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Abstract In this research, a novel adaptive filtering algorithm is proposed
for complex domain signal processing. The proposed algorithm is based on
Wirtinger calculus and is called as q-Complex Least Mean Square (q-CLMS)
algorithm. The proposed algorithm could be considered as an extension of
the q-LMS algorithm for the complex domain. Transient and steady-state
analyses of the proposed q-CLMS algorithm are performed and exact ana-
lytical expressions for mean analysis, mean square error (MSE), excess mean
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square error (EMSE), mean square deviation (MSD) and misadjustment are
presented. Extensive experiments have been conducted and a good match be-
tween the simulation results and theoretical findings is reported. The proposed
q-CLMS algorithm is also explored for whitening applications with satisfac-
tory performance. A modification of the proposed q-CLMS algorithm called
Enhanced q-CLMS (Eq-CLMS) is also proposed. The Eq-CLMS algorithm
eliminates the need for a pre-coded value of the q-parameter thereby auto-
matically adapting to the best value. Extensive experiments are performed
on system identification and channel equalization tasks and the proposed al-
gorithm is shown to outperform several benchmark and state-of-the-art ap-
proaches namely Complex Least Mean Square (CLMS), Normalized Complex
Least Mean Square (NCLMS), Variable Step Size Complex Least Mean Square
(VSS-CLMS), Complex FLMS (CFLMS) and Fractional-ordered-CLMS (Fo-
CLMS) algorithms.

Keywords Complex Least Mean Squares Algorithm, steady-state analysis,
transient analysis, q-calculus, q-LMS, Wirtinger derivative.

1 Introduction

Adaptive algorithms have been successfully applied in a number of signal pro-
cessing applications such as channel equalization, noise cancellation, system
identification and optimization, etc [1, 2, 3]. Adaptive learning frameworks
have also been traditionally used for regression, classification [4] and dimen-
sionality reduction [5, 6] encompassing several applications such as image seg-
mentation [7], quality enhancement [8], etc.

The Least Mean Square (LMS) method is considered to be a cornerstone
approach with several merits and is one of the most widely used adaptive al-
gorithms. Because the LMS is dependent on the eigenvalue spread of the input
correlation matrix, it suffers from slow convergence. Several adaptive strate-
gies, such as normalized LMS (NLMS), computed adaptive learning rates, a
chaotic teaching-learning based optimization, variable power fractional LMS
algorithm, and variable step-size LMS algorithm, have been presented in the
literature to address this issue, [9, 10, 11, 12, 13, 14].

Recently, an interesting variant of the traditional LMS algorithm, called the
q-LMS [15], has been proposed. The q-LMS algorithm computes the derivative
of the cost function using secant rather than tangent function as it utilizes the
notion of q-gradient [15]. The method is shown to achieve a higher convergence
rate, compared to the conventional LMS, while maintaining competitive per-
formance. In [16, 17, 18, 19, 20, 21], adaptive techniques are further proposed
for the q parameter. The q-LMS algorithm also been successfully implemented
for system identification, unconstrained optimization, neural networks and the
design of whitening filters tasks.

Typically, adaptive filters are used with real-valued signals and systems.
For signals with intensity and direction components, complex domain provides
an efficient framework [22]. As adaptive algorithms requires the minimization
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of a cost function through differentiation, wirtinger calculus is used for the
evaluation of a cost function in complex domain. In a number of fields such
as beamforming, object detection, bio-medicine and communications, com-
plex modeling of signals and systems is required [23, 24, 25]. A number of
applications of Wirtinger calculus can be found in areas such as high per-
formance distribution networks, complex-valued neural networks and complex
kernel LMS[26, 27, 28]. The analysis of such systems is not straightforward.
Simplified approaches, such as the processing of the imaginary and real parts
separately, tend to limit the usefulness of the complex domain. The corner-
stone work in this regard is the CLMS (Complex Least Mean Square) [29] with
the weight update equation:

w(n+ 1) = w(n) + 2µx(n)e∗(n). (1)

where µ is the convergence factor, e∗(n) is the conjugate of the error, and
w(n) and w(n + 1) are the current and updated weights, respectively. The
CLMS algorithm has been applied in various fields, such as adaptive predic-
tion, system identification and complex dual-channel estimation. There are
some existing works in the literature to improve the CLMS algorithm and
various variants have been proposed [30, 31, 32, 33, 34, 35]. In this study, we
propose a quantum variant of the complex least mean square by utilizing the
novel q-wirtinger calculus based q-steepest decent method. To the best of our
knowledge, this is for the first time where a quantum calculus-based approach
has been applied to design an adaptive learning method for the complex do-
main signal processing applications. The proposed algorithm is called as the
q-CLMS (q-Complex Least Mean Square) algorithm. Major contributions of
the proposed research are as follows:

• A novel q-calculus-based adaptive filtering algorithm is proposed for the
complex domain (section 3). In particular, the notion of the q-LMS is ex-
tended to the complex domain using the Wirtinger calculus. [36].

• Extensive theoretical analysis of the proposed q-CLMS algorithm, con-
sisting of the mean and the mean-square error convergence, is performed.
Learning curves for Excess Mean Square Error (EMSE), Mean Square De-
viation (MSD), and misadjustment is also derived.

• The proposed q-CLMS is further improved by making the q-parameter
time-varying (section 4). This modified approach eliminates the need for a
pre-coded value of the q-parameter by automatically adapting to the best
value. The modified approach is called Enhanced q-CLMS (Eq-CLMS).

• For the system identification task, compact analytical forms have been
derived and validated through the simulation results (sub-section 6.2).

• For the selection of q-parameter, the q-gradient is applied in such a manner
as to make the LMS filter perform as a whitening filter.

• Extensive comparative analysis has been carried out for the proposed al-
gorithm where results are compared to several state-of-the-art approaches
namely the complex LMS (CLMS), normalized CLMS (NCLMS) and vari-
able step-size CLMS (VSS-CLMS). The experiments clearly show the effi-
cacy of the proposed approach.
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• To show the efficacy of the proposed method, channel equalization task
has been addressed and the comparison has been made with the fractional
variants of the LMS namely, CFLMS [34] and FoCLMS [35].

