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Abstract
This paper addresses the problem of exploiting spatiotemporal information to improve small object detection precision in
video. We propose a two-stage object detector called FANet based on short-term spatiotemporal feature aggregation and
long-term object linking to refine object detections. First, we generate a set of short tubelet proposals. Then, we aggregate
RoI pooled deep features throughout the tubelet using a new temporal pooling operator that summarizes the information
with a fixed output size independent of the tubelet length. In addition, we define a double head implementation that we feed
with spatiotemporal information for spatiotemporal classification and with spatial information for object localization and
spatial classification. Finally, a long-term linking method builds long tubes with the previously calculated short tubelets to
overcome detection errors. The association strategy addresses the generally low overlap between instances of small objects
in consecutive frames by reducing the influence of the overlap in the final linking score. We evaluated our model in three
different datasets with small objects, outperforming previous state-of-the-art spatiotemporal object detectors and our spatial
baseline.

Keywords Video object detection · Small object detection · Convolutional neural network · Spatiotemporal CNN

1 Introduction

Object detection has been one of the most active research
topics in computer vision in recent years. However, the
use of temporal information in videos to boost detection
precision is still an open problem. Although object detection
frameworks can be executed at the frame level, they do not
take advantage of temporal information available in videos
that can be crucial to address challenges such as motion blur,
occlusions or changes in object appearance in some frames.
Addressing these issues is fundamental to solving the small
object detection problem since the spatial information given
by each individual frame is very limited. Therefore, any

� Daniel Cores
daniel.cores@usc.es

Vı́ctor M. Brea
victor.brea@usc.es

Manuel Mucientes
manuel.mucientes@usc.es

1 Centro Singular de Investigación en Tecnoloxı́as Intelixentes
(CiTIUS), Universidade de Santiago de Compostela, Santiago
de Compostela, Spain

partial occlusion or subtle image degradation might have a
considerable impact on detection precision.

In general, object detection frameworks implement two main
tasks: bounding box regression and object classification. We
hypothesize that extracting spatiotemporal information from
the object appearance in previous frames can significantly
improve classification task accuracy. For small targets,
limited spatial information makes it difficult to distinguish
objects of close categories. This raises the issue of linking
and aggregating spatiotemporal features throughout time.

Object detection based on convolutional neural networks
(CNNs) follows two main approaches: one-stage and two-
stage architectures. One-stage methods [1, 2] generate
candidate object locations directly from the feature maps in
a dense manner. Instead, two-stage frameworks [3–5] use
an additional network, called the region proposal network
(RPN), to generate the proposals that are later refined
by the network head. Our approach follows the two-stage
architecture, and our spatiotemporal network uses the RPN
proposals to propagate information from previous frames.

Small objects are present in many real applications.
Typical videos including small targets, are those recorded
from on-board cameras on unmanned aerial vehicles (UAV)
or outdoors video surveillance cameras. The main challenge
in these scenarios comes from a high density of small
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moving objects. This highly degrades the performance of
state-of-the-art object detectors, especially when working
with spatiotemporal object detectors that are designed to
deal with few large objects per image.

Additionally, for small objects, the generally low overlap
of an object between close frames and the lack of spatial
information due to the small size —which is essential
to distinguish between objects of different categories—
hinder the feature matching and aggregation process across
neighboring frames. This not only limits the benefits of
exploiting spatiotemporal information of small objects with
traditional video object detectors, but might also spoil
the final feature map by aggregating nonrelated features.
An incorrect aggregation blurs the already limited visual
differences among small object categories, decreasing the
final detection precision.

Our proposal follows the Faster R-CNN model but
extends it to generate both temporal and spatial information
to improve small object detection precision. The novelties
of this work are as follows:

– A new tubelet proposal method that calculates object
proposals at different levels in a feature pyramid
network (FPN) model. Object proposals in the same
tubelet are mapped to different pyramid levels in each
frame according to their corresponding size. This makes
our approach robust against size changes in consecutive
frames, allowing to extract box features at different
resolution levels for the same object.

– A temporal pooling method capable of summarizing
information from the previous N frames, that calculates
a feature map with the same size regardless of the
number of input frames. Thus, it works with a fully
connected network head with the same number of
parameters and a constant execution time independent
of N .

– A spatiotemporal double head. This component exploits
both spatial information from the current frame
and spatiotemporal information from many input
frames. Spatial information is used to solve the
object localization problem, while both spatial and
spatiotemporal are combined to improve classification
accuracy.

– A long-term linking algorithm that creates long
tubes associating object instances throughout video
frames. Then, confidence scores are updated for
every detection in each tube, considering long-term
spatiotemporal consistency. This method reuses short-
term information to improve the long tube creation
process, overcoming network errors in certain frames
such as missing detections that can otherwise break the
tubes. Addressing missing detections is one of the main
challenges of small object detection.

