0.005

Category skyscraper pear castle mountain pine tree orchid forest rocket house

Classifier4/4 0.338 0.124 0.104 0.093 0.074 0.042 0.030 0.024 0.023

Category castle skyscraper pear pine tree house forest rocket mountain orchid

Ensemble 0.0376 0.214 0.108 0.058 0.034 0.033 0.029 0.027 0.018
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Table 9 (c) Example ’dinosaur’ on CIFAR100

Category House Tank dinosaur Elephant Bridge Tractor Train Castle Pickup truck

Classifier1/4 0.208 0.110 0.080 0.060 0.059 0.045 0.042 0.029 0.028

Category tank tractor lawn mower cattle bus dinosaur palm tree motorcycle train

Classifier2/4 0.299 0.121 0.062 0.051 0.050 0.042 0.038 0.031 0.027

Category dinosaur tractor tank lobster castle palm tree willow tree house bus

Classifier3/4 0.512 0.164 0.079 0.028 0.021 0.017 0.016 0.013 0.013

Category dinosaur tank castle house tractor bridge willow tree palm tree orchid

Classifier4/4 0.716 0.067 0.052 0.035 0.027 0.012 0.011 0.009 0.007

Category dinosaur tank tractor house castle palm tree rocket pickup truck willow tree

Ensemble 0.295 0.181 0.111 0.058 0.039 0.030 0.021 0.019 0.018

Fig. 4 Verification of the
effectiveness of ensemble
strategies and a sensitivity
analysis
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results are also different. Several sets of experiments were
added to illustrate the differences in classification perfor-
mance of each submodel and the effectiveness of multi-exit
integration. We chose ResNet152-ResNet18 as the teacher-
student network on CIFAR100, and we counted the num-
ber of error samples for each sub-model as well as after
integration. We found that the wrong sample was classi-
fied differently for each exit. According to the statistics,
the samples with incorrect predictions at the deepest exit
were correctly predicted at the first, second and third exits
approximately 22%, 20% and 14% of the total errors at the
deepest exit. This suggests that although the deepest classi-
fier predicts incorrectly, it can be predicted correctly at the
shallow level. When integrated, these samples with incorrect
predictions at the deep level may also be predicted correctly.
For example, The experimental results are shown in Table 7,
8 and 9, we give three cases of integration validity: (a) All
four classifiers predicted incorrectly at first but then pre-
dicted correctly after integration. (b) The first two classifiers
predicted correctly, the last two classifiers predicted incor-
rectly, then predicted correctly after integration. (c) The first
two classifiers predicted incorrectly, the last two classifiers
predicted correctly, then predicted correctly after integra-
tion. Red denotes real label.

In addition, we also compare the use of ensemble with
the non-application of ensemble, the experimental results
are shown in Fig. 4. Our experiments were conducted
based on the CIFAR100 and TinyImageNet datasets, and
different teacher-student architectures were used to verify
the effectiveness of the ensemble strategy. Furthermore, we
explored the effect of the number of ensemble exits on
the accuracy of classification, and the results showed that
within a certain range, a higher number of ensemble exits
can improve the final performance of the network.

6 Conclusion

In this paper, we propose a teacher-student collaborative dis-
tillation approach. Unlike traditional transfer learning, our
approach fuses knowledge distillation and self-distillation,
allowing the student model to learn new knowledge from the
teacher network and from itself. During test stage, we vote
on the different classification results of multiple sub-models
in the student network. Through extensive experiments, the
effectiveness of our proposed method and each component
is verified, and this approach can be used to guide both
knowledge distillation and multi-exit networks. Since the
multiple exits in the student network can be constructed
in any distillation network, we only consider a traditional
distillation structure to ensure that the method is represen-
tative and can be further tested in other distillation cases

in the future. Finally, the balance between model complex-
ity and classification accuracy should be assessed in future
research.
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