The rest of the paper is composed as follows: In Section 2, q-calculus and
the q-steepest descent algorithm are explained. The proposed q-CLMS algo-
rithm is discussed with detailed analysis in Section 3. The proposed q-CLMS
algorithm is modified to an adaptive version i.e., Eq-CLMS in Section 4. An
interesting application of the proposed methodology namely the whitening fil-
ter is discussed in Section 5 followed by extensive experiments and results in
Section 6. The paper is finally concluded in Section 7.

2 The Proposed q-Wirtinger calculus

Quantum calculus is often specified as the calculus with no limits [37]. It has
been applied in numerous fields and a collection of new outcomes can be found
in [38, 39, 40].

The differential of a function in quantum calculus is given as [41]:

dq(f(x)) = f(qx)− f(x). (2)

Consequently, the derivative of a function is defined as

Dq(f(x)) =
dq(f(x))

dq(x)
=
f(qx)− f(x)

(q − 1)x
. (3)

The formula takes the form of the standard derivative as q approaches 1. For
the function xn, the q-derivative is given as:

Dq,xx
n =


qn − 1

q − 1
xn−1, q 6= 1,

nxn−1, q = 1.
(4)

The q-gradient of a function f(x), for n number of variables, x(n) = [x1(n), x2(n), . . . xM (n)]ᵀ,
is defined as [42]

∇q,xf(x) , [Dq1,x1f(x), Dq2,x2f(x), ...Dqn,xnf(x)]ᵀ, (5)

Alternatively, ∇q,xf(x) can also be written as:

∇qf(x)(x) , [Dq1f(x)(x1), Dq2f(x)(x2), ...Dqf(x)(xn)]ᵀ, (6)

where q(n) = [q1(n), q2(n), . . . qM (n)]ᵀ.
q-calculus is a well-established field with well-defined rules [37]. For ordinary
derivatives, the chain rule is as follows:
Let g(x) = cxk. Then

Dqf(g(x)) = Dk
q (f)(g(x))Dq(g)(x). (7)

The gradient descent methodology is employed in a number of adaptive algo-
rithms, and the q-calculus has been employed to develop the q-gradient descent
for real systems by calculating the secant of the cost-function. (Section 1)
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2.1 q-Steepest Descent

The Weight-update equation of the conventional steepest descent algorithm is
given as:

w(n+ 1) = w(n)− µ∇wJ(w). (8)

where µ denotes the step size, w(n) and w(n+ 1) denote the current and up-
dated weights, and J(w) denotes the steepest descent algorithm’s cost func-
tion, which is given as:

J(w) = e2(n) (9)

The estimation error, denoted by the symbol e(n), is defined as the difference
between the desired and the output signal. It is written as follows:

e(n) = d(n)− y(n) (10)

Replacing the conventional gradient in Eq.(8) by the q derivative:

w(n+ 1) = w(n)− µ∇q,wJ(w). (11)

Now, by using Eqs.(4) and (5), the ∇q,wJ(w) is calculated as [15]

∇q,wJ(w) = −2E[Gx(n)e(n)] (12)

where G is defined as a diagonal matrix and the lth diagonal entry of this G
matrix is
gl = ql+1

2 , that is

diag(G) = [(
q1 + 1

2
), (

q2 + 1

2
), .....(

qM + 1

2
)]ᵀ (13)

Substituting e(n) in Eq.(12) results in the weight update equation of the q-
steepest descent algorithm:

w(n+ 1) = w(n) + 2µG[P−Rxw(n)] (14)

where Rx is the input signal autocorrelation matrix and P is defined as the
cross correlation matrix between the desired signal d(n) and the input vector
x(n).
Considering the successful implementation of the q-gradient descent for real
systems, we propose to explore the same concept of analysis in the com-
plex domain. The cost-function of the complex LMS algorithm is non-analytic
(Eq.(9)). The real valued signals are not analytic, that is, f : C → R having
the imaginary part v(x, y) = 0 [36]. The optimization of a cost function poses
a research challenge as the cost function are real valued and it can be done by
considering the imaginary and real parts of the function separately. Thus, for
simple evaluation of the derivatives in the complex domain, wirtinger calculus
provides a suitable framework. We therefore propose to use Wirtinger method
[36] to proceed with the q-gradient descent.
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2.2 Wirtinger Calculus

Adaptive algorithms are primarily based on the minimization of a cost function
through differentiation. Cost functions are real valued in the least square prob-
lems, hence they are not differentiable in the complex domain. Conventionally,
evaluation of derivatives for the imaginary and real parts are considered sepa-
rately and then combined [36]. Another suitable concept to evaluate the cost
functions directly without separating the imaginary and real parts is known as
the Wirtinger calculus [43]. It makes the derivation and analysis much simpler
than the conventional splitting approach.
Consider a complex function f(z):

f(z) = u(x, y) + jv(x, y) (15)

Let f : R x R ⇒ C be a function of real variables x and y such that f(z, z∗)=
f(x, y), where z = x+ jy and that f(z, z∗) is analytic with respect to z∗ and z
independently. Then, to derive the form of the differential operators, we write
the two real-variables as:

x =
z + z∗

2
and y =

z − z∗

2j
(16)

where z = x+ jy and z∗ = x− jy
The chain rule to derive the two Wirtinger partial derivative operators for f(z)
gives [36]:

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
(17)

=
∂f

∂x

1

2
+
∂f

∂y

1

2j
(18)

and

∂f

∂z∗
=
∂f

∂x

∂x

∂z∗
+
∂f

∂y

∂y

∂z∗
(19)

=
∂f

∂x

1

2
− ∂f

∂y

1

2j
(20)

The key point is to treat z and z∗ independently from each others, allowing
us to use Wirtinger calculus.

2.3 The Proposed q-Wirtinger Calculus

We propose to extend the concept of q-gradient descent for complex systems
using the Wirtinger method in this study. The proposed methodology results
in the inception of a novel calculus called q-Wirtinger calculus.
Replacing the conventional derivative with the q-derivative in Eq.(17):

(Dqf)(z) = (Dqf)(x)(Dqx)(z) + ((Dqf))(y)(Dqy)(z) (21)
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which can be reduced to:

(Dqf)(z) =
1

2
(Dqf)(x) +

1

2j
(Dqf)(y) (22)

and

(Dqf)(z∗) = (Dqf)(x)(Dqx)(z∗) + ((Dqf))(y)(Dqy)(z∗) (23)

(Dqf)(z∗) =
1

2
(Dqf)(x)− 1

2j
(Dqf)(y) (24)

Eqs.(22) and (24) show the q-based Wirtinger derivatives.