– Our framework outperforms state-of-the-art video
object detectors in the USC-GRAD-STDdb [6],
UAVDT [7] and VisDrone [8] datasets for the very
small object subset —≤ 256px— defined in [6].

2 Related work

The object detection problem with CNNs was first defined
in the single image domain following both one-stage
and two-stage architectures [9]. Recently, spatiotemporal
frameworks were proposed based on these methods but
considering the temporal information available in videos to
improve detection precision.

2.1 Single image object detection

The first milestone for two-stage detectors was R-CNN [3].
R-CNN needs to apply feature extraction with a CNN on
each region of a precalculated proposal set, resulting in a
very slow approach. This issue was addressed in Fast R-
CNN [4], by adding an RoI pooling layer on top of the CNN.
Instead of executing the CNN over each proposal, Fast R-
CNN extracts the features of the whole image, generating a
global deep feature map. Then, RoI pooling generates a per
proposal feature map extracting the corresponding features.
This significantly improves both the training and test times
by sharing all the CNN backbone calculations.

All these methods rely on an external region proposal
method. The Faster R-CNN framework [5] defines an RPN
to generate the proposal set in a fully convolutional fashion
reusing the backbone calculations. This makes it possible
to perform end-to-end training of the whole system without
any precomputed information. The feature pyramid network
[10] proposes a change in the definition of the CNN
backbone, extracting feature maps at different depth levels
instead of taking just the deepest level. Therefore, the RPN
and the network head must calculate object proposals and
the final detections at different feature map levels. FPN
implements a top-down pathway and lateral connections
to combine low-resolution semantically strong features
with high-resolution semantically weak features to work at
different levels without losing semantic meaning. Working
with high-resolution feature maps enables the network to
improve the small object detection precision. mSODANet
[11] extends this idea by adding contextual features at
multiple levels, improving the detector robustness to scale
variations.

As an alternative, STDnet [6] proposes a specific
architecture to address the small object detection problem.
First, it selects promising areas of the image with a high
probability of containing small objects. Then, a two-stage
approach generates object proposals in these promising
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regions to calculate the final object detection set. By
focusing on small portions of the image, a small stride of
4 from shallow layers can be kept without dramatically
affecting the computation time. Hence, it enables to work
with semantically strong high-resolution feature maps.

Many other solutions propose new header implementa-
tions based on the original Faster R-CNN framework, such
as the Cascade R-CNN [12]. This method defines a mul-
tistage head that iteratively refines the object proposal set.
One-stage object detectors [1, 2, 13] directly regress and
classify anchor boxes without object proposals.

2.2 Video object detection

The video object detection problem has drawn the
attention of the research community with new architectures
specifically designed to exploit spatiotemporal information.
Even so, improving the detection performance, including
the temporal information available in videos, remains an
open problem. The same issue also remains unsolved in
related fields such as action recognition.

Some video object detection approaches rely on optical
flow. For example, [14] proposed aggregating deep spatial
features throughout time to improve the per-frame feature
maps. To do so, the authors resort to movement information
given by the optical flow to find the correspondences
between the current features and the nearby feature maps.
As an alternative to deep feature fusion, SVM-based
spatiotemporal feature fusion [15] has been successfully
applied to address the small object detection problem in
low-contrast aerial environments. This approach focuses on
analyzing pixel variations over time rather than the usually
limited visual representations of small objects. We propose
a novel method to find these correspondences working
with two-stage frameworks by linking object proposals
throughout time.

Several approaches have been proposed to link object
detections throughout neighboring frames, making up short
object tubelets. In reference [16], the authors introduced
a method to link detections generated by a frame-level
object detector through tracking techniques. T-CNN [17]
also applied tracking to link detections of two single-frame
detectors over time. The authors in [18] defined a tubelet
proposal network (TPN) with two main components. First,
it propagates static proposals at the frame level across
time. Then, the second network estimates the bounding
box displacement in each frame to build the tubelet
proposal. Although this second component works with
pooled features extracted from the same bounding box
over time, the network can handle moving objects due to
the generally large receptive field of CNNs. Instead of
applying frame-level RoI pooling methods, a temporal RoI
align operator was proposed in [19]. This operator performs

feature aggregation between RoI features in the current
frame and features from the entire feature map in the support
frames. Therefore, it is not bounded by object proposals
in support frames, extending the search area to the entire
feature map.

Another idea is to extend the anchor boxes of single-
frame object detectors to the spatiotemporal domain. The
ACtion Tubelet detector (ACT-detector) [20] utilizes anchor
cuboids to initialize the action tubelets. The work in [21]
proposed a cuboid proposal network (CPN) for short object
tubelet detection. Unlike these previous methods, in our
proposal the regression of each of the anchor boxes in
the anchor cuboid is performed by the corresponding
RPN with information from the corresponding frame,
allowing us to reuse part of the computations from previous
iterations while preserving the proposals linked throughout
consecutive frames.

