Skip to main content
Log in

Consensus enhancement for multi-agent systems with rotating-segmentation perception

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, we investigate the consensus problem of multi-agent systems (MASs) with a limited sensing range using two kinds of distributed neighbor selection strategies. Because each agent’s convergence evolution is typically based on the “select all perceived neighbors” (SAN) framework, fragmentation into multiple clusters is likely to occur, and data storage and computational load can grow exponentially as the number of agents increases. To address this challenge, we propose a new distributed consensus framework composed of two strategies that can effectively enhance the consensus of the MAS. First, a novel representative selection with rotating-segmentation perception (RSRSP) strategy is provided for agents to intelligently select representative neighbors in each sector of the communication region for convergence evolution. Second, a distributed switching strategy is designed for each agent to synchronously switch from RSRSP to SAN when the system reaches full connectivity. We analyze the stability of the proposed consensus protocol with the common Lyapunov function and verify the superiority of the two proposed strategies through comparisons with a baseline SAN algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li X, Yu Z, Li Z, Wu N (2021) Group consensus via pinning control for a class of heterogeneous multi-agent systems with input constraints. Inf Sci 542:247–262. https://doi.org/10.1016/j.ins.2020.05.085https://doi.org/10.1016/j.ins.2020.05.085

    Article  MathSciNet  MATH  Google Scholar 

  2. Hu X, Zhang Z, Li C (2021) Consensus of a new multi-agent system with impulsive control which can heuristically construct the communication network topology. Applied intelligence. pp 1–16. https://doi.org/10.1007/s10489-021-02644-4

  3. Zhang J, Zhang H, Sun S, Gao Z (2021) Leader-follower consensus control for linear multi-agent systems by fully distributed edge-event-triggered adaptive strategies. Inf Sci 555:314–338. https://doi.org/10.1016/j.ins.2020.10.056

    Article  MathSciNet  MATH  Google Scholar 

  4. Li K, Li SE, Gao F, Lin Z, Li J, Sun Q (2020) Robust distributed consensus control of uncertain multiagents interacted by eigenvalue-bounded topologies. IEEE Internet Things J 7(5):3790–3798. https://doi.org/10.1109/JIOT.2020.2973927

    Article  Google Scholar 

  5. Li Y, Tang C, Li K, He X, Peeta S, Wang Y (2019) Consensus-based cooperative control for multi-platoon under the connected vehicles environment. IEEE Trans Intell Transp Syst 20(6):2220–2229. https://doi.org/10.1109/TITS.2018.2865575

    Article  Google Scholar 

  6. Guo J, Cheng S, Liu Y (2021) Merging and diverging impact on mixed traffic of regular and autonomous vehicles. IEEE Trans Intell Transp Syst 22(3):1639–1649. https://doi.org/10.1109/TITS.2020.2974291

    Article  Google Scholar 

  7. Nelke SA, Okamoto S, Zivan R (2020) Market clearing-based dynamic multi-agent task allocation. ACM Trans Intell Syst Technol 11(1):4–1425. https://doi.org/10.1145/3356467

    Article  Google Scholar 

  8. Niu M, Cheng B, Feng Y, Chen J (2020) GMTA: A geo-aware multi-agent task allocation approach for scientific workflows in container-based cloud. IEEE Trans Netw Serv Manag 17(3):1568–1581. https://doi.org/10.1109/TNSM.2020.2996304

    Article  Google Scholar 

  9. Wu H, Shang H (2020) Potential game for dynamic task allocation in multi-agent system. ISA Transactions 102:208–220. https://doi.org/10.1016/j.isatra.2020.03.004

    Article  Google Scholar 

  10. Jiang H, Shi D, Xue C, Wang Y, Wang G, Zhang Y (2021) Multi-agent deep reinforcement learning with type-based hierarchical group communication. Appl Intell 51(8):5793–5808. https://doi.org/10.1007/s10489-020-02065-9

    Article  Google Scholar 

  11. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A, Chung J, Choi DH, Powell R, Ewalds T, Georgiev P, Oh J, Horgan D, Kroiss M, Danihelka I, Huang A, Sifre L, Cai T, Agapiou JP, Jaderberg M, Vezhnevets AS, Leblond R, Pohlen T, Dalibard V, Budden D, Sulsky Y, Molloy J, Paine TL, Gülçehre, Ç, Wang Z, Pfaff T, Wu Y, Ring R, Yogatama D, Wunscḧ, D, McKinney K, Smith O, Schaul T, Lillicrap TP, Kavukcuoglu K, Hassabis D, Apps C, Silver D (2019) Grandmaster level in starcraft II using multi-agent reinforcement learning. Nat 575(7782):350–354. https://doi.org/10.1038/s41586-019-1724-z

    Article  Google Scholar 

  12. Liang L, Ye H, Li GY (2019) Spectrum sharing in vehicular networks based on multi-agent reinforcement learning. IEEE J Sel Areas Commun 37(10):2282–2292. https://doi.org/10.1109/JSAC.2019.2933962https://doi.org/10.1109/JSAC.2019.2933962

