## CORRECTION



## Correction to: Incremental maintenance of three-way regions with variations of objects and values in hybrid incomplete decision systems

Chuanjian Yang<sup>1</sup> · Hao Ge<sup>2</sup> · Yi Xu<sup>3</sup>

Published online: 19 July 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

## Correction to: Applied Intelligence (2022) https://doi.org/10.1007/s10489-022-03736-5

The original version of this article unfortunately contained three mistakes due to the transformation document being edited through different formulas. The presentation of Definition 5, Theorem 3 and Table 3 were incorrect. The correct versions are given below:

**Definition 5** Given a HIDS, for  $\forall x_i, x_j \in U$  and  $\exists \in C^l$ , suppose that  $f(x_i, a) = \begin{bmatrix} l_i^a, h_i^a \end{bmatrix}$  and  $f(x_j, a) = \begin{bmatrix} l_j^a, h_j^a \end{bmatrix}$ , the distance metric  $d_a(x_i, x_j)$  of objects  $x_i, x_j$  pertaining to a can be depicted as follows:

$$d_{a}(x_{i}, x_{j}) = \begin{cases} 1 - \frac{\left|f(x_{i}, a) \cap f(x_{j}, a)\right|}{\left|f(x_{i}, a) \cup f(x_{j}, a)\right|} & a \in C^{I}, f(x_{i}, a) \neq \stackrel{'}{*} \land f(x_{j}, a) \neq \stackrel{'}{*} \\ 0 & a \in C^{I}, f(x_{i}, a) = \stackrel{'}{*} \lor f(x_{j}, a) = \stackrel{'}{*} \end{cases}$$

where  $|f(x_i, a) \cap f(x_j, a)| = \left\{ \min\left\{\mathbf{h}_i^a, \mathbf{h}_j^a\right\} - \max\left\{\mathbf{l}_i^a, \mathbf{l}_j^a\right\} \right\}$   $\min\left\{\mathbf{h}_i^a, \mathbf{h}_j^a\right\} - \max\left\{\mathbf{l}_i^a, \mathbf{l}_j^a\right\} > 00\min\left\{\mathbf{h}_i^a, \mathbf{h}_j^a\right\} - \max\left\{\mathbf{l}_i^a, \mathbf{l}_j^a\right\}$  $< 0, \text{ and } |f(x_i, a) \cup f(x_j, a)| = \max\left\{\mathbf{h}_i^a, \mathbf{h}_j^a\right\} - \min\left\{\mathbf{l}_i^a, \mathbf{l}_j^a\right\}.$ 

**Theorem 3** Let  $\delta$ -HIDS<sup>(t)</sup> be a  $\delta$ -HIDS at t, and let  $\mathbf{M}_D^{(t)} = \begin{bmatrix} d_{ir}^{(t)} \end{bmatrix}_{n \times s}$  and  $\mathbf{M}_A^{(t)} = \begin{bmatrix} m_{ij}^{(t)} \end{bmatrix}_{n \times n}$  be the decision matrix and the neighborhood relation matrix in regard to  $A \subseteq C$  at t, respectively. When modifying the object set  $\Delta V$ , adding the object set  $\Delta^+ U$  at t+1 and deleting the object set  $\Delta^- U$ , let the decision matrix be  $\mathbf{M}_D^{(t+1)} = \begin{bmatrix} d_{ir}^{(t+1)} \end{bmatrix}_{(n+n'-p)} \times s$  and the neighborhood relation matrix be  $\mathbf{M}_A^{(t+1)} = \begin{bmatrix} m_{ij}^{(t+1)} \end{bmatrix}_{(n+n'-p)} \times s$  and the neighborhood relation matrix be  $\mathbf{M}_A^{(t+1)} = \begin{bmatrix} m_{ij}^{(t+1)} \end{bmatrix}_{(n+n'-p)} \times (n+n'-p)$ . The following properties hold:

(1) for  $p + 1 \leq i \leq n$ ,  $\omega_{ir}^{+1} = \sum_{j=p+1}^{n} \left( \left( m_{ij}^{(t)} \oplus m_{ij}^{(t+1)} \right) \cdot d_{jr}^{(t+1)} \cdot m_{ij}^{(t+1)} \right)$ ;

The online version of the original article can be found at https://doi.org/ 10.1007/s10489-022-03736-5

Hao Ge togehao@126.com

- <sup>1</sup> School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
- <sup>2</sup> School of Electronic and Electrical Engineering, Chuzhou University, Chuzhou 239000, China
- <sup>3</sup> Key Laboratory of Computation Intelligence and Signal Processing, Anhui University, Hefei 230601, China

| Steps                       | MSTW                                                 | MITW-OV                                                                                                                      |
|-----------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Compute decision matrix     | O(n+n'-p)                                            | O(n <sup>′</sup> )                                                                                                           |
| Compute relation matrix     | $O(m \times (n + n' - p)^2)$                         | $O((n-p)^2 \times (+s) + (n')^2 \times m)$                                                                                   |
| Compute intermediate matrix | $O(s \times (n+n'-p)^2)$                             | $O(s \times (n^2 + n' \times (n-p) + (n')^2))$                                                                               |
| Compute column vector       | $O(s \times (n + n' - p))$                           | O(n+n'-p)                                                                                                                    |
| Compute basic matrix        | $O(s \times (n + n' - p))$                           | $O(s \times (n + n' - p))$                                                                                                   |
| Compute three-way regions   | $O(s \times (n + n' - p))$                           | $O(s \times (n + n' - p))$                                                                                                   |
| Total                       | $O((m+s) \times (n+n'-p)^2 + (s+1) \times (n+n'-p))$ | $O(n' + (n-p)^{2} \times (m+s) + (n')^{2} \times m + s \times (p^{2} + n' \times (n-p) + (n')^{2}) + (s+1) \times (n+n'-p))$ |

 Table 3
 Comparison of the time complexities of static and incremental algorithms at t+1

(2) for 
$$p + 1 \leq i \leq n$$
,  $\omega_{ir}^{-1} = \sum_{k=1}^{n} \left( \left( m_{ij}^{(t)} \oplus m_{ij}^{(t+1)} \right) \cdot d_{ir}^{(t+1)} \cdot m_{ii}^{(t)} \right)$ ;

(3) for 
$$p + 1 \leq i \leq n$$
,  $\omega_{ir}^{-2} = \sum_{j=1}^{p} \left( m_{ij}^{(t+1)} \cdot d_{jr}^{(t+1)} \right);$ 

(4) for 
$$n + 1 \le i \le n$$
  $u^{+2} - \sum_{n+n'} (m^{(t+1)}, d^{(t+1)})$ .

(1) for 
$$p + 1 \le i \le n, w_{ir} - \sum_{j=n+1}^{n+n} \binom{m_{ij}}{m_{ij}} \binom{n+1}{d^{(t+1)}}$$
,  
(5) for  $n+1 \le i \le n+n'$   $\binom{n+3}{m} = \sum_{j=n+n'}^{n+n'} \binom{m^{(t+1)}}{m^{(t+1)}} \binom{d^{(t+1)}}{d^{(t+1)}}$ 

(5) for 
$$n + 1 \le i \le n + n$$
,  $\omega_{ir}^{i} = \sum_{j=p+1}^{n+n} \left( m_{ij}^{(i+1)} \cdot d_{jr}^{(i+1)} \right)$ .

The original article has been corrected.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.