The aim of the described methods is to link objects in
the short-term. Therefore, they only take into account the
nearby frames wasting long-term information. To overcome
this, the approach described in reference [22] solves object
linking with tracking information to build long tubes, and
aggregates detection scores throughout the tube. To do that,
tracking and object detection are performed and learned
simultaneously with a multitask objective. Sequence level
semantics aggregation (SELSA) [23] links object proposals
extracted at the frame level based on semantic similarities.
Then, it performs feature aggregation according to these
similarities, obtaining more robust and discriminative object
features.

The authors in [21] also performed long-term object
linking by concatenating small tubelets. First, they calcu-
lated short temporally overlapping tubelets, so one single
frame could have detections associated with more than one
tubelet. Then, tubelets were joined by analyzing the overlap
in the shared frames. Memory enhanced global-local aggre-
gation (MEGA) [24] extends relation distillation networks
(RDN) [25] to take advantage of long-term spatiotemporal
information. Both methods are based on attention mecha-
nisms to establish the proposal relationships between dif-
ferent frames. STDnet-ST [26] improves STDnet [6] by
adding spatiotemporal information, linking objects through-
out time. Although this is a specific architecture for small
object detection in videos, it is a class agnostic detector.
We address this issue in our spatiotemporal double head by
providing both object localization and classification.

All these methods only consider the final detection set to
perform long-term object linking. In this work, we include
short-term information calculated by the RPN to overcome
missed detections, and build larger tubes. It is important
to note that our approach only uses object proposals and
detections given by the network, without any external
tracking method to aid the object linking process.
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3 FANet architecture

The proposed framework (Fig. 1) generalizes a single-
frame two-stage object detector, adding spatiotemporal
information from the nearby frames ft−N+1..., ft−1, ft to
improve the detection precision in each frame ft . Even
though we build our system on Faster R-CNN [5] with a
feature pyramid network (FPN) backbone [10] to illustrate
the network architecture, the same ideas can be applied
to other models. Indeed, since the spatiotemporal tubelet
proposal is a core concept in our architecture, the multiscale
level approach imposes higher complexity than single scale
models due to the multiple RPNs. These object tubelets link
proposals throughout time allowing the network to improve
the per-frame features by aggregating box features from
different frames. The proposal linking strategy relies on
the RPN receptive field instead of overlap-based metrics
or visual appearance similarities, making the method
robust against moving small objects. Then, a long-term
object linking leverages temporal consistency, increasing
the confidence of detections that maintain spatiotemporal
coherence throughout the video. Reusing short-term linking
information allows this long-term method to overcome
network errors such as false negatives, which are more
frequent in small object detection.

We initialize object tubelets as anchor cuboids. Each
anchor cuboid is a sequence of N anchor boxes, one
per frame, with the same area and aspect ratio, in the
same position. Then, the RPN modifies each anchor box
independently in the corresponding frame using features
calculated by the corresponding backbone. This, together
with the fact that both the network backbone and the RPN
share the convolutional weights among all input frames,
allows us to reuse the backbone and RPN computations

to reduce the overhead associated with the proposed
spatiotemporal approach with respect to the single-frame
method. Thus, feature maps and object proposals associated
with frames ft−N+2, ..., ft−1, ft are reused to process the
next frame. As in single image object detectors, the resulting
proposal set has spatially redundant proposals. In our
implementation, this issue is addressed by adding a tubelet
non-maximum suppression (T-NMS) [21] algorithm that
filters redundant tubelet proposals. The tubelet generation
process is described in Section 3.1.

An RoI align method [27] is fed with per-frame feature
maps and tubelet proposals, extracting RoI features centered
on objects with a fixed size. Figure 1 shows the simplest
case in which there is a single level backbone rather than
the more complex FPN. After RoI align, we concatenate
all feature maps associated with proposals belonging to the
same tubelet. Then, we shuffle the channels, so channels
in the same position in the original feature maps are
consecutive in the concatenated feature map (Fig. 1). The
resulting feature map has a joined dimension N times the
original RoI align size, making it dependent on the number
of input frames. The temporal pooling method reduces this
dimension to a fixed size independent of N . The joining and
pooling processes are described in Section 3.2.

We implement a spatiotemporal double head with spatial
and spatiotemporal branches specifically designed for
object classification and localization (Section 3.3). Spatial
information from the current frame is processed in the
spatial branch while spatiotemporal information is used in
the spatiotemporal branch. As one of the goals of the spatial
branch is to localize the object in the current frame, we
follow a multistage object architecture [12] in which each
stage output is the input to the next stage. Consequently, it
gradually refines object proposals to maximize the overlap
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Fig. 1 FANet architecture with a single level backbone. The dotted backbone and RPN boxes represent components that are reused without new
computations. Blocks labeled as 2MLP in the network head implement a multilayer perceptron with two fully connected layers

1208 D. Cores et al.



with the actual object. Our framework can be trained end-
to-end as it does not need any precomputed or heavily
engineered object proposals.