3 The Proposed q-Complex Least Mean Square Algorithm

The spread of eigenvalues in the input correlation matrix affects the LMS algo-
rithm’s performance. Therefore it is considered as a slow converging method
[14]. Taking this problem into consideration, the q-LMS has been proposed
for real systems in [15]. Dissimilar to the conventional gradient, the q-LMS
is derived by making use of the q-calculus through the Jackson’s derivative
approach [36]. This study is based on the q-Wirtinger calculus and we propose
a novel q-complex LMS algorithm. Taking the q-wirtinger derivative instead
of conventional gradient in Eq.(8) we get:

w(n+ 1) = w(n)− µ(∇qJ(w))(w∗(n)) (25)

Using Eq.(24) DqJ(w)(w∗(n)) can be given as:

∇qJ(w)(w∗(n)) =

1

2

{
∇qJ(w)(re[w∗(n)]) + j∇qJ(w)(im[w∗(n)])

}
(26)

Now by using the chain rule defined in Eq.(7) the q-gradient of the cost function
J(w) with respect to w∗(n) is given as

∇qJ(w)(re[w∗(n)]) =

∇qJ(w)(e(n))∇qe(n)(y(n))∇qy(n)(re[w∗(n)])
(27)

For the first coefficient

∇q1y(n)(re[w∗1(n)]) = −E[(q1 + 1)e∗(n)x1(n)] (28)

Similarly from 1 to the Mth coefficients

∇qJ(w)(re[w∗(n)]) =

− E[(q1 + 1)e∗(n)x1(n), (q2 + 1)e∗(n)x2(n),

.......(qM + 1)e∗(n)xM (n)]

(29)
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∇qJ(w)(re[w∗(n)]) = −2E[GRx(n)e∗(n)] (30)

Similarly for ∇qJ(w)(im[w∗(n)]), it is given as:

∇qJ(w)(im[w∗(n)]) = 2E[jGIx(n)e∗(n)] (31)

Substituting the value of∇qJ(w)(re[w∗(n)]) and∇qJ(w)(im[w∗(n)]) in Eq.(26)
we get:

∇qJ(w)(w∗(n)) =

− E[GRx(n)e∗(n) + GIx(n)e∗(n)]
(32)

∇qJ(w)(w∗(n)) = −E[(GR + GI)x(n)e∗(n)] (33)

Assuming the ergodic nature of the system and hence eliminating the expec-
tation from the q-gradient in Eq.(33) takes the form

∇qJ(w)(w∗(n)) ≈ −(GR + GI)x(n)e∗(n) (34)

Substituting Eq.(34) in Eq.(25) gives the rule of weight update for the q-CLMS
algorithm

w(n+ 1) = w(n) + µ(GR + GI)x(n)e∗(n). (35)

where GI and GR are the imaginary and real parts of the G matrix, which
comprises of q dependent entries. It provides additional control over the con-
ventional CLMS algorithm.
The implementation flowchart is shown in Fig.1

3.1 Optimal Solution of the q-Complex LMS

We explore the optimal solution for q-CLMS in this sub-section. As q ap-
proaches 1, the q-derivative transforms to the standard derivative.
For the optimal solution we replace ∇qJ(w)(w∗(n)) in Eq.(33) with zero.

−E[(GR + GI)x(n)e∗(n)] ≈ 0 (36)

By applying the expectation on Eq.(36) and replacing e∗(n) in Eq.(36) we get:

(GR + GI)[P−Rxwopt] ≈ 0 (37)

where Rx is the auto-correlation matrix of the input signal, and P is defined
as the cross-correlation vector of the desired output and input. The optimal
weight wopt is given as:

wopt ≈ Rx
−1P (38)

However, the optimal solution is same as the wiener solution.



q-CLMS 9

Fig. 1: Proposed q-CLMS algorithm-based system identification flowchart



10 Alishba Sadiq et al.

3.2 Convergence of the Mean

We make the following assumptions for the convenience of analysis:

1. We assume that the real part xR(n) and the imaginary part xI(n) are
uncorrelated, i.e., E[xR(n)xI(n)] = E[xI(n)xR(n)] = 0. The input signal
auto-correlation matrix is given as: Rx = E[xR(n)xᵀ

R(n)]+E[xI(n)xᵀ
I (n)].

For simplicity, we assume that the real and imaginary parts of input signal
are identically distributed, therefore, imaginary and real parts of the G
matrix are equal, i.e., GR = GI = G

2. The noise sequence η(n) is a complex zero-mean process with uncorrelated
real and imaginary parts, i.e., E[η(n)] = 0, E[ηR(n)ηI(n)] = 0.

3. The input vector and noise sequence are also independent E[x(n)η(n)] = 0
[44]

4. The input vector and the weight error vector are independent from each
other E[x(n)∆(n)]=0

The weight error vector is defined as the difference between the estimated
weights and the optimal weights , it is given as:

∆(n) = w(n)−wopt (39)

Under the assumption that the data sequence x(n) is statistically independent
[45, 46, 47], the weight and the input vector are statistically independent. The
above suppositions are frequently used in the literature [36]. They are used to
evaluate the performance analysis of the proposed algorithm.
The quantum calculus based complex form of the LMS algorithm Eq.(35)

w(n+ 1) = w(n) + µ(GR + GI)x(n)e∗(n) (40)

Now subtracting both sides of Eq.(40) by wopt, the weight-error recursion can
be given as ∆(n)

∆(n+ 1) = ∆(n) + µ(GR + GI)x(n)e∗(n) (41)

Solving for ∆R, which is the real component of ∆(n) defined in Eq.(39), sub-
stituting the value of eR(n) and eI(n) and applying the expectation results
in:

E[∆R(n+ 1)] =

E[∆R(n)]− µGRE[xR(n)xᵀ
R(n)]E[∆R(n)]

− µGRE[xI(n)xᵀ
I (n)]E[∆R(n)]

(42)

E[∆R(n+ 1)] = [I− µGRRx]E[∆R(n)] (43)

and I is the identity matrix.
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(I− µGRD) is a diagonal matrix

I− µGRD =


1− µ (qR1+1)

2
λ0

. . .

