Skip to main content
Log in

Identify influential nodes in network of networks from the view of weighted information fusion

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The network of networks (NONs) is a case of multiplex networks, when mining key nodes in the network, the information between the various sub-networks needs to be considered. In this paper, a weighted information fusion (WIF) method is proposed to identify the influential nodes of NONs. We first divide NONs into many individual networks and then perform weighted fusion. In the process, relevant information of nodes is measured to construct the basic probability assignment (BPA) for every single network. Besides, by considering the topological structure of the network, the method of effective distance is used to describe the weight of each BPA. Finally, to measure the influential nodes of NONs, the information of all single networks is fused to obtain structural information of NONs through WIF method. More than that, the influential nodes of four real-world NONs (including Neuronal and Social two types) are measured by the proposed method, and the results are compared with other five methods, which shows that WIF method is effective in identifying the influence of nodes of NONs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang H, Fang Y-P, Zio E (2022) Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems. Reliability Engineering & System Safety:108408. https://doi.org/10.1016/j.ress.2022.108408

  2. Bovet A, Makse HA (2019) Influence of fake news in twitter during the 2016 us presidential election. Nat Commun 10(1):1–14

    Article  Google Scholar 

  3. Xiong L, Su X, Qian H (2021) Conflicting evidence combination from the perspective of networks. Inf Sci 580:408–418

    Article  MathSciNet  Google Scholar 

  4. Guo L, Liu Z, Chen Z (2021) A novel bilateral protocol in the bipartite network based on the public goods game. Knowl-Based Syst 214:106721. https://doi.org/10.1016/j.knosys.2020.106721

    Article  Google Scholar 

  5. Wang Z, Li Z, Wang R, Nie F, Li X (2021) Large graph clustering with simultaneous spectral embedding and discretization. IEEE Trans Pattern Anal Mach Intell 43(12):4426–4440

    Article  Google Scholar 

  6. Cheong KH, Koh JM, Jones MC (2019) Paradoxical survival: examining the parrondo effect across biology. BioEssays 41(6):1900027. https://doi.org/10.1002/bies.201900027

    Article  Google Scholar 

  7. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  MATH  Google Scholar 

  8. Barabási AL, Albert R (1999) Emergence of scaling in random graphs. Science 286:509–512

    Article  MathSciNet  MATH  Google Scholar 

  9. Wen T, Cheong KH (2021) The fractal dimension of complex networks: a review. Inf Fusion 73:87–102

    Article  Google Scholar 

  10. Wen T, Song M, Jiang W (2018) Evaluating topological vulnerability based on fuzzy fractal dimension. Int J Fuzzy Syst 20(6):1956–1967

    Article  Google Scholar 

  11. Song X, Xiao F (2022) Combining time-series evidence: a complex network model based on a visibility graph and belief entropy. Appl Intell. https://doi.org/10.1007/s10489--021--02956--5

  12. Cui H, Zhou L, Li Y, Kang B (2022) Belief Entropy-of-Entropy and its application in the cardiac interbeat interval time series analysis. Chaos, Solitons & Fractals 155:111736. https://doi.org/10.1016/j.chaos.2021.111736

    Article  MathSciNet  Google Scholar 

  13. Wang Z, Wang C, Li X, Gao C, Li X, Zhu J (2022) Evolutionary markov dynamics for network community detection. IEEE Trans Knowl Data Eng 34(3):1206–1220

    Article  Google Scholar 

  14. Wang Z, Jusup M, Guo H, Shi L, Geček S, Anand M, Perc M, Bauch CT, Kurths J, Boccaletti S et al (2020) Communicating sentiment and outlook reverses inaction against collective risks. Proc Natl Acad Sci 117(30):17650–17655

    Article  Google Scholar 

  15. Wang Z, Wang C, Gao C, Li X, Li X (2020) An evolutionary autoencoder for dynamic community detection. Sci China Inf Sci 63(11):1–16

    Article  MathSciNet  Google Scholar 

  16. Wei B, Xiao F, Shi Y (2020) Synchronization in kuramoto oscillator networks with sampled-data updating law. IEEE Trans Cybern 50(6):2380–2388

    Article  Google Scholar 

  17. Wei B, Xiao F, Shi Y (2020) Fully distributed synchronization of dynamic networked systems with adaptive nonlinear couplings. IEEE Trans Cybern 50(7):2926–2934

    Article  Google Scholar 

  18. Qu J, Tang M, Liu Y, Guan S (2020) Identifying influential spreaders in reversible process. Chaos Solitons & Fractals 140. https://doi.org/10.1016/j.chaos.2020.110197

  19. Zhou F, Wang T, Zhong T, Trajcevski G (2022) Identifying user geolocation with hierarchical graph neural networks and explainable fusion. Inf Fusion 81:1–13