Last, per-frame object detections are linked, making
up long tubes. Short-term object tubelets provide helpful
information about whether two detections in different
neighboring frames are the same object. The proposed long-
term object linking algorithm takes this information as input
to grow the final tubes. Then, the detection confidence score
is updated taking into account long-term spatiotemporal
consistency (Section 3.4).

3.1 Short-term proposal linking

In general, the starting point for most object detectors
is a set of predefined anchor boxes. Then, they adjust
these anchor boxes to better fit the objects and assign an
object category, removing those classified as background.
Instead, we propose to use anchor cuboids generated as
N consecutive anchor boxes. Therefore, for a given input
frame, the number of anchor cuboids is the same as the
number of anchor boxes in the single image counterpart
calculated as k anchor boxes for each sliding position W ×
H . Moreover, every anchor box in an anchor cuboid has the
same size and aspect ratio and is in the same position for all
short-term input frames N .

As our framework is designed to work with an
FPN (feature pyramid network) [10], object proposals
are mapped to different pyramid levels according to
their area. In our implementation, every proposal box
(bt−N+1, ..., bt−1, bt ) in the anchor cuboid is independently
associated with the corresponding FPN level in each input
frame following the association strategy defined in [10].
Consequently, RPN outputs for previous frames can be
reused and only the new proposal bt must be calculated.
Adapting this strategy to single-level models implies that
anchor boxes belonging to all anchor cuboids are mapped
to the same level.

Regressing every anchor cuboid leads to spatially
redundant tubelets in the proposal set. In two-stage single-
frame detectors, this problem is generally solved executing
the nonmaximum suppression (NMS) method over the
proposal set. In our case, we perform a generalization
that removes spatiotemporal redundant tubelet proposals
instead of per image box proposals. Otherwise, applying
a traditional NMS method will remove tubelet fragments
breaking the short-term links. We implement an extension
of the tubelet nonmaximum suppression (T-NMS), first
described in [21], but with different metrics to calculate the
tubelet score ts(τi) and to determine the overlap between
two tubelets, τi and τj , making it more suitable for small
objects. The goal of our T-NMS is to remove redundant
tubelet proposals to support the RoI feature aggregation

process. Instead, in [21], T-NMS is used to remove final
detections after a per-frame refinement of cuboid proposals.

The score of a given tubelet τi is calculated taking into
account the confidence of proposals that belong to τi :

ts(τi) = mean(bst−N+1
i , bst−1

i , ..., bst
i ). (1)

where bst is the score of proposal b at frame t .
To calculate the overlap between two tubelets τi and τj ,

we use:

overlap(τi, τj ) = meank=t−N+1,...,t IoU(bk
i , b

k
j ). (2)

The original tubelet overlap definition is based on the
min function, which is too demanding in the small object
detection context. Instead, we use the mean function,
reaching higher overlap values.

Tubelet scores (1) and overlaps between a pair of tubelets
(2) are used in the T-NMS to remove tubelets with a high
overlap with higher scoring tubelets. Unlike the original
FPN strategy, which performs a per-level NMS, our T-NMS
implementation globally removes the spatially redundant
proposals, taking as input the whole set of tubelets.
The resultant subset T represents the final collection of
proposals.

3.2 RoI feature aggregation

In Faster R-CNN-based object detectors, an RoI feature
pooling method takes the proposal set to produce a
per proposal fixed-size feature map. Working with FPN,
object proposals are distributed among the pyramid levels
according to their size to perform RoI pooling over the
corresponding feature map. We employ the RoI align
[27] method to perform the feature pooling operation
taking each bounding box bj belonging to each tubelet
τi = (bt−N+1

i ..., bt−1
i , bt

i ) to extract features from the
corresponding pyramid level in frame fj . Performing this
mapping process independently in each frame rather than
per tubelet enables us to map each box bj within the same
tubelet τi to a different pyramid level, making the system
robust against scale variations in the tubelet sequence. This
allows us to integrate high-resolution feature maps from
every input frame, even when objects are very small at some
time instant. The results are a fixed-size feature map (in our
case of 7 × 7 × 256, Fig. 1) associated with each box in the
tubelet.

Spatiotemporal information associated with each tubelet
is summarized by a new operator called temporal pooling
that calculates a feature map with a fixed-size independent
of N . Thus, the temporal pooling output has the same size
as the RoI align output for one single frame. This method
requires N to be small enough to allow the RPN to adapt the
corresponding anchor box in the anchor cuboid sequence
to fit the object in each frame. Working with a large N ,
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Fig. 2 Temporal pooling example with a number of input frames
N = 4. From left to right, there are the four input frames with an object
proposal (the blue bounding box) in each one, all belonging to the
same tubelet. Below each input frame, a subset of channels from the
RoI align output is represented. On the top right, we show the tubelet

proposal linking all box proposals. At the bottom right, we also show
the aggregated feature map calculated by thetemporal pooling method.
We highlight one channel (framed in red) as an example of how the
highest activations (lighter colors) in each frame contribute to the
aggregated feature map

the object movement might exceed the RPN receptive field,
making it impossible to adjust the same anchor box in every
frame to the target object 1. Since all RoI Align outputs that
belong to the same tubelet have a fixed size and are centered
in occurrences of the same object over time, we can link
features in the same position of the RoI pooled feature map
in every frame.