1− µ (qRN+1)
2

λN

 (44)

Similarly Eq.(43) can be written as:

E[∆
′

R(n+ 1)] =


(1− µ (qR1+1)

2
λ0)n+1

. . .

(1− µ (qRN+1)
2

λN )n+1

E[∆
′
R(0)] (45)

The convergence of the q-CLMS algorithm depends on the diagonal elements
of Eq.(45) and its absolute value should be less than one.

That is to say

lim
n→∞

|(1− µqR + 1

2
λi)

n+1| < 1,

for i=0 . . . N

|(1− µqR + 1

2
λRmax)| < 1 (46)

where λRmax is the maximum eigenvalue of the real autocorrelation matrix.
The step-size of the q-CLMS algorithm must be selected in the range

0 < µ <
4

λRmax(qR + 1)

Similar methodology can be pursued for the imaginary part:

E[∆I(n+ 1)] = [I− µGIRx]E[∆I(n)] (47)

0 < µ <
4

λImax(qI + 1)

Finally, in order for the q-CLMS algorithm to converge, it is necessary that
both the imaginary parts of its weight error must obey to the condition

0 < µ <
4

max[λRmax(qR + 1), λImax(qI + 1)]
(48)
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3.3 Mean Square Analysis

In this section, the mean square analysis of the q-CLMS algorithm is carried
out. To do so, we take the square of the error and its expectation gives:

E[e2(n)] = E[eo(n)−∆H(n)x(n)]2 (49)

where H[.] is the Hermitian operator and eo(n) is the optimum output error.
Upon further simplification, Eq.(49) can be given as

E[e2(n)] = e2min + tr[K
′
(n)D] (50)

where K
′
(n) is the covariance of the weight error vector, e2min is the minimum

mean square error and D is a diagonal matrix.

K
′
(n) = Tᵀcov[∆(n)]

D = diag{λ0, λ1, · · · , λN}
where T is the unitary matrix.
Equation (50) can be expressed as

e2(n) = e2min +

N∑
i=1

K
′

ii(n)λi (51)

where λi represents the eigenvalues of the input signal autocorrelation matrix
and K

′

ii(n) shows the diagonal elements of K
′
(n). The λi from the right side

of Eq.(51) should be in bound to achieve a minimum error.
For our analysis, the q-CLMS algorithm can alternatively be described by:

∆R(n+ 1) =

∆R(n)− µGRxR(n)xHR (n)∆R(n) + µGRxR(n)e∗o(n) (52)

The covariance of ∆
′

R(n+ 1) is given as

K
′

R(n+ 1) = E[∆
′

R(n+ 1)∆
′ᵀ
R (n+ 1)] (53)

where K
′

R(n+ 1) = cov[∆
′

R(n+ 1)].
Taking the transpose of Eq.(52)

∆
′ᵀ
R (n+ 1) = ∆

′ᵀ
R (n)− µGR∆

′ᵀ
R (n)x

′∗
R (n)x

′ᵀ
R (n) + µGRe

H
o (n)x

′ᵀ
R (n) (54)

Multiplying Eq.(52) and Eq.(54) to get Eq.(53), we will get 9 terms, and
combining all the nine terms results in

K
′

R(n+ 1) = K
′

R(n)− µ[GRDK
′

R(n)

+ GRK
′

R(n)D] + 2µ2G2
RDK

′

R(n)D

+ µ2G2
RD.tr[DK

′

R(n)] + µ2G2
Re

2
minD (55)
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D is a diagonal matrix and e2min is the minimum mean square error.

From Eq.(51), it is observable that only the diagonal elements of K
′

R(n)
are contributing to the mean square error.

K
′

R(n+ 1) = K
′

R(n)− 2µGRλiK
′

R(n) + 2µ2G2
Rλ

2
iK

′

R(n)

+ µ2G2
Rλi

∑
λiK

′

R(n) + µ2G2
Re

2
minλi (56)

Considering λ as a vector having the eigenvalues of Rx and K
′

R(n + 1) as a
vector having the diagonal elements of cov[∆R(n)], the following equation can
be formed Eq.(56).

K
′

R(n+ 1) =

(
I − 2µ

qR + 1

2
λ+ 2µ2

(qR + 1

2

)2
λ2

+ µ2
(qR + 1

2

)2
λλᵀ

)
K

′

R(n) + µ2e2min

(qR + 1

2

)2
λ (57)

K
′

R(n+ 1) = BK
′

R(n) + µ2e2min

(qR + 1

2

)2
λ (58)

here the elements of B are given by

bik =


(
1− 2µ qR+1

2
λi + 2µ2

( qR+1
2

)2
λ2i

+µ2
( qR+1

2

)2
λ2i

)
for i = k

2µ2
( qR+1

2

)2
λiλk for i 6= k

(59)

Consequently, a sufficient condition to guarantee convergence is to force the
sum of the elements in any row of B to be kept in the range 0 <

∑N
k=0 bik < 1.

Since

N∑
k=0

bik = 1− 2µ
qR + 1

2
λi + 2µ2

(qR + 1

2

)2
λ2i + µ2

(qR + 1

2

)2
λi

N∑
k=0

λk (60)

0 < 1− 2µ
qR + 1

2
λi + 2µ2

(qR + 1

2

)2
λ2i + µ2

(qR + 1

2

)2
λi

N∑
k=0

λk < 1 (61)

After simplification, the condition of stability is given by:

0 < µ <
2

2 qR+1
2 λi + qR+1

2

∑N
k=0 λk

0 < µ <
2

tr[Rx
qR+1

2 ]
(62)



14 Alishba Sadiq et al.

In the same way, the imaginary part can be written as:

K
′

I(n+ 1) = K
′

I(n)− µ
[qI + 1

2
DK

′

I(n) +
qI + 1

2
K

′

I(n)D
]

+ 2µ2
(qI + 1

2

)2
DK

′

I(n)D + µ2
(qI + 1

2

)2
D.tr[DK

′

I(n)]

+ µ2
(qI + 1

2

)2
e2minD (63)

0 < µ <
2

tr[Rx
qI+1
2 ]

(64)

where Eq.(62) and (64) are generally used as computation of tr[Rx] is relatively
easy to estimate as compared to the estimation of λmax.

