
https://doi.org/10.1007/s10489-022-03995-2

Network intrusion detection based on conditional wasserstein
variational autoencoder with generative adversarial network
and one-dimensional convolutional neural networks

Jiaxing He1 · XiaodanWang1 · Yafei Song1 ·Qian Xiang1 · Chen Chen1

Accepted: 12 July 2022
© The Author(s) 2022

Abstract
There is a class-imbalance problem that the number of minority class samples is significantly lower than that of majority
class samples in common network traffic datasets. Class-imbalance phenomenon will affect the performance of the classifier
and reduce the robustness of the classifier to detect unknown anomaly detection. And the distribution of the continuous
features in the dataset does not follow the Gaussian distribution, which will bring great difficulties to intrusion detection. We
propose Conditional Wasserstein Variational Autoencoders with Generative Adversarial Network (CWVAEGAN) to solve
the class-imbalance phenomenon, CWVAEGAN transform the original dataset through data preprocessing, and then use
the improved VAEGAN to generate minority class samples. According to the CWVAEGAN model, an intrusion detection
system based on CWVAEGAN and One-dimensional convolutional neural networks (1DCNN), namely CWVAEGAN-
1DCNN, is established. By using the examples generated by CWVAEGAN, the problem of intrusion detection on class
unbalanced data is solved. Specifically, CWVAEGAN-1DCNN consists of three modules: data preprocessing module,
CWVAEGAN, and deep neural network. We evaluate the performance of CWVAEGAN-1DCNN on two benchmark datasets
and compared it with the other 16 methods. Experiment results suggest that the performance of CWVAEGAN-1DCNN is
better than class-balancing methods, and other advanced methods.

Keywords Intrusion detection system (IDS) · Class-balancing method · Generative adversarial network ·
Variational autoencoder · Gaussian mixture model

1 Introduction

As the basic infrastructure of modern society, there are also
great difficulties to Cyberspace Security. Timely and accu-
rate detection and response to network intrusion are of great
strategic significance to cybersecurity. Although many mech-
anisms have been proposed to improve network defense
capability [1], the security of existing methods is still insuf-
ficient due to the continuous change of attack forms.

Intrusion detection systems (IDS) adopt the method of
active defense, it can detect intrusion and make timely
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responses. Now, this technology has become an important
method to maintain the security of cyberspace. Based on the
function position in the network system, IDS can be divided
into network-based intrusion detection system (NIDS) and
host-based intrusion detection system (HIDS) [2]. IDS is
designed to automatically discriminate malicious activities
and violations. A variety of IDSs based on machine learning
have been studied, such as Naive Bayes [2], and random
and support vector machine [3]. These intrusion detection
methods achieved good detection results.

But in the actual network activities, the normal traffic and
behaviors are dominant, and the number of abnormal behav-
ior is less. The class-imbalance problem between normal
activities and attacks and between different attack classes is
common in intrusion detection datasets, which greatly affects
the detection performance of IDS [4]. Most of the classi-
fication methods only focus on the majority of dataset, but
ignore minority classes. These models can’t learn enough
information about minority classes from a limited number
of samples, which leads to a bias prediction to the majority
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classes. It is crucial for IDS to detect minority classes
samples. The loss caused by wrong detection of attack is
much more serious than misdetection of normal behavior.

After the class-imbalance problem, intrusion detection
datasets also have the problem of multiple modes of con-
tinuous columns. Srivastava [5] points out that the vanilla
GAN cannot simulate all the mixture components of Gaus-
sian mixture distribution on a 2D dataset, and the learned
data distribution is distorted. For example, the common
intrusion detection dataset NSL-KDD [6] contains three
discrete columns and 38 continuous columns, a total of
41-dimensional feature columns. We use kernel density esti-
mation method to estimate all the continuous columns and
found that 22 of 38 continuous columns follow Gaussian
mixture model.

To solve class-imbalance problem and multimodal distri-
bution problem of continuous columns in intrusion detection
dataset mentioned above, this article proposes a method
of generating conditional Wasserstein variational autoen-
coder generative adversarial network (CWVAEGAN) and
one-dimensional Convolutional neural network (1D-CNN).
Firstly, CWVAEGAN-1DCNN filters the original dataset
and selects the minority classes. Secondly, the continuous
columns in the dataset are decomposed by the variational
Gaussian mixture model (VGM) [7]; Finally, CWVAE-
GAN learn the processed dataset and generate new minority
data. To rebalance the training dataset and improve the
performance of IDS.

This paper has the following contributions

(1) Aiming at the class-imbalance problem in IDS, we
propose a new method based on CWVAEGAN to gen-
erate minority class samples. One-dimensional con-
volution layers are applied into the encoder, decoder,
and discriminator to enhance the expression ability of
the whole network. Therefore, condition information
and WGAN-GP [8] loss are introduced [9].

(2) On the basis of CWVAEGAN, CWVAEGAN-1DCNN
is proposed, which can detect attacks more accurately.
A balanced training dataset is generated by CWVAE-
GAN, and a one-dimensional CNN network is used
for classification, which can more accurately carry
out intrusion detection. We establish CWVAEGAN-
1DCNN to solve the intrusion detection problem.