RPN errors might result in misaligned proposals through-
out the tubelet that can damage the final output. However,
as RoI pooled feature maps are coarse representations of
the object, small variations in consecutive frames have
minor effects on the temporal pooling inputs. This makes
the short-term spatiotemporal aggregation process robust
against localization errors in the RPN. These localization
issues are of great importance when working with small
objects. Thus, slight localization errors can dramatically
reduce the overlap with the ground-truth.

The first step of the temporal pooling is to concatenate
the N input RoI feature maps of size W × H × C, resulting
in a feature map of size W × H × N · C (Fig. 1). Then, the
output is reordered so that channels at the same position in
the input feature maps are placed consecutively (temporal
pooling input in Fig. 1). Finally, the output feature map is
calculated as:

xijk = max
t=0...,N−1

(yij (N(k−1)+t)) (3)

where yij (N(k−1)+t) is an element in the position i × j in
channel (N(k −1)+ t) in the input feature map of size W ×
H ×N ·C, and xijk is an element in position i×j in channel
k of the output feature map. This process accumulates the
highest activation values in the nearby frames, as Fig. 2
shows.

1As Section 4.3 shows, the network achieves the best result with
N = 4.

3.3 Cascade double head

The double head architecture is based on the idea that aggre-
gated spatiotemporal information is valuable to improve
object classification, while spatial information extracted from
the current frame is crucial for bounding box regression.
Consequently, we design each head branch to perform better
in its respective task taking into account the input data.

The spatial head (Fig. 1, top right) takes as input the RoI
align output at the current frame ft to calculate a spatial
object classification and a class agnostic bounding box
regression. Since the main goal of this branch is the object
localization, we implement a cascade head [12] to iteratively
refine the object proposal set until the final bounding box
regression is performed.

Following the Cascade R-CNN training strategy, we
perform proposal resampling after each stage, applying
an increasing IoU threshold to assign each proposal to a
ground truth object. Hence, the requirements to consider one
proposal as a positive example to train the corresponding
stage are harder as we advance in the cascade. In general, an
IoU threshold that is too high might assign all proposals to
background, removing the positive examples. Nevertheless,
as each stage takes as input the refined proposal set from the
previous stage, we can increase the IoU threshold achieving
more accurate boxes in each stage. At test time, we use the
average of the classification scores calculated by every stage
detector over the final proposal set [12].

The spatiotemporal head (Fig. 1, bottom right) is fed
with RoI features generated by our temporal pooling
method. Thus, spatial information from the previous N

frames is considered to classify the object in this branch.
As a result, this strategy produces a bounding box
regression and two object classification vectors, one based
on features in the current frame and another based on the
aggregated spatiotemporal features. The final classification
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is calculated as follows [28]:

p = ptmp + pspt (1 − ptmp) (4)

where pspt and ptmp are the score vectors from the
spatial and temporal heads, respectively. Thus, we are
considering spatial classification in the current frame and
spatiotemporal classification at the same level. This makes
the current frame ft to have a greater influence on the
final classification result than any previous frame fi in
ft−N+1, ..., ft−1.

3.4 Linking object detection

We propose a two-step long-term object linking algorithm
that takes network detections and produces long object
tubes. Linking network detections to build long tubes is a
widely adopted approach in both action recognition [29,
30] and object detection [17, 21, 22]. The main goal of
these methods is to rescore all the detections in each
tube, increasing the confidence to those detections that can
be linked throughout time and maintaining spatiotemporal
consistency in the long-term.

In the first stage of our method, linking detections
in consecutive frames is addressed by maximizing the
accumulated linking score in each tubelet. Network errors
such as false negatives or misclassified detections might
break large tubes, since it is not possible to find a detection
to link in some frames. The second step of the long-term
linking method utilizes the short-term tubelet information to
overcome some of these problems, allowing the algorithm
to produce larger tubes.

In this implementation, each detection di
t =

{xi
t , y

i
t , w

i
t , h

i
t , p

i
t } in the set Dt at frame t has an associated

bounding box with center (xi
t , y

i
t ), width (wi

t ), height (hi
t ),

and an associated classification confidence (pi
t ) for the

object class. Detections with a confidence score lower than
a given threshold β are removed, reducing the probability
of poor quality detections being part of the final object
tubes. The linking score ls(di, dj ) between two detections
di and dj at different frames t and t ′ is defined as:

ls(di
t , d

j

t ′) = pi
t + p

j

t ′ + GIoU(di
t , d

j

t ′). (5)

where GIoU is the generalized intersection over union
proposed in [31]. For small objects, detections associated
with the same object in nearby frames might have no
overlap. GIoU allows us to measure the similarity of two
bounding boxes even when they do not overlap.