3.4 Excess Mean Square Error (EMSE)

The excess mean square error (EMSE) is the difference between the MSE and
minimum MSE. It is considered that the minimal error is reached when the
adaptive filter coefficients are frozen at their optimum values. Although the
coefficient vector converges to wopt, on average the instantaneous deviation
∆(n) = w(n) − wopt, generated by the noisy gradient estimates, causes an
excess MSE. From Eq.(49) the square of error is simplified to:

ξ(n) = e2min + E[∆ᵀ
R(n)Rx∆R(n)] (65)

The excess in MSE is given by

∆ξexc(n) , ξ(n)− e2min = E[∆ᵀ
R(n)Rx∆R(n)] (66)

= tr{E[Rx∆R(n)∆ᵀ
R(n)]} (67)

where tr[·] is the trace operator.
Making use of the identity that TTᵀ = I, the following equation results,

∆ξexc(n) = tr{E[TTᵀRxTTᵀ∆R(n)∆ᵀ
R(n)TTᵀ]} (68)

= tr{E[TDK
′

R(n)Tᵀ]} (69)

Therefore,

∆ξexc(n) = tr{E[DK
′

R(n)]} (70)

From Eq.(58), it is possible to show that

∆ξexc(n) = e2min +

N∑
i=1

K
′

ii(n)λi (71)
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Since,

K
′

R,i(n+ 1) =(
1− 2µ

qR + 1

2
λi + 2µ2

(qR + 1

2

)2
λ2i

)
K

′

R(n)

+ µ2
(qR + 1

2

)2
λi

N∑
k=0

λkK
′

R,k(n) + µ2e2min

(qR + 1

2

)2
λi (72)

and K
′

R,i(n+ 1) = K
′

R,i(n) for large n, we can apply a summation operation
to Eq.(72) in order to obtain

N∑
k=0

λkK
′

R,k(n) =

µe2min
∑N
i=0

qR+1
2 λi + 2µ

∑N
i=0

qR+1
2 λ2iK

′

R,i(n)

2− µ
∑N
i=0

qR+1
2 λi

≈
µe2min

∑N
i=0

qR+1
2 λi

2− µ
∑N
i=0

qR+1
2 λi

=
µe2mintr[Rx

qR+1
2 ]

2− µtr[Rx
qR+1

2 ]
(73)

where the term 2µ
∑N
i=0

qR+1
2 λ2iK

′

R,i(n) was considered quite insignificant in
comparison to the remaining terms in the numerator. This assumption is diffi-
cult to justify, but it holds true for small values of µ. The excess mean-square
error can then be expressed as

∆ξexc(n) = lim
i→∞

µσ2tr[Rx
qR+1

2 ]

2− µtr[Rx
qR+1

2 ]
(74)

Similarly for imaginary part,

∆ξexc(n) = lim
i→∞

µσ2tr[Rx
qI+1
2 ]

2− µtr[Rx
qI+1
2 ]

(75)

In the case where there is a sufficient order of the adaptive filter to model the
operation that generated d(n), the minimum MSE attained is equivalent to
the variance of the noise added, given by σ2 .
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3.5 Mean Square Deviation (MSD)

The mean square deviation (MSD ) is defined as
MSD(n) = tr{E[K

′

R(n+ 1)]}, consequently

MSD(n+ 1) =

(
I − 2µ

q + 1

2
λ+ 2µ2

(q + 1

2

)2
λ2

+ µ2
(q + 1

2

)2
λλᵀ

)
MSD(n) + µ2e2min

(q + 1

2

)2
λ (76)

3.6 Misadjustment

The ratio between the excess MSE (ξexc) and the minimum MSE (ξmin) is
known as the Misadjustment M , the misadjustment is given by

M ,
∆ξexc
e2min

≈
µtr[Rx

q+1
2 ]

2− µtr[Rx
q+1
2 ]

(77)

The analytical results for MSE, EMSE and Misadjustment are summarized in
Table.1.

Analytical Results
Real Imaginary

MSE 0 < µ < 2

tr[Rx
qR+1

2
]

0 < µ < 2

tr[Rx
qI+1

2
]

EMSE
µσ2tr[Rx

qR+1
2

]

2−µtr[Rx
qR+1

2
]

µσ2tr[Rx
qI+1

2
]

2−µtr[Rx
qI+1

2
]

Misadjustment
µtr[Rx

qR+1
2

]

2−µtr[Rx
qR+1

2
]

µtr[Rx
qI+1

2
]

2−µtr[Rx
qI+1

2
]

Table 1: Analytical Results

4 The proposed Enhanced q-CLMS (Eq-CLMS)

The selection of the q-parameter shows greater importance in the performance
of q-calculus based algorithms. It can be analyzed in sub-section 6.1 of the
experimental section. Typically this value is manually chosen. A larger value
results in a rapid convergence but yields a larger steady-state error. On the
other hand, smaller values of q slow down the convergence while reducing the
steady-state error. A trade-off is therefore required by manually choosing a
suitable value of the q-parameter.

To automate this choice, we modify the proposed q-CLMS algorithm by
making the q-parameter time varying:

w(n+ 1) = w(n) + µx(n)e∗(n)� q(n) (78)
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where q(n) is the time-varying parameter, which can be calculated by taking
the error-correlation energy [20]. The proposed algorithm takes large steps for
larger error, and decreases the size of the number of steps with a lower error.
Highlighting the fact that, the proposed method is absolutely automatic and
does not require any other tuning factors as compared to the time-varying
q-LMS. The proposed update rule for the q-parameter is described below:

– Step1 : Initialize by taking any positive random values in vector q .
– Step2 : To update the first entry q1 of the vector q, use the instantaneous

error related to the weight of the instant input tap, i.e.,

q1(n+ 1) =
1

M + 1
{|e(n)|+

M∑
k=1

qk(n)}, (79)

The length of the filter is given by the symbol M .
– Step3 : In order to maintain fast convergence rate and to avoid divergence,

the following conditions will be evaluated:

q(n+ 1) =

{
1

λmax
if |q1(n+ 1)| > 1

λmax
,

q1(n+ 1) otherwise,
(80)

where λmax is the maximum eigenvalue of the input auto-correlation ma-
trix.