    Article  Google Scholar 

  20. Chen L, Deng Y, Cheong KH (2021) Probability transformation of mass function: a weighted network method based on the ordered visibility graph. Eng Appl Artif Intell 105:104438. https://doi.org/10.1016/j.engappai.2021.104438

    Article  Google Scholar 

  21. Ruan Z, Yu B, Shu X, Zhang Q, Xuan Q (2020) The impact of malicious nodes on the spreading of false information. Chaos: Interdiscip J Nonlinear Sci 30(8):083101. https://doi.org/10.1063/5.0005105

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohammed A, Zhu F, Ahmed S, Soufiana M, Sheng H (2020) Efficient algorithms based on centrality measures for identification of top-k influential users in social networks. Inf Sci 527:88–107

    Article  MathSciNet  Google Scholar 

  23. Liu H, Xu X, Lu J, Chen G, Zeng Z (2021) Optimizing pinning control of complex dynamical networks based on spectral properties of grounded laplacian matrices. IEEE Trans Syst Man Cybern: Syst 51 (2):786–796

    Article  Google Scholar 

  24. Lü L, Chen D, Ren X, Zhang Q, Zhang Y, Zhou T (2016) Vital nodes identification in complex networks. Phys Rep 650:1–63

    Article  MathSciNet  Google Scholar 

  25. Shang Q, Deng Y, Cheong KH (2021) Identifying influential nodes in complex networks: effective distance gravity model. Inf Sci 577:162–179

    Article  MathSciNet  Google Scholar 

  26. Xu X, Zhu C, Wang Q, Zhu X, Zhou Y (2020) Identifying vital nodes in complex networks by adjacency information entropy. Scientific Reports 10(1):1–12

    Google Scholar 

  27. Delellis P, Porfiri M (2021) Detection of influential nodes in network dynamical systems from time-series. IEEE Trans Control Netw Syst 99:3061953. https://doi.org/10.1109/TCNS.2021.3061953

    MathSciNet  Google Scholar 

  28. Holzinger A, Malle B, Saranti A, Pfeifer B (2021) Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI. Inf Fusion 71:28–37

    Article  Google Scholar 

  29. Zhao G, Jia P, Zhou A, Zhang B (2020) InfGCN: identifying influential nodes in complex networks with graph convolutional networks. Neurocomputing 414:18–26

    Article  Google Scholar 

  30. Boccaletti S, Bianconi G, Criado R, del Genio C, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544 (1):1–122

    Article  MathSciNet  Google Scholar 

  31. Böttcher L, Porter MA (2021) Classical and quantum random-walk centrality measures in multilayer networks. SIAM J Appl Math 81(6):2704–2724

    Article  MathSciNet  Google Scholar 

  32. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Article  Google Scholar 

  33. Wang D, Yu W, Zou X (2020) Tensor-based mathematical framework and new centralities for temporal multilayer networks. Inf Sci 512:563–580

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuvaraj M, Dey AK, Lyubchich V, Gel YR, Poor HV (2021) Topological clustering of multilayer networks. Proc National Academy of Sci:118(21). https://doi.org/10.1073/pnas.2019994118https://doi.org/10.1073/pnas.2019994118

  35. Danziger MM, Barabási A-L (2022) Recovery coupling in multilayer networks. Nat Commun 13(1):1–8

    Article  Google Scholar 

  36. Liu M, Xu L, Liao P (2021) haracter-based hazard warning mechanics: a network of networks approach. Adv Eng Inf 47:101240. https://doi.org/10.1016/j.aei.2020.101240

    Article  Google Scholar 

  37. Dong S, Wang H, Mostafizi A, Song X (2020) A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks. Phys: Statist Mechanics Appl 538:122971. https://doi.org/10.1016/j.physa.2019.122971

    Google Scholar 

  38. Li M, Zhang Q, Deng Y (2018) Evidential identification of influential nodes in network of networks. Chaos Solitons & Fractals 117:283–296

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao J, Deng Y (2020) Complex network modeling of evidence theory. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3023760https://doi.org/10.1109/TFUZZ.2020.3023760

  40. Brockmann D, Helbing D (2013) The hidden geometry of complex, network-driven contagion phenomena. Science 342(6164):1337–1342

    Article  Google Scholar 

  41. Deng Y (2020) Uncertainty measure in evidence theory. Sci China Inf Sci 63(11):1–19. https://doi.org/10.1007/s11432-020-3006-9

    Article  MathSciNet  Google Scholar 

  42. Dempster AP (1967) Upper and lower probabilities induced by a multivalued mapping. Ann Math Stat 38(2):325–339

    Article  MathSciNet  MATH  Google Scholar 

  43. Shafer G (1976) A mathematical theory of evidence, vol 1. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  44. Bonacich PF (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2(1):113–120