(3) Experimental results on two intrusion detection
datasets prove that CWVAEGAN-1DCNN is superior
to the existing class-balancing methods.

The rest of article is organized as follows. In Section 2,
we summarize the development of deep learning in the
field of intrusion detection and the related contents of
class balancing method. Section 3 introduces the details of
CWVAEGANmodel and CWVAEGAN-1DCNN. Section 4
introduces the comparative study and ablation experiment,

and analyzes the experimental results. Finally, we draw
conclusions for our work in Section 5.

2 Related work

In this section, we firstly provide background of IDSs based
on deep learning methods and class-balancing methods.
Then, we introduce the basic theory of VAEs and GANs.

2.1 IDS based onmachine learning

IDS plays an important role in network system. It can detect
abnormal behavior in many ways to improve the security of
network systems.

Some researches introduce the existing technology to
achieve intrusion detection. Panda et al. [2] applied Naive
Bayes in NIDS. As a classical machine learning algorithm,
Support vector machine (SVM) is also applied in IDS [3,
10, 11]. However, these traditional methods are limited by
the lack of data expressing ability, and it is difficult to deal
with imbalanced data.

Based on multi-layer perceptron (MLP), Moradi et al.
[12] constructed neural networks for IDS.

Li et al. [13] used a convolutional neural network (CNN)
to the representation learning of IDS. First the NSLKDD
dataset was converted to images, to learn the features
of graphical NSL-KDD dataset. Then used ResNet and
GoogleNet to carry out intrusion detection. Experimental
results indicated that the CNN is sensitive to the images
transferred from the attack data. ResNet and GoogleNet
achieved 79.14% and 77.04% accuracy on the KDDTest+
and KDDTest-21 test sets, respectively.

Ma et al. [14] proposed an intrusion detection method
composed of spectrum clustering and deep neural network,
which was called SCDNN. According to the sample simi-
larity, the dataset is divided into k subsets using spectrum
clustering. The similarity feature then is used to measure
the distance between the data points in the testset and the
training set, as well as it is used as the input of the deep
neural network algorithm. The recognition accuracy of this
method on the KDDTest+ and KDDTest-21 datasets reached
72.64% and 44.55%, respectively.

Yin et al. [15] proposed an IDS based on recurrent neural
network. They study the binary classification and multi-
classification performances of RNN-IDS. Experiments
based on the NSLKDD show that RNN-IDS is an
excellent IDS with high accuracy. It achieves 83.28%
and 68.55% accuracy on the KDDTest+ and KDDTest-21
respectively.

GAN generates data through confrontation game train-
ing, which provides another new method to solve the
problem of class-imbalance problem in IDS.
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Tama et al. [16] proposed a two-stage classifier ensemble
for intelligent anomaly-based intrusion detection system
(TSE-IDS). First, the hybrid feature selection technique is
used to screen the features, and then a two-level classifier
is adopted for classification. The classification accuracy of
TSE-IDS has achieved 85.79%, 72.52% and 91.27% on
KDDTest+, KDDTest-21 and UNSW-NB15 datasets.

Bedi et al. [17] proposed Improved Siam-IDS (I-
SiamIDS), which is a two-layer ensemble. ISiamIDS used
an ensemble of binary eXtreme Gradient Boosting, Siamese
Neural Network and Deep Neural Network classifiers at
the first layer. This layer performs hierarchical filtration of
network data into benign and malicious samples. Filtration
of incoming data multiple times through different classifiers
minimizes the chances of malicious traffic going undetected
by I-SiamIDS. The attack samples identified were input to
the second layer of I-SiamIDS comprising of multi-class
eXtreme Gradient Boosting for classification into four main
attack categories. I-SiamIDS was trained and tested using
the NSL-KDD datasets, and it achieved 80% accuracy on
KDD Test+ dataset.

Khan et al. [18] proposed a novel two-stage deep
learning (TSDL) model, based on a stacked auto-encoder,
for intrusion detection. The model comprises two decision
stages: an initial stage responsible for classifying network
traffic as normal or abnormal, and the final decision
stage for detecting the normal state and other classes of
attacks. Experiments are conducted on KDD99 and UNSW-
NB15 datasets, TSDL achieved 89.134% for the UNSW-
NB15 datasets. The experiments result on KDD99 dataset
achieved 99.996%, this dataset is too old and full of
redundant samples.

Yang et al. [19] proposed a intrusion detection model that
combines an improved conditional variational AutoEncoder
(ICVAE) with a DNN, namely ICVAE-DNN. ICVAE is used
to learn potential sparse representations between network
data features and classes. ICVAE’s decoder generated new
attack samples according to balance the training data. The
trained ICVAE encoder is not only used to automatically
reduce data dimension, but also to initialize the weight
of DNN hidden layers. The accuracy of ICVAE-DNN
on NSLKDD and UNSWNB15 datasets are 85.97% and
75.43% respectively.