– Step4 : Except for the first entry, update all entries of the vector q, simply
by shifting:

ql+1(n+ 1) = ql(n), (81)

where 1 < l < M − 1
– Step5 : Repeat steps 2 to 5, for next iterations,

Conclusively, the equation for weight-update of the proposed Eq-CLMS
algorithm can be given as:

w(n+ 1) = w(n) + µe∗(n)x(n)� q(n), (82)

where � indicates the element-wise multiplication.

5 The proposed q-CLMS algorithm as a whitening filter

Due to the spread of eigen values of the input correlation matrix, the con-
vergence speed of LMS algorithm is limited as it shows dependency on eigen
values. Explicitly, the time constant τa is given as [36]

−1

ln(1− µλmax)
6 τa 6

1

ln(1− µλmin)
(83)

where ln shows the logarithmic function, and the minimum and maximum
eigenvalues of the input correlation matrix are represented by λmin and λmax,
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respectively.
By taking the above observation into consideration, we established another
application of the q-gradient. Explicitly, for a faster convergence rate of the
LMS algorithm, the q factor can be selected in such a way as to make the
LMS filter behaves as a whitening filter (shown in Fig. 10). For evaluation
purposes, the transient analyses of the weight error vector of the q-CLMS
given in Eqs.(43) and (47) is studied. Note that the time constant related with
the mth mean weight error tap ∆R,m(n) is given as

τm =
−1

ln(1− µ(qm+1)λm

2 )
, 1 6 m 6M (84)

Thus selecting the qm parameter such that

(qm + 1)

2
=

1

λm
or qm =

2− λm
λm

, 1 6 m 6M (85)

the time constant τm reduces to:

τm =
−1

ln(1− µ)
, 1 6 m 6M (86)

Essentially, by taking the q values as shown in Eq.(85) or by taking G = Rx
−1,

the q-CLMS method vanishes the response of the input correlation matrix. As
a result, this will enhance the speed of the proposed method. Eventually, the
condition for stability is given by:

0 < µ < 2 (87)

5.1 Computational Complexity Analysis

Table 2 shows a comparison of the computational complexity of different vari-
ants of CLMS in terms of the number of operations required for the adaptation
process.

Method
Operations

Big O
x +

CLMS 2M+1 2M M
NCLMS 3M+2 3M+1 M

CFLMS [34] 4M+4 6M M
FoCLMS [35] 3M+3 5M M

q-CLMS 3M+1 2M M
Eq-CLMS 2M+2 3M+1 M

Table 2: Computational complexities of different algorithms in terms of the
number of unknown weights (M)

Let M be the number of unknown filter weights. The CLMS method takes 2M+
1 multiplications and 2M additions, while the NCLMS algorithm takes 3M+2
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multiplications and 2M additions. Similarly, the CFLMS and FoCLMS, which
are fractional variants of LMS, need 4M + 4 and 3M + 3 multiplications and
6M and 5M additions respectively. Interestingly the proposed quantum calcu-
lus based variants of CLMS algorithms, i.e., q-CLMS and Eq-CLMS, require
3M + 1 and 2M + 2 multiplications, and 2M and 3M + 1 additions respec-
tively. The proposed Eq-CLMS and q-CLMS require fewer multiplications and
additions compared to the NCLMS and fractional variants of the CLMS. In
particular, the q-CLMS and Eq-CLMS require 1 unit and M times fewer multi-
plications and M+1 times fewer additions compared to the NCLMS. Similarly,
the q-CLMS and Eq-CLMS require M + 3 and 2M + 2 fewer multiplications
and 4M and 3M fewer additions compared to the CFLMS. Moreover, FoCLMS
requires 2 units and M + 1 more multiplications as well as 3M and 2M times
more additions than the proposed q-CLMS and Eq-CLMS algorithm. In an
overall sense, the proposed qCLMS and E-qCLMS are shown to be computa-
tionally efficient compared to the state-of-the-art relevant approaches.

6 Experimental Setup and Results

The performance of the q-CLMS algorithm is examined in this section for a
system identification task. Consider channel estimation shown in Fig. 2.

Fig. 2: Adaptive learning algorithm based channel estimation.

y(n) = h1x(n) + h2x(n− 1) + h3x(n− 2) + h4x(n− 3) + h5x(n− 4) (88)
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The mathematical model of the system is shown in Eq.(88), it is the FIR fil-
ter representation for the adaptive filter block (refer to Fig 2). Where input
and output of the system expressed as x(n) and y(n), respectively. The white
Gaussian noise is considered as the disturbance for the system in this case. For
experimentation purpose, x(n) consists of 1 × 103 complex randomly gener-
ated samples taken from the Gaussian distribution with zero mean and unity
variance. The impulse response of the system is given by h(n) in Eq.(88) while
e(n), ĥ(n) and ŷ(n) are the estimated error, impulse response and output of
the system, respectively. For the performance assessment, the actual and es-
timated weights are compared by means of the Normalized Weight Deviation
(NWD). Explicitly, we define

NWD =
‖h−w‖
‖h‖

(89)

where estimated weight-vector is denoted by w while the actual impulse re-
sponse of the channel is given by h. For all the simulations, the adaptive
filter which is used has the same length as that of the unknown system. The
objectives of the simulation are as follows:

• To observe the sensitivity of the proposed method corresponding to the q
parameter.

• To validate the derived analytical results for both the steady state and
transient analysis.

• To investigate the behavior of the proposed Eq-CLMS algorithm and com-
pare it with the benchmark algorithms i.e., CLMS, NCLMS and VSS-
CLMS.

• To evaluate the performance of the proposed Eq-CLMS method for corre-
lated imaginary and real components of the system.

• To investigate the behavior of q-CLMS as a whitening filter.
• To compare the performance of the proposed Eq-CLMS algorithm with the

contemporary approaches i.e., CFLMS and FoCLMS for the channel equal-
ization problem.