Then, object tubes v̂ can be calculated maximizing the
following expression:

v̂ = arg max
V

T∑

t=2

ls(Dt−1, Dt ) (6)

where V is the set of all possible tubes. This optimization
problem is solved by applying the Viterbi algorithm.

Algorithm 1 describes how we create long-term object
tubes in detail. First, object tubes ending at frame i = T

are calculated by applying (6) (Algorithm 1:4). The selected
detections are removed from D, as they cannot be used
to build new object tubes (Algorithm 1:5). The process
iteratively creates all the tubes ending at frame i until there
are no more remaining detections at that frame. Then, the
same method is applied to build tubes ending at frame i − 1
(Algorithm 1:2).

This method creates long tubes linking consecutive
object detections without considering missing detections in
some frames due to network errors or occlusions. Thus, one
missing detection in one specific frame would break a long
tube in two parts. This naive approach is widely used in the
literature in both object detection and action recognition. We
propose a more robust method specifically designed to deal
with these issues. Thus, in the second step of our linking
algorithm, the information given by RPN tubelets links tube
fragments, increasing the final size. In Fig. 3, both the last
detection of the first fragment and the first detection of the
second fragment of ṽj belong to the same RPN tubelet.
Taking this information into account, our algorithm links the
two fragments making one larger tube.

Algorithm 2 describes how short-term information is added
to the long-term linking process. First, we check for any
pairs of tubes if they are candidates to be joined (Algorithm
2:6). The first condition they have to fulfill is that the
last detection of the first tube di,mi and the first detection
of the second tube have to belong to the same short-term
RPN tubelet τl . This is done with function γ (bk

l , d
i,mi ),

which checks whether a detection is associated with a box
proposal bk

l of a tubelet τl . This is necessary, as we apply
nonmaximum suppression (NMS) and bounding box voting
[32] to remove spatially redundant detections and refine the
final detection set, so a detection d can be associated with
several object proposals b. The second condition that has
to be fulfilled is that the last detection of the first tube is
previous to the first detection of the second tube.
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We define a cost matrix C with as many rows as ending
fragments, and as many columns as starting fragments. The
linking score is the confidence of the tubelet proposal that
links both detections and is calculated by applying (1). As
several tubelets might contain di,mi and dj,1, we select the
maximum confidence among all of them (Algorithm 2:7-
9). Then, we solve the assignment problem by applying the
Hungarian method (Algorithm 2:10). The second fragment
is removed from Ṽ (Algorithm 2:12), and its detections are
added to the corresponding first fragment, building the final

long tube (Algorithm 2:13). Finally, the linking score (5) is
used to calculate the average linking score for the long tube
ṽi (Algorithm 2:15). If the average linking score is higher
than a threshold (λ), the confidence for all the detections
that belong to the tube is updated to the mean confidence of
the top-α% detections with the highest confidence score in
the tube (Algorithm 2:17).

4 Experiments

4.1 Datasets

We evaluate our models on the very small object subset of
three publicly available datasets, defining objects belonging
to this subset as those that have an area smaller than 256
pixels:

– USC-GRAD-STDdb dataset [33]: this dataset contains
115 videos —92 for training and 23 for testing— with
over 25,000 frames in total and 56,000 annotated small
objects. Videos in this dataset are recorded in three
different environments —air, sea and land— targeting 5
different classes: bird and drone (air), boat (sea), vehicle
and person (land).

– Unmanned Aerial Vehicle Benchmark (UAVDT) [7]:
this dataset is focused on videos recorded with onboard
cameras on UAVs. It contains approximately 40,000
annotated frames in 50 different videos, 30 for training
and 20 for testing, with objects of the vehicle class.

– VisDrone dataset [8]: this dataset also contains UAV
recorded images in 56 training and 17 testing videos
with approximately 24,000 frames in total. It has
10 different categories: pedestrian (9,255 annotated
small objects), people (8,037 annotated small objects),
bicycle (75 annotated small objects), car (3,639
annotated small objects), van (122 annotated small
objects), truck (0 annotated small objects), tricycle (650
annotated small objects), awning-tricycle (68 annotated
small objects), bus (0 annotated small objects) and

Fig. 3 Long-term object linking. The green boxes are actual network detections. The network does not detect the two objects in f4, breaking ṽj

in two fragments. The last detection of the first fragment and the first detection of the second fragment belong to the same RPN tubelet (τk)
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motor (5,181 annotated small objects). We excluded
from the test set those categories with a very low
number of small objects —bicycle, van, truck, tricycle,
awning-tricycle and bus—, and we fused pedestrian and
people categories.