Tian et al. [20] proposed an intrusion detection approach
based on improved DBN, called KG-DBN. Probabilistic
mass function (PMF) and Min-Max methods are introduced
to simplify the process of data preprocessing. The combined
sparsity penalty term is introduced into the likelihood
function of the unsupervised learning phase of the model.
And the sparse distribution of the dataset is obtained
through the sparse constraint, inducing the sparse state of
the hidden layer neurons and avoiding feature homogeneity
and network overfitting. But there exists uncertainty on the

selection of DBN parameter values, the detection accuracy
may be affected to some extent. The accuracy of KG-DBN
achieves 86.49% on UNSWNB15 dataset.

Lee et al. [21] proposed an IDS based on GAN
and random forest, called GAN-RF. GAN overcomes the
disadvantages of oversampling technology, such as over
fitting and class overlapping. Experimental results also
show that the GAN-RF shows good performance on
imbalanced intrusion detection data. But the model structure
of GAN-RF is simple and the experiments are performed
on CICIDS-2017 dataset, which all methods can achieve
high accuracy. The recognition accuracy of GAN-RF on the
CICIDS-2017 achieved 99.93% .

Yang et al. [22] proposed an IDS based on Supervised
Adversarial Variational Autoencoder, called SAVAER-
DNN. The model uses the decoder of SAVAER to synthesize
minority class samples. The encoder of SAVAER was used
to extract the advanced features of the original samples. And
uesd a DNN for classification.

Huang et al. [23] proposed an IDS based on GAN,
called IGAN-IDS. It uses the samples generated by GAN to
solve the class-imbalance intrusion detection problem. They
use GAN generates samples for minority classes and the
deep neural network performs the final intrusion detection.
IGAN-IDS only adopted the vanilla GAN, which can
only synthesis distorted inadequate minority class samples.
The recognition accuracy of IGAN-IDS on the KDDTest+
and UNSWNB15 dataset achieved 84.45% and 82.53%
respectively.

The recognition accuracy, detection rate, and F1 score of
the methods mentioned above on NSL-KDD (KDDTest+,
KDDTest-21) and UNSWNB15 datasets is summarized in
Table 1.

2.2 IDS based on class-balancingmethod

Class imbalance phenomenon is a long-standing problem
in the field of machine learning, which also brings great
difficulties to IDS. When the data is lopsided, majority
classes may “drown” the whole algorithm, while minority
classes will be ignored. Common class-balancing meth-
ods include random undersampling (RUS) [24], random
oversampling (ROS) [24].

Aiming at the class-imbalance problem in IDS, Kuang
[25] and Abdulhammed [26] use random under-sampling
(RUS) and random over-sampling (ROS) method respec-
tively to solve the class-imbalance problem in IDS. Cies-
lak [27] further combines the technology of Rus and
ROS to detect attacks. However, RUS may lead to the
loss of useful information, and ROS is just a simple
copy of the original samples, that may lead to overfitting
phenomenon. Synthetic minority oversampling technology
(SMOTE) [28] performs well in the field of data generation.
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Table 1 The recognition
accuracy, detection rate, and F1
(%) of the different methods on
3 datasets

Datasets Models Acc DR F1

NSL-KDD (KDDTest+) SAVAER-DNN [22] 89.36 95.98 90.08

ResNet [21] 79.14 69.41 79.12

GoogLeNet [21] 77.04 65.64 76.50

TSE-IDS [16] 85.79 86.80 /

RNN-IDS [15] 83.28 73.12 83.22

ICVAE-DNN [19] 85.97 95.39 86.27

SCDNN [14] 72.64 57.48 /

IGAN-IDS [23] 84.45 84.17

NSL-KDD (KDDTest-21) SAVAER-DNN [22] 80.30 95.19 86.92

TSE-IDS [16] 72.52 72.50 /

RNN-IDS [15] 68.55 / /

ICVAE-DNN [19] 75.43 96.2 68.62

UNSWNB15 SAVAER-DNN [22] 93.01 91.94 93.54

TSE-IDS [16] 91.27 91.30 /

TSDL [18] 89.13 / /

ICVAE-DNN [19] 89.08 86.05 90.61

IGAN-IDS [23] 82.54 97.09

KG-DBN [20] 86.49 / /

Some researches [29, 30] applies SMOTE technology in
IDS to balance dataset and improve detection efficiency.
However, SMOTE relies on interpolation for oversampling,
and the fitting degree of generated samples is relatively low.
When the distance between different classes is very close,
the synthetic sample of SMOTE may duplicate the existing
data, and even make the classification result worse.

2.3 Variational autoencoder (VAE)

The generative model mainly includes two forms: varia-
tional autoencoder VAE and GAN. VAE is a generative
deep learning model based on variational thought. VAE is a
generative network structure based on variable Bayes (VB)
inference proposed by Kingma et al. [31] in 2014 (Fig. 1).
The loss function of the original VAE [9] can be expressed
as:

LV AE = −Eq(z|x)[logp(x|z)p(z)

q(z|x)
] = L

pixel
llike + Lprior (1)

L
pixel
llike = −Eq(z|x)[logp(x || z)] (2)

Lprior = DKL(q(z | x)p(z) (3)

Where L
pixel
llike is the decoding process p(x|z), p(z) is

prior distribution, q(z|x) is the approximate posterior
distribution, z follows q(z|x); LV AE is the KL divergence
between q(z|x) and p(z).