6.1 Sensitivity analysis of the q-CLMS algorithm

In this experiment, we observe the sensitivity of the q-CLMS algorithm to the
q parameter. In particular, we choose a system identification task and study
the comparison between the Normalized Weight Difference (NWD) learning
curves of the proposed q-CLMS algorithm with various q values and compare
the results with those obtained via conventional CLMS algorithm (refer to
Fig.3). The disturbance which is introduced in the system as a noise is a
zero mean i.i.d. sequence with variance 0.01. For convergence the proposed
approach took 1000 number of iterations and the mean values are taken for
100 independent runs. We evaluated five different values of q which are 0.5
, 1, 2, 4, and 8 for the q-CLMS algorithm . Figure 3 clearly shows that for
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q = 1 the learning curve exactly matches with the conventional CLMS method
showing that for q = 1 the algorithm shows the conventional CLMS case. It
is observable that for greater values of q, the proposed q-CLMS algorithm
exhibits a faster convergence accompanied with a larger steady-state error.
Whereas for smaller values of q, a comparatively smaller steady-state error is
reported but with a slower convergence.

Fig. 3: NWD behaviour for the proposed q-CLMS and the conventional CLMS
algorithm.

6.2 Validation of analytical results of the proposed q-CLMS algorithm

To validate our theoretical findings, we compare the the derived analytical
results with the simulation results. The q-CLMS algorithm’s transient and
steady-state performances are essentially examined. For two choices of the
step-size i.e., 0.01 and 0.001, experimental MSE learning curves are compared
to those generated using the derived expression in Eq.(57). The algorithm took
10000 iterations to reach convergence, and the mean value was obtained from
1000 independent runs. For both large and small step-size values, Fig.4 indi-
cates an outstanding match between theory and simulation. The step-size val-
ues are compared to the simulation findings in the second experiment shown
in Fig.5, which are plotted against the analytical values of the steady-state
EMSE determined in Eq.(74). The relationship between the theoretical and
simulation results is also shown in Fig. 5.
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Fig. 4: Simulation and analytical MSE behavior of the q-CLMS algorithm: For
µ = 0.01 and µ = 0.001.

Fig. 5: Simulation and analytical EMSE behavior of the q-CLMS algorithm:
Excess MSE gradually increase with increase in step-size.
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6.3 Performance of the proposed Eq-CLMS algorithm

In this set of experiments, we evaluate the performance of the Eq-CLMS al-
gorithm as derived in Section 4. Essentially the self-regulating technique, pro-
posed in Eqs.(80) and (81), provides an automatic adjustment. The experiment
is implemented with five different SNR levels of 2 dB, 5 dB, 10 dB. 20 dB and
30 dB. Note that the proposed Eq-CLMS algorithm is completely automatic
and does not require a hard-coded value of the q parameters. By virtue of the
recursions proposed in Eqs.(80) and (81), the entries of q are automatically
regularized to attain the best performance. For our experiments, an initializa-
tion of q = [1 1 1 1 1] is adopted.
Figure 7 shows the performance of the proposed Eq-CLMS algorithm when
operating on five different noise levels. The proposed Eq-CLMS algorithm
obtained the lowest steady-state error of −25.13 dB when operating on the
highest value of SNR i.e., 30 dB, while the contemporary approaches CLMS,
NCLMS and VSS-CLMS achieved higher steady-state values of −20.82 dB,
−18.5 dB and −20.03 dB, respectively. For the lowest SNR which is 2 dB,
the proposed Eq-CLMS algorithm outperformed the conventional CLMS and
VSS-CLMS algorithm by a margin of 2 dB and NCLMS by a margin of 3.938
dB. Similarly for 5, 10 and 20 dB the lowest steady-state error is achieved
by the proposed Eq-CLMS algorithm i.e, −9.912 dB, −12.37 dB and −17.39
dB respectively. Steady-state error attained for five different noise levels for
CLMS, NCLMS, VSS-CLMS and Eq-CLMS algorithms are summarized in ta-
ble 3. To show the adaptivity of q parameter, in Figure 6 for 30 dB noise level
we showed the values of q for each update iteration.

Table 3: Comparison of steady-state performance

Algorithms
SNR Values

(dB)
2 5 10 20 30

CLMS -6.87 -8.32 -10.75 -15.79 -20.82
NCLMS -4.521 -5.929 -8.39 -13.92 -18.5
VSS-CLMS -6.07 -7.48 -9.949 -15.01 -20.03
Eq-CLMS -8.459 -9.912 -12.37 -17.39 -25.13
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Fig. 6: The value of q after each iteration when operating on the SNR value
of 30 dB.

6.4 Complex signal with correlated real and imaginary data

In this experiment, we evaluate the performance of the proposed algorithm for
complex data with correlated imaginary and real parts. The complex input
signal x(n) of size 1×5000 was taken from the non-Gaussian distribution with
correlated imaginary and real parts and impulse response of the system h(n)
was taken to be complex randomly generated samples of size 1×5. Experiments
were performed for both q-CLMS and Eq-CLMS algorithms, simulations were
run for 5000 iterations and the mean results were computed for 1000 indepen-
dent runs.

To evaluate the proposed q-CLMS algorithm, a fixed value for the G ma-
trix i.e, q = [3 3 3 3 3] is taken. The proposed q-CLMS algorithm attained
the lowest steady-state error of −23.28 dB whereas the conventional CLMS
algorithm attained a larger value of −21.44 dB.

The second set of experiments was conducted using an adaptive ’q’ pa-
rameter, an initial value of q = [0.02 0.02 0.02 0.02 0.02] was adopted. The
proposed Eq-CLMS method attained the least steady-state error of −25 dB
whereas the conventional CLMS algorithm attained a larger value of −20.8
dB.
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(a) (b)

(c) (d)

(e)

Fig. 7: NWD curves for the CLMS, NCLMS, VSS-CLMS, and the proposed
Eq-CLMS algorithm with the SNR of (a) 2 dB, (b) 5 dB,(c) 10 dB, (d) 20 dB,
and (e) 30 dB.
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Fig. 8: Performance curve for data having correlated real and imaginary parts
with a fixed G matrix.

Fig. 9: Performance curve for correlated complex signal with varying q-
parameter.