4.2 Implementation details

We use a ResNeXt-101 [34] with FPN as the backbone in
all the experiments. Network weights are initialized with
a pretrained model on the ImageNet classification dataset.
We add to both the single frame and the spatiotemporal
approach a 3-stage cascade of detectors [12] as described
in Fig. 1. To train our spatiotemporal framework, we first
train the single-frame model, and then we initialize the
spatiotemporal network with the same weights, keeping
all learned layers frozen. Thus, we only have to train the
spatiotemporal head if we have the equivalent single frame
model already trained.

Input images are resized by setting the smallest
dimension to 720 pixels, keeping the original aspect ratio.
If the largest dimension exceeds 1,280 pixels, the image is
scaled down again without modifying the aspect ratio.

For the spatial baseline training, we use the SGD learning
algorithm with an initial learning rate of 1.25 × 10−4,
reducing it to 1.25 × 10−5 after the first 30K iterations, and
to 1.25 × 10−6 after the next 40K iterations. We remove
redundant RPN proposals and final object detections by
applying NMS, setting the IoU thresholds to 0.7 and 0.5,
respectively.

As the spatiotemporal network only requires learning the
spatiotemporal double head weights, it requires consider-
ably fewer iterations. Thus, we set the number of iterations
to 15K with an initial learning rate of 1.25 × 10−3 with two
reductions at 10K and 14K iterations by a factor of ten. The
network needs N input frames for each example: the previ-
ous N−1 and the current frame. For this reason, we replicate
the first frame N − 1 times to be able to process the first
N − 1 frames of each video.

Finally, we apply a bounding box voting transformation
[32] and a confidence threshold β = 0.05 over the output
detection set. We keep the same configuration for every
dataset.

4.3 Ablation studies

We conducted a series of experiments to assess the
influence of the number of input frames on the precision
of the network. Moreover, we also performed a collection
of ablation studies to analyze the contribution of each
component of the network to the final result.

Fig. 4 Detection AP when setting the tubelet length to N without
long-term information

Figure 4 shows the influence of the number of
input frames N on the precision of the network on
the three considered datasets. Our spatiotemporal method
significantly improves the single-frame baseline, in which
no temporal information is available, even when only
considering one extra frame (N = 2). The AP generally
stabilizes for a higher number of frames, being robust
to small variations in N . For large values of N , the AP
decreases, as the tubelet initialization based on anchor
cuboids assumes that an object is always associated with the
same anchor box in the same position for every input frame.
When the object moves outside that scope, this assumption
is not true, and this is more frequent in the case of long
tubelets.
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Table 1 Contribution of each component of the network to the
precision for the USC-GRAD-STDdb dataset

Spatial Spatiotemporal Cascade Long-term AP@.5
xs

head Cls head Cls head object linking

� 38.8

� 38.0

� � 40.8

� � 43.8

� � 47.0

� � � 48.5

� � � � 49.6

Table 1 shows the contribution of each network
component to the final mean average precision (AP) on
the USC-GRAD-STDdb dataset. In all these experiments,
we obtain the bounding boxes from the spatial header,
choosing the classification scores from the spatial branch,
the spatiotemporal branch or the combination of both
(4). Regarding the bounding boxes, we also compare
the network precision with and without refining the
object proposals using a cascade of detectors. In these
experiments, the architecture with only the spatial head
differs from the spatial network baseline in the T-NMS
method that filters the proposal set differently from the
conventional NMS. Our proposal with only the spatial
head reaches 38.8% AP, the cascade head improves AP
by 5.0%, the short-term object linking adds 4.7% AP
and, finally, the long-term object linking improves AP
by 1.1%. Thus, the combination of both short- and long-
term components improves the network AP by 5.8%.
These results prove that the proposed long-term object
linking method can recover low-confidence detections
that maintain spatiotemporal coherence, assigning them
higher confidence than the network output. Therefore,
the tube creation method —described in Algorithm 1
and Algorithm 2— effectively links related detections
throughout the video, and the rescoring strategy specified
in Algorithm 2:14 - Algorithm 2:17 provides more accurate
detection confidence than the network output.

4.4 Results

We compare our method with state-of-the-art spatiotempo-
ral object detectors and our single-frame baseline (Cascade
R-CNN FPN-X101) on three datasets. We also modified
FGFA [14], RDN [25] and MEGA [24] to work with an
FPN architecture2. Our single-frame baseline is also based

2Source code available at https://github.com/daniel-cores/mega FPN

on FPN, setting a strong baseline. Following the same strat-
egy as other video object detectors in the comparison, we
also set a symmetric approach in which we select frames in
advance. Hence, for instance, if N = 3, instead of selecting
the 2 previous frames, we select the previous and the next
one to the current frame.