2.4 Generative adversarial networks (GAN)

GAN is composed of generator (G) and discriminator (D)
[32]. Figure 2 shows GAN’s network structure.

The loss function of GAN is:

min
G

max
D

V (G, D) = min
G

max
D

Ex pr [logD(x)]
+Ez pz[log(1 − D(G(z)))] (4)

Where, z is the random noise, x is the original sample,
y is the category information, pz is the distribution of z,
pr is the distribution of real data x, G(z) is the fake data
generated by G, D(x) is the score given by D, E()is the
expected value. G and D are optimized iteratively in the
confrontation, to identify the data source more accurately
and to generate excellent fake samples.

Conditional generative adversarial networks (CGAN)
introduces class information into the vanilla Gan to generate
samples of specified classes. The generator takes noise and
class information as input at the same time, and the discrim-
inator will receive corresponding class information when
receiving samples. The loss function of CGAN [33] is:

min
G

max
D

V (G, D) = min
G

max
D

Ex pr [logD((x|y))]
+Ez pz[log(1 − D(G(z|y)))] (5)

The network structure of CGAN is shown in Fig. 3.
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Fig. 1 Structure of VAE

Meanwhile, Mirza et al. [33] pointed out that the Jensen-
Shannon divergence used in GAN and CGAN can lead to
mode collapse and gradient disappearance.

Arjovsky et al. [34] proposed Wasserstein GAN
(WGAN)) in 2017. WGAN changed the JS divergence of
loss function to earth mover (EM) distance, which solved
the problem of gradient disappearance and mode collapse in
GAN and CGAN. The objective function of WGAN is:

V (G, D)WGAN = maxD∈1−lipschitz

{
Ex∼pr [D(x)]

−Ex∼(pg)[D(x)]} (6)

Where pg is the generated samples’ distribution, D ∈
1− lipschitz means that any function f (x) which satisfies
f (x1) − f (x2) ≤ x1 − x2. that is, the discriminator D
is smooth enough to prevent the dependent variable from
changing too fast with the change of independent variable.

WGAN-GP [8] adds a gradient penalty term on the basis
of WGAN to satisfy the Lipschitz constraint and avoid

the situation that the discriminator cannot converge in the
training process. The objective function of WGAN-GP is :

V (G, D)WGAN−GP = maxD∈1−lipschitz{Ex∼pr [D(x)]
−Ex∼pg [D(x)]
−λEx∼ppenaty [∇xD(x) − 1]2} (7)

Where λ it is a parameter;∇xD(x) represents the computing
paradigm D(x) of alignmentx; x ∼ ppenatymeans to take
the middle position x from the line between a point on pr

and a point on pg .

3Methods

In this section, we propose an CWVAEGAN model to gener-
ate newminority samples. And we establish an CWVAEGAN-
based Intrusion Detection System (CWVAEGAN-IDS) to
perform class imbalance intrusion detection.

Fig. 2 Model Structure of GAN
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3.1 Conditional wasserstein variational
autoencoders with GAN (CWVAEGAN)

Larsen et al. [9] called the joint training of VAE and
Gan as VAE-GAN, which uses the representation learned
by GAN’S discriminator to measure the distance between
dataspaces. The decoder of VAE is combined with GAN,
and training is carried out simultaneously. The feature-wise
error is used to replace the element-wise error to generate
higher quality image samples.

On the basis of VAE-GAN, we add the condition vec-
tor and WGAN-GP loss function, to overcome the diffi-
culty in GAN training and improve the non-convergence
phenomenon of the model. New training samples are gen-
erated for minority classes to alleviate the class-imbalance
problem. The condition vectors are adopted to control the
class of the generated samples, and only minority class sam-
ples are generated. We also improve the model structure of
VAE-GAN to raising the quality of generated samples.

3.1.1 CWVAEGAN structure

Figure 4 shows the structure of CWVAEGAN, which
includes three parts: encoder E, generator G and discrim-
inator D, in which the G of GAN also acts as a decoder
in VAE. E encodes the original sample data x into the
implicit vector z, and calculates the mean value and vari-
ance of the input dataset through encoder. G then attempts
to generate samples from the reparameterized z or random
noise z. Finally, D gives scores for the original sample,
the reconstructed sample and the newly generated sample.
The combination of E and G is used as the data generation
part to conduct adversarial learning with D. In conclusion,
CWVAEGAN takes the original training sample s = (r, y)

as the input and outputs the synthesized sample sG =
[G(z, y′), y′], where r , y, z and y′ respectively represent
the original data feature, the original label, the noise and
minority class label.