6.5 Whitening behavior of the proposed q-CLMS algorithm

This section examines the whitening behavior of the q-CLMS algorithm. A
graphical model of the system identification with adaptive whitening filter is
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Fig. 10: System identification and whitening filter.

shown in Figure 10. As mentioned in section 5, the q-CLMS algorithm vanished
the effect of the input correlation. A non-Gaussian input signal is considered to
evaluate the whitening behavior of the proposed q-CLMS algorithm. For con-
vergence the algorithm took 10000 iterations and the mean value is taken for
100 independent runs. The NWD learning curve of the q-CLMS method (G =
Rx
−1) is compared to those of the conventional CLMS and NCLMS methods

in Fig.11. From the results, it can be seen that the CLMS and the NCLMS
algorithms achieve equal steady-state error of −29.26 dB in 2600 iterations,
approximately. The proposed q-CLMS (as a whitening filter) comprehensively
outperforms the two competitors, achieving the same steady state error of
−29.26 dB in 500 iterations only which is 5.2× faster than the two competi-
tors. The use of Eq.(85) to select the q parameter allows the q-CLMS method
to converge regardless of the input correlation, as explained in Section 5. Fur-
thermore, the results in Figure 11 supported the claim for two extreme values
of the correlation factor, σxx = 0.99 and σxx = 0.1, the q-CLMS method with
whitening q selection is simulated. The whitening q selection ensures that the
q-CLMS algorithm’s convergence is independent of the input correlation, as
shown in Figure 11.

6.6 Comparative analysis of the proposed Eq-CLMS algorithm for the
problem of channel equalization

The performance of the proposed Eq-CLMS algorithm is evaluated for the
problem of channel equalization (refer to Figure 13). The transmitted data
x(n) consisting of 3 × 102 complex randomly generated samples drawn from
the standard Gaussian distribution, is passed through the channel modeled as
a finite impulse response (FIR) filter. The size of the channel is taken to be
1× 5 initialized by taking all ones and the weights initialized randomly. Zero-
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Fig. 11: Comparison of the NWD behaviour of the whitening q-CLMS and the
conventional CLMS algorithm: The proposed approach took 1750 less number
of iterations compared to CLMS and NCLMS.

Fig. 12: NWD behaviour of the whitening q-CLMS for two extreme values of
input variances i.e., σxx = 0.99 and σxx = 0.1. Note that the rate of conver-
gence of the q-CLMS is same for both input distributions.
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Fig. 13: Adaptive channel equalization.

Algorithm
Convergence point

(number of iterations x 5000)
30 dB SNR 40 dB SNR

CLMS 103 110
CFLMS (0.9) 110 111
CFLMS (0.75) 121 127
FoCLMS (0.9) 100 100
FoCLMS (0.75) 149 150
Eq-CLMS 51 52

Table 4: The Convergence point of various approaches including CLMS,
CFLMS, FoCLMS (for two distinct values of fractional power i.e., 0.75 and
0.9) and the proposed Eq-CLMS algorithm.

mean additive white Gaussian noise (AWGN) is added to the channel output.
To cancel the effects of the channel, the noisy signal is sent to the equalizer
and the weights of the equalizer are updated through an adaptive algorithm.
For the modulation of input signal binary phase-shift keying (BPSK) is used
and the error is calculated by taking the difference between the true output
(equalized signal) and the desired response (original input signal). For the
performance assessment, mean squared error (MSE) is used given as

MSE =
1

n

n∑
i=1

(e(n))2 (90)

where n represents the number of data points and e is the error generated
between the true and desired signal.

Performance of the proposed Eq-CLMS approach is compared with three
contemporary methods namely: (1) complex LMS (CLMS), (2) fractional CLMS,
and (3) fractional order complex LMS (FoCLMS). The experiments are con-
ducted on two different SNR levels of 10 dB and 20 dB with step-sizes of
2e−3, 1e−3, 2.5e−3, and 1.5e−2 for CLMS, CFLMS, FoCLMS, and Eq-CLMS,
respectively. The hyper-parameters of all methods are set to achieve similar
steady-state-error. For fractional variants, two fractional powers are chosen
i.e., 0.9 and 0.75 and the simulations are run for 300 iterations, mean results
are reported for 1000 independent runs. Comprehensive results are tabulated
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(a)

(b)

Fig. 14: MSE curves for the CLMS, CFLMS (f = 0.75 and 0.9), FoCLMS (f =
0.75 and 0.9), and the proposed Eq-CLMS algorithm with the SNR of (a) 10
dB and (b) 20 dB.

in Table 4. The MSE curves for CLMS, CFLMS, FoCLMS, and the proposed
Eq-CLMS algorithms are shown in Figure 14. The proposed Eq-CLMS algo-
rithm is shown to have the fastest convergence rate for both values of SNR. For
fractional power of 0.75 and 0.9, the CFLMS has the slowest convergence rate
at both SNR levels. Furthermore, CLMS and FoCLMS show faster convergence
when compared to CFLMS, but slower when compared to the proposed tech-
nique. In particular, the proposed Eq-CLMS algorithm achieved the fastest
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convergence at 51th and 52th iterations for 10 dB and 20 dB SNR respectively.
This performance is 2.01 and 2.11 times faster compared to the CLMS al-
gorithm for the two SNR levels respectively. In comparison to the fractional
variants of CLMS for two different values of fractional power i.e., 0.9 and 0.75,
the CFLMS requires 59 and 70 more iterations for 10 dB SNR level. For 20 dB
SNR it requires 59 and 75 more iteration compared to the proposed Eq-CLMS
algorithm. The FoCLMS algorithm requires 49 and 98 more iterations (cor-
responding to fractional powers of 0.9 and 0.75 respectively) for 10 dB SNR
and 48 and 98 more iterations (corresponding to fractional powers of 0.9 and
0.75 respectively) for 20 dB SNR compared to the proposed approach. Results
are summarized in Table 4. These results comprehensively demonstrate the
superiority of the proposed algorithm in terms of convergence rate.

7 Conclusion

In this work, a novel adaptive algorithm for complex domain has been pre-
sented. The proposed algorithm, called the q-CLMS algorithm, is based on
q-calculus and makes use of the Wirtinger method. Through the q parameter,
the proposed method offers more control over the steady-state and conver-
gence performances compared to the contemporary approaches. The transient
and steady-state analyses of the proposed algorithm were carried out and the-
oretical findings are found to be in agreement with the simulation results.
The proposed concept is further automated through an adaptive approach
called as enhanced q-CLMS (Eq-CLMS). The enhanced approach automati-
cally selects the best value of the ’q’ parameter without requiring the hit and
trial approach. Extensive experiments have been conducted on three signifi-
cant problems namely: (1) System identification, (2) whitening filter, and (3)
channel equalization. The proposed algorithm has shown superior performance
compared to the contemporary approaches.
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