    Article  Google Scholar 

  13. Wang A, Dong T, Liao X (2019) Distributed optimal consensus algorithms in multi-agent systems. Neurocomputing 339:26–35. https://doi.org/10.1016/j.neucom.2019.01.044

    Article  Google Scholar 

  14. Li X, Xie L, Hong Y (2021) Distributed aggregative optimization over multi-agent networks. In: IEEE Transactions on Automatic Control. https://doi.org/10.1109/TAC.2021.3095456

  15. Bond AH (1988) An analysis of problems and research in dai. Readings in distributed artificial intelligence. pp 3–35

  16. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233. https://doi.org/10.1109/JPROC.2006.887293

    Article  MATH  Google Scholar 

  17. Wang Y, Lei Y, Bian T, Guan Z (2019) Distributed control of nonlinear multiagent systems with unknown and nonidentical control directions via event-triggered communication. IEEE Trans Cybern. pp 1–13. https://doi.org/10.1109/TCYB.2019.2908874

  18. Li J, Ye Y, Papadaskalopoulos D, Strbac G (2021) Distributed consensus-based coordination of flexible demand and energy storage resources. IEEE Trans on Power Syst 36(4):3053–3069. https://doi.org/10.1109/TPWRS.2020.3041193

    Article  Google Scholar 

  19. Moreau L (2005) Stability of multiagent systems with time-dependent communication links. IEEE Trans Autom Control 50(2):169–182. https://doi.org/10.1109/TAC.2004.841888

    Article  MathSciNet  MATH  Google Scholar 

  20. Nedic A, Olshevsky A, Rabbat MG (2018) Network topology and communication-computation tradeoffs in decentralized optimization. Proc IEEE 106(5):953–976. https://doi.org/10.1109/JPROC.2018.2817461

    Article  Google Scholar 

  21. Lin P, Wang Y, Qi H, Hong Y (2018) Distributed consensus-based k-means algorithm in switching multi-agent networks. Journal of Systems Science and Complexity 31(5):1128–1145. https://doi.org/10.1007/s11424-018-7102-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu A, Wang Y, Cao J, Alsaedi A (2020) Event-triggered bipartite consensus of multi-agent systems with switching partial couplings and topologies. Inf Sci 521:1–13. https://doi.org/10.1016/j.ins.2020.02.038

    Article  MathSciNet  MATH  Google Scholar 

  23. Su Y, Lee T-C (2022) Output feedback synthesis of multiagent systems with jointly connected switching networks: A separation principle approach. IEEE Transactions on Automatic Control 67(2):941–948. https://doi.org/10.1109/TAC.2021.3077352

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie G, Chen J, Li Y (2021) Hybrid-order network consensus for distributed multi-agent systems. J Artif Intell Res 70:389–407. https://doi.org/10.1613/jair.1.12061

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen L, Gao Y, Bai L, Cheng Y (2020) Scaled consensus control of heterogeneous multi-agent systems with switching topologies. Neurocomputing 408:13–20. https://doi.org/10.1016/j.neucom.2019.09.017

    Article  Google Scholar 

  26. Zou W, Shi P, Xiang Z, Shi Y (2020) Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Trans Neural Networks Learn Syst 31(5):1757–1762. https://doi.org/10.1109/TNNLS.2019.2920880

    Article  MathSciNet  Google Scholar 

  27. Jiang J, Jiang Y (2020) Leader-following consensus of linear time-varying multi-agent systems under fixed and switching topologies. Autom 113:108804. https://doi.org/10.1016/j.automatica.2020.108804

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai J, Guo G (2018) Event-triggered leader-following consensus for multi-agent systems with semi-markov switching topologies. Inf Sci 459:290–301. https://doi.org/10.1016/j.ins.2018.04.054

    Article  MathSciNet  MATH  Google Scholar 

  29. Song W, Feng J, Sun S (2021) Data-based output tracking formation control for heterogeneous MIMO multiagent systems under switching topologies. Neurocomputing 422:322–331. https://doi.org/10.1016/j.neucom.2020.10.017

    Article  Google Scholar 

  30. Dong Y, Xu S (2020) A novel connectivity-preserving control design for rendezvous problem of networked uncertain nonlinear systems. IEEE Trans Neural Networks Learn Syst 31(12):5127–5137. https://doi.org/10.1109/TNNLS.2020.2964017

    Article  MathSciNet  Google Scholar 

  31. Dong Y, Su Y, Liu Y, Xu S (2018) An internal model approach for multi-agent rendezvous and connectivity preservation with nonlinear dynamics. Autom 89:300–307. https://doi.org/10.1016/j.automatica.2017.12.018

    Article  MathSciNet  MATH  Google Scholar 

  32. Zou Y, An Q, Miao S, Chen S, Wang X, Su H (2021) Flocking of uncertain nonlinear multi-agent systems via distributed adaptive event-triggered control. Neurocomputing 465:503–513. https://doi.org/10.1016/j.neucom.2021.09.005

