Correction to: Incremental maintenance of three-way regions with variations of objects and values in hybrid incomplete decision systems

Chuanjian Yang ${ }^{1} \cdot \mathrm{Hao} \mathrm{Ge}^{2} \cdot \mathrm{Yi} \mathrm{Xu}^{3}$

Published online: 19 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Correction to: Applied Intelligence (2022)

 https://doi.org/10.1007/s10489-022-03736-5The original version of this article unfortunately contained three mistakes due to the transformation document being edited through different formulas. The presentation of Definition 5, Theorem 3 and Table 3 were incorrect. The correct versions are given below:

Definition 5 Given a HIDS, for $\forall x_{i}, x_{j} \in U$ and $\exists \in C^{I}$, suppose that $f\left(x_{i}, a\right)=\left[l_{i}^{a}, \mathrm{~h}_{i}^{a}\right]$ and $f\left(x_{j}, a\right)=\left[1_{j}^{a}, h_{j}^{a}\right]$, the distance metric $d_{a}\left(x_{i}, x_{j}\right)$ of objects x_{i}, x_{j} pertaining to a can be depicted as follows:
$d_{a}\left(x_{i}, x_{j}\right)=\left\{\begin{array}{cl}1-\frac{\left|f\left(x_{i}, a\right) \cap f\left(x_{j}, a\right)\right|}{\left|f\left(x_{i}, a\right) \cup f\left(x_{j}, a\right)\right|} & a \in C^{I}, f\left(x_{i}, a\right) \boldsymbol{F}^{\prime} *^{\prime} \wedge f\left(x_{j}, a\right) \boldsymbol{F}^{\prime} *^{\prime} \\ 0 & a \in C^{I}, f\left(x_{i}, a\right)=^{\prime} *^{\prime} \vee f\left(x_{j}, a\right)={ }^{\prime} *\end{array}\right.$
where $\left|f\left(x_{i}, a\right) \cap f\left(x_{j}, a\right)\right|=\left\{\min \left\{\mathrm{h}_{i}^{a}, \mathrm{~h}_{j}^{a}\right\}-\max \left\{1_{i}^{a}, l_{j}^{a}\right\}\right.$ $\min \left\{\mathrm{h}_{i}^{a}, \mathrm{~h}_{j}^{a}\right\}-\max \left\{\mathrm{l}_{i}^{a}, 1_{j}^{a}\right\}>00 \min \left\{\mathrm{~h}_{i}^{a}, \mathrm{~h}_{j}^{a}\right\}-\max \left\{\mathrm{l}_{i}^{a}, 1_{j}^{a}\right\}$ <0, and $\left|f\left(x_{i}, a\right) \cup f\left(x_{j}, a\right)\right|=\max \left\{\mathrm{h}_{i}^{a}, \mathrm{~h}_{j}^{a}\right\}-\min \left\{1_{i}^{a}, l_{j}^{a}\right\}$.

Theorem 3 Let δ - $\operatorname{HIDS}^{(t)}$ be a δ-HIDS at t, and let $\mathbf{M}_{D}^{(t)}=$ $\left[d_{i r}^{(t)}\right]_{n \times s}$ and $\mathbf{M}_{A}^{(t)}=\left[m_{i j}^{(t)}\right]_{n \times n}$ be the decision matrix and the neighborhood relation matrix in regard to $A \subseteq C$ at t, respectively. When modifying the object set ΔV, adding the object set $\Delta^{+} U$ at $t+1$ and deleting the object set $\Delta^{-} U$, let the decision matrix be $\mathbf{M}_{D}^{(t+1)}=\left[d_{i r}^{(t+1)}\right]_{\left(n+n^{\prime}-p\right)} \times \mathrm{s}$ and the neighborhood relation matrix be $\mathbf{M}_{A}^{(t+1)}=\left[m_{i j}^{(t+1)}\right]_{\left(n+n^{\prime}-p\right)}$ $\times\left(n+n^{\prime}-p\right)$. The following properties hold:
(1) for $p+\underset{(t+1)}{1} \leq i \leq n$, $\omega_{i r}^{+1}=\sum_{j=p+1}^{n}\left(\left(m_{i j}^{(t)} \oplus m_{i j}^{(t+1)}\right)\right.$. $\left.d_{j r}^{(t+1)} \cdot m_{i j}^{(t+1)}\right)$;