Encoder E As shown in Fig. 4, the discrimination model
E consists of one-dimensional convolution layer and fully
connected layer. In adversarial learning, the input of E is

minority classes vector r ′ and the corresponding label y′.
For a particular input s = (r, y), E translates it into a
hidden vector z. As shown in (1), the original VAE loss
function consists of reconstruction loss L

pixel
llike and prior

loss Lprior . In VAEGAN, L
pixel
llike is replaced by the feature

representation L
Disl

llike learned by the discriminator

L
pixel
llike = −Eq(z|s)[logp(Disl(s)|z)] (8)

in which Disl(s) represents the hidden representation of s
in layer l of D, and p(Disl(s)|z) can be expressed as a
Gaussian distribution with mean value Disl (̃s) and identity
covariance [9]

p(Disl(s)|z) = N (Disl(s) | Disl (̃s), I ) (9)

In the process of training, we use the advanced feature
representation of the hidden layer in D to measure the
distance between the generated samples and the original
samples. The loss function of encoder is

L(E) = L
Disl

llike + Lprior (10)

Discriminator D In the process of training, the input of
D is the mixture of s′, sR and sG, and the output is
the prediction probability of the samples. For a particular
input (r, y), D needs to determine the probability D(r, y)

whether it comes from s′ other than sR or sG. The loss
function of D is

L(D) = Es∼pr [D(s)] − Es∼pg [D(s)]
−λEs∼ppenaty [‖ ∇sD(s) ‖ −1]2 (11)

Among them, the first item of the loss function is the
discrimination result of the real samples, the second and
third items are the discrimination result of the reconstructed
samples and the newly generated samples respectively, and
the fourth item is the gradient penalty term. After the loss
value is obtained, the gradient can be calculated ηθD

and the
network parameters θD of the discriminator can be updated
by the ADAM algorithm.

Generator G In the training process, the class information
and the input vector are connected as (z, y′) or (z′, y′), and
the reconstructed samples sR = [G(z, y′), y′] or the newly

Fig. 3 Model structure of
CGAN
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Fig. 4 Model Structure of
CWVAEGAN
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generated samples sG = [G(z, y′), y′] are obtained through
G. In the generator training process, we will also add L

Disl

llike

to the generator’s loss function as an regularization, the loss
function of G is

L(G) = Es∼pg [D(s)] − L
Disl

llike (12)

3.1.2 Imbalanced adversarial training

During the training of CWVAEGAN, generator and dis-
criminator are trained alternately. The main steps of training
are as follows:

1. The original data is encoded by E to get the hidden
vector z.

2. The z′ or z concatenated with minority classes label y′
are input, then G are trained and then generated sR .;

3. Fixed E and G, trained D, updated θD;
4. Fixed discriminator D, training E and G, updating θE

and θG;
5. Before the loss value of D reaches 0.5, the cycle

performs steps (1) to (4), E, G and D alternately, which
makes the generated samples close to the real samples.

The detailed training process of G and D in the above
steps is described in detail in chapters 2.2.1 and 2.2.2.
The whole training process of CWVAEGAN is shown in
Algorithm 1, among which θE , ηθE

, θG, ηθG
, θD , ηθD

are
network parameters and gradients of encoder, generator and
discriminator respectively.

3.2 IDS based on CWVAEGAN (CWVAEGAN-IDS)

CWVAEGAN is proposed to deal with class-imbalance
problem and simulate unknown exceptions. Furthermore,
the IDS based on CWVAEGAN (CWVAEGAN-IDS) is
constructed to detect the network abnormal behavior.

3.2.1 IDS structures

IDS has three modules: data processing module, CWVAE-
GAN module, and CNN module. Figure 5 illustrates the
architecture of CWVAEGAN-IDS. First of all, the data pre-
processing module filters out minority classes in the dataset,
and decomposes the continuous features in the original
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Fig. 5 Model Structure of
CWVAEGAN-IDS
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dataset by VGM to get the original training dataset. Then,
the CWVAEGAN module generates new samples. Finally,
CNN module uses the balanced samples for training and
performs intrusion detection on the test dataset. In general,
CWVAEGAN-IDS takes the rows from intrusion detection
dataset as input and predicts their labels p(y|r).

3.2.2 Data preprocessing

In the part of data preprocessing, CWVAEGAN-IDS firstly
extract the minority class information from the dataset, and
decompose the continuous features of multimodal distribu-
tion. Taking the original sample s = (r, y) as the input,
the first step is to screen out the minority classes (r, y′)
that need to be enhanced, and then VGM decomposition
is used to get the minority sample data s′ = (r ′, y′).

VGM is used to process the continuous features of Gaus-
sian mixture model. In intrusion detection dataset, discrete
features can be expressed as one-hot vector [23], while
continuous features of Gaussian mixture distribution are
difficult to be fully expressed.

We choose VGM to decompose them. Each value in the
continuous feature column is converted into a parallel con-
nection of an one-hot vector v∗ indicating the component and
a scalar a∗ indicating the value under the component by VGM.
Firstly, for each continuous column Ci , VGM is used to
estimate the number of components, and Gaussian mixture
model is trained; Secondly, the probability of each value ci,j

in each component is calculated; Finally, samples are taken
from the sub distribution with the largest probability.