    Article  Google Scholar 

  33. Liang H, Fu Y, Gao J (2021) Bio-inspired self-organized cooperative control consensus for crowded UUV swarm based on adaptive dynamic interaction topology. Appl Intell 51(7):4664–4681. https://doi.org/10.1007/s10489-020-02104-5

    Article  Google Scholar 

  34. Dong Y, Zha Q, Zhang H, Kou G, Fujita H, Chiclana F, Herrera-Viedma E (2018) Consensus reaching in social network group decision making: Research paradigms and challenges. Knowl Based Syst 162:3–13. https://doi.org/10.1016/j.knosys.2018.06.036

    Article  Google Scholar 

  35. Li Y, Liu M, Cao J, Wang X, Zhang N (2021) Multi-attribute group decision-making considering opinion dynamics. Expert Syst Appl 184:115479. https://doi.org/10.1016/j.eswa.2021.115479

    Article  Google Scholar 

  36. Bai W, Lin Z, Dong H, Ning B (2019) Distributed cooperative cruise control of multiple high-speed trains under a state-dependent information transmission topology. IEEE Trans Intell Transp Syst 20 (7):2750–2763. https://doi.org/10.1109/TITS.2019.2893583

    Article  Google Scholar 

  37. Feng Z, Sun C, Hu G (2017) Robust connectivity preserving rendezvous of multirobot systems under unknown dynamics and disturbances. IEEE Trans Control Netw Syst 4(4):725–735. https://doi.org/10.1109/TCNS.2016.2545869

    Article  MathSciNet  MATH  Google Scholar 

  38. Loizou S, Lui DG, Petrillo A, Santini S (2021) Connectivity preserving formation stabilization in an obstacle-cluttered environment in the presence of time-varying communication delays. IEEE Transactions on Automatic Control. pp 1–1. https://doi.org/10.1109/TAC.2021.3119003

  39. Kumar K, Liu J, Lu Y-H, Bhargava B (2013) A survey of computation offloading for mobile systems. Mob Networks Appl 18(1):129–140. https://doi.org/10.1007/s11036-012-0368-0

    Article  Google Scholar 

  40. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001. https://doi.org/10.1109/TAC.2003.812781

    Article  MathSciNet  MATH  Google Scholar 

  41. Cortés J, Martínez S, Bullo F (2006) Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans Autom Control 51(8):1289–1298. https://doi.org/10.1109/TAC.2006.878713

    Article  MathSciNet  MATH  Google Scholar 

  42. Motsch S, Tadmor E (2014) Heterophilious dynamics enhances consensus. SIAM Rev 56 (4):577–621. https://doi.org/10.1137/120901866

    Article  MathSciNet  MATH  Google Scholar 

  43. Anderson JR, Crawford J (1980) Cognitive Psychology and Its Implications

  44. Liu Y, Passino KM, Polycarpou MM (2003) Stability analysis of m-dimensional asynchronous swarms with a fixed communication topology. IEEE Trans Autom Control 48(1):76–95. https://doi.org/10.1109/TAC.2002.806657

    Article  MathSciNet  MATH  Google Scholar 

  45. Ghorai C, Banerjee I (2018) A robust forwarding node selection mechanism for efficient communication in urban vanets. Vehicular Communications 14:109–121. https://doi.org/10.1016/j.vehcom.2018.10.003

    Article  Google Scholar 

  46. Călinescu G, Măndoiu II, Wan P-J, Zelikovsky AZ (2004) Selecting forwarding neighbors in wireless ad hoc networks. Mob Netw Appl 9(2):101–111. https://doi.org/10.1023/B:MONE.0000013622.63511.57

    Article  Google Scholar 

  47. Ding S, He X, Wang J (2017) Multiobjective optimization model for service node selection based on a tradeoff between quality of service and resource consumption in mobile crowd sensing. IEEE Internet of Things Journal 4(1):258–268. https://doi.org/10.1109/JIOT.2017.2647740

    Google Scholar 

  48. Spanos D, Murray RM (2004) Robust connectivity of networked vehicles. In: 43rd IEEE Conference on Decision and Control, CDC 2004, Nassau, Bahamas, December 14-17, pp 2893–2898. https://doi.org/10.1109/CDC.2004.1428904

  49. Horn RA, Johnson CR (2012) Matrix Analysis, 2nd Ed. https://doi.org/10.1017/CBO9781139020411

  50. Fiedler M (1973) Algebraic connectivity of graphs. Czechoslovak Mathematical Journal 23 (2):298–305

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is partially supported by National Natural Science Foundation of China, Grant Nos. 62006047 and 618760439, Guangdong Natural Science Foundation, Grant No. 2021B0101220004. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Xu, H., Li, Y. et al. Consensus enhancement for multi-agent systems with rotating-segmentation perception. Appl Intell 53, 5750–5765 (2023). https://doi.org/10.1007/s10489-022-03687-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03687-x

Keywords

Navigation