The online version of the original article can be found at https://doi.org/ 10.1007/s10489-022-03736-5

Hao Ge
togehao@126.com

1 School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
2 School of Electronic and Electrical Engineering, Chuzhou University, Chuzhou 239000, China
3 Key Laboratory of Computation Intelligence and Signal Processing, Anhui University, Hefei 230601, China

Table 3 Comparison of the time complexities of static and incremental algorithms at $t+1$

Steps	MSTW	MITW-OV
Compute decision matrix	$\mathrm{O}\left(n+n^{\prime}-p\right)$	$\mathrm{O}\left(n^{\prime}\right)$
Compute relation matrix	$\mathrm{O}\left(m \times\left(n+n^{\prime}-p\right)^{2}\right)$	$\mathrm{O}\left((n-p)^{2} \times(+s)+\left(n^{\prime}\right)^{2} \times m\right)$
Compute intermediate matrix	$\mathrm{O}\left(s \times\left(n+n^{\prime}-p\right)^{2}\right)$	$\mathrm{O}\left(s \times\left(n^{2}+n^{\prime} \times(n-p)+\left(n^{\prime}\right)^{2}\right)\right)$
Compute column vector	$\mathrm{O}\left(\left(x^{2}\left(n+n^{\prime}-p\right)\right)\right.$	$\mathrm{O}\left(n+n^{\prime}-p\right)$
Compute basic matrix	$\mathrm{O}\left(s \times\left(n+n^{\prime}-p\right)\right)$	$\mathrm{O}\left(s \times\left(n+n^{\prime}-p\right)\right)$
Compute three-way regions	$\mathrm{O}\left(\left(s^{\prime} \times\left(n+n^{\prime}-p\right)\right)\right.$	$\mathrm{O}\left(s \times\left(n+n^{\prime}-p\right)\right.$
Total	$\mathrm{O}\left((m+s) \times\left(n+n^{\prime}-p\right)^{2}+\right.$	$\mathrm{O}\left(n^{\prime}+(n-p)^{2} \times(m+s)+\left(n^{\prime}\right)^{2} \times m+s \times\left(p^{2}+n^{\prime} \times(n-p)+\left(n^{\prime}\right)^{2}\right)+(s+1)^{\prime} \times\left(n+n^{\prime}-p\right)\right)$
	$\left.(s+1) \times\left(n+n^{\prime}-p\right)\right)$	

(2) for $p+1 \leq i \leq n$, $\omega_{i r}^{-1}=\sum_{k=1}^{n}\left(\left(m_{i j}^{(t)} \oplus m_{i j}^{(t+1)}\right)\right.$. $\left.d_{j r}^{(t+1)} \cdot m_{i j}^{(t)}\right) ;$

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
3) for $p+1 \leq i \leq n, \omega_{i r}^{-2}=\sum_{j=1}^{p}\left(m_{i j}^{(t+1)} \cdot d_{j r}^{(t+1)}\right)$;
(4) for $p+1 \leq i \leq n, \omega_{i r}^{+2}=\sum_{j=n+1}^{n+n^{\prime}}\left(m_{i j}^{(t+1)} \cdot d_{j r}^{(t+1)}\right)$;
(5) for $n+1 \leq i \leq n+n^{\prime}, \omega_{i r}^{+3}=\sum_{j=p+1}^{n+n^{\prime}}\left(m_{i j}^{(t+1)} \cdot d_{j r}^{(t+1)}\right)$.

The original article has been corrected.