Table 2 shows the results on the USC-GRAD-STDdb
dataset. Unlike [33], [6] and [26], which give a class
agnostic AP, we report the results taking into account
object categories. It can be seen how our modified versions
of state-of-the-art spatiotemporal frameworks significantly
outperform the original versions in the small object
detection domain. However, our framework achieves the
best results in comparison with previous spatiotemporal
work, including the FPN versions. Thus, adding both long-
and short-term information leads to 49.5% AP with an
IoU threshold of 0.5, the highest result in this dataset.
The best modified spatiotemporal method achieves 46.8%
AP, while the spatial baseline scores 44.5% AP, resulting
in a difference from our approach of 2.8% and 5.1%,
respectively.

Table 3 shows the results in the extra small subset
(objects smaller than 256 pixels in area) of the UAVDT
dataset. Our method achieves 37.8% AP with only short-
term information and 38.2% AP considering both short-
and long-term information. This result improves the single-
frame baseline by 3.1% and the best spatiotemporal method
by 5.8%.

The results for the VisDrone dataset are shown in Table 4.
Our approach again achieves the best results with a 22.7%
AP in the extra small subset. Our method outperforms
the best spatiotemporal framework by 2.1%, while the
difference from the spatial baseline is 1.0%. This dataset is
particularly challenging for spatiotemporal approaches due
to the high object density that makes it difficult to link
the same object throughout time. This hinders long-term
linking, limiting its effect in this dataset. Figure 5 shows
detection examples of FANet for images from every dataset.

5 Conclusion

We presented a novel CNN-based framework that exploits
spatiotemporal information to improve small object detec-
tion in videos. The proposal implements a feature aggre-
gation method throughout short tubelet proposals that does
not require neither tracking algorithms or optical flow. We
redesigned the network head to take advantage of this
aggregated spatiotemporal data with a double head imple-
mentation. The experimentation proved that this short-term
information is complementary to the long-term information
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Table 2 USC-GRAD-STDdb results

Method Drone Boat Vehicle Person Bird AP@.5
xs

FGFA X101 [14] 44.1 50.6 15.4 39.8 6.6 31.3

SELSA X101 [23] 51.4 32.9 12.7 23.6 4.6 25.4

RDN X101 [25] 67.6 52.8 34.6 41.6 15.8 42.5

MEGA X101 [24] 66.0 39.2 19.9 40.3 22.1 37.5

Temporal RoI Align X101 [19] 46.1 28.0 10.0 19.5 2.6 21.2

FGFA FPN-X101 56.1 72.6 23.9 49.8 17.3 43.9

RDN FPN-X101 69.0 47.0 34.9 62.2 21.1 46.8

MEGA FPN-X101 67.5 52.6 30.7 59.3 10.7 44.1

Baseline: Cascade R-CNN FPN-X101 65.2 44.9 36.1 62.8 13.4 44.5

FANet FPN-X101 short-term (ours) 68.0 48.8 38.8 66.5 19.2 48.2

FANet FPN-X101 long-term (ours) 66.5 50.3 39.4 66.8 25.1 49.6

Table 3 UAVDT results. This
dataset only contains one
category (vehicle)

Method AP@.5
xs

FGFA X101 [14] 20.0

SELSA X101 [23] 19.8

RDN X101 [25] 21.5

MEGA X101 [24] 20.8

Temporal RoI Align X101 [19] 16.9

FGFA FPN-X101 26.7

RDN FPN-X101 32.4

MEGA FPN-X101 32.2

Baseline: CascadeR-CNN FPN-X101 35.1

FANet FPN-X101 short-term (ours) 37.8

FANet FPN-X101 long-term (ours) 38.2

Table 4 VisDrone results for categories with a significant number of small objects

Method People Car Motor AP@.5
xs

FGFA X101 [14] 8.2 36.0 7.2 16.8

SELSA X101 [23] 8.3 32.9 6.0 15.7

RDN X101 [25] 7.4 33.8 9.7 15.6

MEGA X101 [24] 8.5 35.9 7.4 15.5

Temporal RoI Align X101 [19] 6.5 33.1 3.8 14.5

FGFA FPN-X101 8,8 40,3 10.0 19.7

RDN FPN-X101 7.8 40.7 13.0 20.5

MEGA FPN-X101 7.8 40.6 9.3 19.2

Baseline: Cascade R-CNN FPN-X101 10.5 46.2 8.6 21.7

FANet FPN-X101 short-term (ours) 11.6 48.1 8.4 22.6

FANet FPN-X101 long-term (ours) 11.6 47.3 9.2 22.7
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Fig. 5 Visual analysis of the results of FANet for images from USC-GRAD-STDdb, UAVDT and VisDrone (from left to right)

calculated by the proposed linking method. The overall
framework outperformed the single-frame baseline and pre-
vious state-of-the-art spatiotemporal object detectors in the
very small object subset of three different datasets. There-
fore, it is a suitable solution for applications in which the
average object size tends to be very small.

Although our tubelet initialization based on anchor
cuboids provides a light computational method to link
objects throughout neighboring frames, it imposes a
limitation on the maximum tubelet length. In the future, we
will further develop this component making it more flexible.
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