Through VGM decomposition, ci,j is decomposed into
vi,j ⊕ ai,j , which is convenient for GAN to learn the mixed
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distribution better. A row in the dataset rj can be rewritten as
a concatenation of continuous features and discrete features.

rj ′ = v1,j ⊕a1,j ⊕. . .⊕vNc,j ⊕aNc,j ⊕d1,j ⊕. . .⊕dNd
(13)

3.2.3 CWVAEGAN

We have described the CWVAEGAN part in the Section 3.1.
CWVAEGAN module takes raw data or Gaussian noise as
input and generates minority classes samples. CWVAEGAN
can be expressed as sG = G[(z, y′)y′].

3.2.4 One dimensional convolutional neural network
(1D-CNN)

1D-CNN module take an one dimensional convolutional
neural network (1D-CNN) to perform intrusion detection,
as shown in Fig. 2. 1D-CNN model takes the rebalancing
training dataset as the input, and outputs the probability
distribution P(y) of different classes in the test dataset.
Table 1 shows the structure of 1D-CNN.

Refer to [35], we design the structure of 1D-CNN, which
uses convolution layers of 32, 64, 128 and 256 kernels
respectively, and the activation function is Mish [36]. The
output of convolution layer is randomly discarded with a
probability of 0.2 to avoid over fitting. Then a 32 unit full-
connected layer was set and activated by leaky-Relu function.
The size of the output layer is equal to the number of classes.
Finally, the probability distributions p(y|r) are given.

4 Experiment and analysis

In this section, CWVAEGAN-IDS is compared with other
class-balancing methods and other advanced methods. The
results show that CWVAEGAN-IDS has better performance
than the most advanced methods.

4.1 Dataset

The performance of CWVAEGAN-1DCNN was evaluated
on NSL-KDD dataset [6] and UNSWNB15 dataset [37].
These two datasets are commonly used to evaluate IDS.

NSL-KDD dataset is improved based on KDD99 dataset.
It removes large amount of redundant data, and adjusts
the composition of training set and test set. It is one of
the most classic benchmark datasets for IDSs’ evaluation.
It enables researchers to intuitively compare the efficiency
of various methods. NSL-KDD includes 41 features. NSL-
KDD dataset contains four kinds of abnormal behaviors:
DOS, Probe, U2R, and R2L. NSL KDD is divided into the
training set KDDTRAIN+20, as well as test set KDDTEST+
and KDDTEST21 (Table 2).

Table 2 Sample distribution of NSL-KDD

Label KDDTrain+20 KDDTest KDDTest21

Normal 13,449 9,711 2,152

DoS 9,234 7,458 4,342

Probe 2,289 2,421 2,402

U2R 11 200 200

R2L 209 2,754 2,754

Total 25,192 22,544 11,850

Moustafa et al. [37] proposed UNSWNB15 dataset in
2015, which is more suitable for modern network intrusion
detection as a mixture of nine kinds of abnormal activities.
Different IDSs can be fully tested through various types of
attacks in UNSWNB15. UNSWNB15 contains 42 network
features and two label columns. There are 175,341 and
82,332 records in training set and test set respectively, as
shown in Table 3.

In the training dataset KDDTrain 20percent, the number
of U2R and R2L samples are extremely few. The training
set KDDTrain 20percent, there are 23 kinds of exceptions,
while there are 38 kinds of exceptions in KDDTest+
and KDDTest21. Class imbalance data and 15 unknown
exceptions bring great challenges to intrusion detection. In
UNSWNB15, there are only 5010 samples for the least four
classes, worms, backdoor, shellcode and analysis, and only
130 training samples for the least classes worms. The two
largest categories of normal and generic add up to more than
100,000 records.

We perform multi-classification test on both datasets,
trying to detect the attack class of each network traffic data,
instead of simply judging whether it is normal. Intrusion
detection is regarded as a multi-classification task, and
do 5 classification on NSL-KDD and 10 classification on
UNSWNB15.

Table 3 Sample Distribution of UNSWNB15

Class Training set Testing set

Normal 56,000 37,000

Generic 40,000 18,871

Exploits 33,393 11,132

Fuzzers 18,184 6,062

DoS 12,264 4,089

Reconnaissance 10,491 34,96

Analysis 2,000 677

Backdoor 1,746 583

Shellcode 1,133 378

Worms 130 44

Sum 175,341 82,332
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4.2 Metrics

We adopt accuracy, precision, recall, F1 score and G-means
as the main metrics to evaluate the classification perfor-
mance of the CWVAEGAN-IDS. Accuracy indicates the
overall performance of CWVAEGAN-1DCNN, precision
quantifies the specific classification capacity of each class,
while recall indicates the detection rate for a specific class.
These metrics are defined as:

Accuracy = T P + T N

T P + T N + FP + FN
(14)

Precision = T P

T P + FP
(15)

Recall = T P

T P + FN
(16)

where TP, TN, FP and FN [23] are true positive, true
negative, false positive and false negative respectively.

F1 score is the harmonic mean value of precision and
recall. G-means is a comprehensive parameter of positive
and negative class accuracy.