    Article  Google Scholar 

  45. Smets P (2005) Decision making in the TBM: the necessity of the pignistic transformation. Int J Approx Reason 38(2):133–147

    Article  MathSciNet  MATH  Google Scholar 

  46. Deng Y (2022) Random permutation set. Int J Comput Commun Control 17(1):4542. https://doi.org/10.15837/ijccc.2022.1.4542

    Article  MathSciNet  Google Scholar 

  47. Deng Y (2020) Information volume of mass function. Int J Comput Commun Control 15(6):3983

    Article  MathSciNet  Google Scholar 

  48. Gao Q, Wen T, Deng Y (2021) Information volume fractal dimension. Fractals 29(8):2150263. https://doi.org/10.1142/S0218348X21502637

    Article  MATH  Google Scholar 

  49. Li Y, Deng Y (2018) Generalized ordered propositions fusion based on belief entropy. Int J Comput Commun Control 13(5):792–807

    Article  Google Scholar 

  50. Wu Q, Deng Y, Xiong N (2021) Exponential negation of a probability distribution. Soft Comput. https://doi.org/10.1007/s00500-021-06658-5https://doi.org/10.1007/s00500-021-06658-5

  51. Gao X, Su X, Qian H, Pan X (2022) Dependence assessment in human reliability analysis under uncertain and dynamic situations. Nucl Eng Technol 54(3):948–958

    Article  Google Scholar 

  52. Xiao F, Pedrycz W (2022) Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification. IEEE Trans Pattern Anal Machine Intell. https://doi.org/10.1109/TPAMI.2022.3167045

  53. Cheng C, Xiao F (2021) A distance for belief functions of orderable set. Pattern Recogn Lett 145:165–170

    Article  Google Scholar 

  54. Babajanyan S, Allahverdyan A, Cheong KH (2020) Energy and entropy: Path from game theory to statistical mechanics. Phys Rev Res 2(4):043055. https://doi.org/10.1103/PhysRevResearch.2.043055

    Article  Google Scholar 

  55. Wang Z, Xiao F, Ding W (2022) Interval-valued intuitionistic fuzzy Jenson-Shannon divergence and its application in multi-attribute decision making. Appl Intell. https://doi.org/10.1007/s10489--022--03347--0https://doi.org/10.1007/s10489--022--03347--0

  56. Xiao F, Wen J, Pedrycz W (2022) Generalized divergence-based decision making method with an application to pattern classification. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2022.3177896https://doi.org/10.1109/TKDE.2022.3177896

  57. Xie D, Xiao F, Pedrycz W (2021) Information quality for intuitionistic fuzzy values with its application in decision making. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2021.104568

  58. Lai JW, Chang J, Ang L, Cheong KH (2020) Multi-level information fusion to alleviate network congestion. Inf Fusion 63:248–255

    Article  Google Scholar 

  59. Zhang L, Xiao F (2022) A novel belief χ2 divergence for multisource information fusion and its application in pattern classification. Int J Intell Syst. https://doi.org/10.1002/int.22912

  60. Zhu C, Xiao F, Cao Z (2022) A generalized Rényi divergence for multi-source information fusion with its application in EEG data analysis. Inf Sci 605:225–243

    Article  Google Scholar 

  61. Brandes U, Fleischer D (2009) Centrality measures based on current flow. In: Proceedings of the 22nd annual conference on theoretical aspects of computer science

  62. Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Networks 27(1):39–54

    Article  MathSciNet  Google Scholar 

  63. De Domenico M, Porter MA, Arenas A (2015) Muxviz: a tool for multilayer analysis and visualization of networks. J Complex Netw 3(2):159–176

    Article  Google Scholar 

  64. Kapferer B (1972) Strategy and transaction in an African factory. Manchester University Press

  65. Snijders TA, Pattison PE, Robins GL, Handcock MS (2006) New specifications for exponential random graph models. Socio Method 36(1):99–153

    Article  Google Scholar 

  66. Vickers M, Chan S (1981) Representing classroom social structure Melbourne: Victoria Institute of Secondary Education

  67. Wang D, Wang H, Zou X (2017) Identifying key nodes in multilayer networks based on tensor decomposition. Chaos: Interdiscip J Nonlinear Sci 27(6):063108. https://doi.org/10.1063/1.4985185

    Article  MathSciNet  Google Scholar 

  68. Yang M, Chen G, Fu X (2011) A modified sis model with an infective medium on complex networks and its global stability. Phys: Stat Mechanics Appl 390(12):2408–2413

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No.62003280), and Chongqing Talents: Exceptional Young Talents Project (No.cstc2022ycjh-bgzxm0070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Xiao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, M., Liu, L. & Xiao, F. Identify influential nodes in network of networks from the view of weighted information fusion. Appl Intell 53, 8005–8023 (2023). https://doi.org/10.1007/s10489-022-03856-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03856-y

Keywords

Navigation