F1 = 2 × Precision × recall

P recision + Recall
= 2 × T P

2 × T P + FP + FN

(17)

G − mean =
√

T P

T P + FN
× T N

T N + FP
(18)

4.3 Experimental procedure

4.3.1 Experimental environment and parameter setting

As we described in Section 3.2.1, the original samples are
first input to the data processing module. Data processing
module firstly selects the minority classes, remove the
normal network activities with large number of samples. We
implement VGM to decompose the features of continuous
columns, and use Bayesian Gaussian mixture method from
sklearn to achieve VGM. The Gaussian mixture model
are fitted with 10 components to approximate the original
distribution, and the feature vectors processed from the data
processing module are input into CWVAEGAN module.
The experiments are performed using Python 3.7 on a
Windows 10 personal computer with an AMD Ryzen 9
5900X@4.4GHz CPU, NVIDIA GeForce RTX 2080 Ti
GPU and 32 GB RAM.

For CWVAEGAN module, the architectures of E, D and
G are flexible, which should be set based on the spe-
cific situation. After selecting the appropriate parameters,
CWVAEGAN can achieve enough expressive power with
minimum overhead.

According to the VAE-GAN model proposed by Larsen
[9], we adjust the network structure. Two convolution layers
are taken to down sampling the original data to get multi-
channel hidden features, and the fully connected layers are
used to transform them into 256 dimensional single channel
features. The first 128 dimensions represent the mean value
of the sample, and the last 128 dimensions represent the
standard deviation of samples. By fitting the encoder to
get mean value and standard deviation of samples, the
128 dimensional hidden vector z is reconstructed with the
multiple reparameterization technique.

The generator (encoder) G is composed of fully con-
nected layers and one-dimensional transposed convolution
layers. z is used to reconstruct the original samples. In
the fully connected layer, 128 dimensional features are
expanded and sent to 64 different channels, and then one-
dimensional transposed convolution layer is used for up
sampling. The hidden vector z gets the reconstructed sam-
ple SR through G. Or the Gaussian noise z′can be input into
G to get the new sample SG.

Discriminator D is composed of one-dimensional con-
volution layers and fully connected layers. It attempts to
identify the original samples and generated samples, which
is equivalent to a classifier performing two classification
tasks.

There is no automatic parameter tuning algorithm at this
stage. We conduct large amount of experiments on the basis
of existing references to compare and analyze the influence
of different parameters. The final parameters of the model
are determined through a large number of experiments.
All hidden layer activation are ReLU, the generator output
layer adopts sigmoid activation, and the encoder and
discriminator output layer adopts linear activation. The
training parameter settings are given in Table 4.

4.3.2 Experimental setup

We conduct the following experiments to test the perfor-
mance of CWVAEGAN-1DCNN:

Experiment 1: The training experiment of CWVAEGAN
model.

Experiment 2: The training experiment of 1DCNNmodel.
Experiment 3: Performance comparison between

CWVAEGAN-1DCNN and different data
class-balancing methods.

The selected comparison algorithms include ROS,
SMOTE [23] and adaptive synthetic (ADASYN) [33],
and are combined with CNN described in 2.3. Class
balance methods generate samples, and then the balanced
samples are input to 1DCNN for intrusion detection.
These methods are recorded as ROS + CNN, SMOTE
+CNN and ADASYN + CNN respectively. The CNN
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Table 4 Network structure of CWVAEGAN

Model # Layer Filters Kernel Size Output Size Activation

Encoder 1 Input – – 42*1 –

2 Conv1d 32 3 40*32 Relu

3 Conv1d 64 3 38*64 Relu

4 Flatten – – 2432

5 Dense – 256 –

Decoder 1 Input – – 128

2 Dense – – 2432 Relu

3 Reshape – – 38*64 –

4 Conv1dtrans 64 3 40*64 Relu

5 Conv1dtrans 32 3 42*32 Relu

6 Conv1dtrans 1 1 42*1 Sigmoid

Discrimator 1 Input – – 42*1

2 Conv1d 32 3 40*32 Relu

3 Conv1d 64 3 38*64 Relu

4 Flatten – – 2432 –

4 Dense – – 32 Relu

5 Dense – – 1 –

parameters in these methods are consistent, which can be
set according to Table 5.

Experiment 4: Performance comparison between
CWVAEGAN-1DCNN and existing intrusion detection
models.

The intrusion detection models employed as the
comparison methods include RNN-IDS [15], SAVAER-
DNN [22], I-SiamIDS [17], TSE-IDS [16], GFBLS [40],
LSTM4 [40], IGAN-IDS [23], TSDL [18], ICVAE-DNN
[19], DBN [39]. All models use the same dataset.

Experiment 5: Visualization Comparison of class-bal-
ancing methods.

We compare the samples generated by 4 kind of
class-balancing methods through visualization Park et al.
[41] proposed a method to evaluate the synthetic data.
Through compare the statistical characteristics of the new
samples with the original samples, we evaluate the effects
of different class-balancing methods. Visualization of
various statistical features can intuitively compare the
effects of samples generated by different methods.

Experiment 6: Statistical test.

4.4 Experiment results and analysis

4.4.1 Experiment 1: the training experiment of CWVAEGAN
model

CWVAEGAN is used to generate samples for minority
classes. The loss curve of discriminator D during training
is shown in Fig. 6. Three subgraphs (a), (b) and (c) in
Fig. 6 correspond to Probe, U2R and R2L classes.From the
curves, we observe that CWVAEGAN converges after 3000,
5000 and 3500 training on Probe, U2R and R2L classes
respectively.

After convergence, the loss curves of the three classes
have different degrees of oscillation, among which U2R
is the most obvious, R2L is the second, and Probe is the
smallest. This is because there are only 11 samples of
U2R class in KDDTRAIN + dataset, which is difficult to
converge.

Take the loss curve of Probe in Fig. 6(b) as an exam-
ple. In 0 1,000 iterations, G can not generate homologous
samples, D can easily distinguish generated samples, and

Table 5 Parameters of
CWVAEGAN CWVAE-GAN epoch0 1000 1D-CNN epoch1 300

batchsize0 500 batchsize1 512

lrenc 0.001 lrCNN 0.005

lrdec 0.001 activation Adam

lrdisc 0.0001

activation Adam

12426



Network intrusion detection based on conditional wasserstein variational autoencoder...

Fig. 6 Convergence curve of discriminatorD on NSLKDD’s three
minority class: (a)Curve on Probe. (b)Curve on U2R. (c)Curve on R2L

the loss value is large; In the process of 1000 3000 iter-
ations, the generation ability of G is constantly improved,
the score of the generated samples given by D is closer to
the score of the original samples, the loss value is constantly
reduced, and reaches dynamic stability after 4000 iterations.

4.4.2 Experiment 2:The training experiment of 1DCNN
model

For CNN, appropriate convolution kernel number and con-
volution layer number can improve the performance of

classifier. According to the paper, the number of candidate
convolution layers is 2, 3, 4. The number of convolution
kernels of each convolution layer is twice that of the pre-
vious convolution layer. According to the different number
of convolution layers and kernels of the initial convolution
layer, we can determine the network structure of a classi-
fier. The four layer convolution network with 64 convolution
kernels of the initial convolution layer is recorded as c4 64
and the number of network channels is 64-128-256-512.
We carry out experiments for different network layers and
channel number of initial layer. On the NSLKDD dataset,
all the classifiers can learn the features of the training set
better, and the difference of different model parameters is
not big, so we conduct this experiment on UNSWNB15’s
training set.

Firstly, the convolution kernel number of the initial
layer is set to 64, and different convolution layers
c2 64, c3 64, c4 64, c5 64 are studied. In Fig. 7, when the
convolution layers are c4 64, the classification effect of the
model is the best and the convergence speed is the fastest.

Then we fix the number of convolution layers as
4, and the initial layer convolution kernel numbers are
c4 8, c4 16, c4 32, c4 64, c4 80, c4 100. In Fig. 8, we can
see that with the continuous expansion of the model param-
eters, the overall detection performance is improved and
the convergence speed is also accelerated. When the initial
number of convolution kernels is equal to or greater than
64, the model can reach 90% before epoch reach 300. At
the same time, when the number of convolution cores is
increased from 64 to 80 and 100, the performance improve-
ment of less than 1% requires 56% and 140% additional
flops.

Therefore, we set the structure of the network to include
four one-dimensional convolution layers. The number of
convolution cores of each layer is 64, 128, 256 and 512
respectively. The input of each layer is not zero filled, and
the convolution core size and step are 5 and 1 respectively.
At the same time, the output is batch normalized and then
activated by the Mish [36] function. The window size and
step length of max-pooling layer are 3.

The new training set of NSL-KDD and UNSWNB15 are
shown in Tables 6 and 7, respectively.

4.4.3 Experiment 3: Comparison of class-balancingmethods

The selected comparison algorithms include ROS, SMOTE
and ADASYN [38], and the original VAEGAN technology.
Based on class-balancing algorithm, we construct five clas-
sification models: ROS-CNN, SMOTE-CNN, ADASYN-
CNN, VAEGAN-CNN and CWVAEGAN-1DCNN. The
type and quantity of attack samples generated by VAEGAN
are consistent with CWVAEGAN. The results are shown in
Figs. 9, 10, 11, 12 and 13.
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Fig. 7 Accuracy curve of
different layers
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Table 6 The generated samples
for NSL-KDD dataset Class Number of original samples Number of generated samples Sum

Normal 13449 0 13449

DoS 9234 4215 13449

Probe 2289 3000 5289

U2R 11 1000 1011

R2L 209 2000 2209

Total 25192 10215 35407

Table 7 The generated samples
for UNSWNB15 dataset Class Number of original samples Number of generated samples Sum

Normal 56000 0 56000

Generic 40000 0 40000

Exploits 33393 0 33393

Fuzzers 18184 0 18184

DoS 12264 0 12264

Reconnaissance 10491 0 10491

Analysis 2000 8000 10000

Backdoor 1746 8000 9746

Shellcode 1133 8000 9133

Worms 130 4000 4130

Sum 175341 124423 203341
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Fig. 8 Accuracy curve of different kernels

Figures 9 and 10 show the recall of different class-
balancing methods for five different types of samples on
KDDTEST+ and KDDTEST21 dataset respectively. Com-
pared with other five class-balancing methods, CWVAGAN-
CNN has the highest recall for U2R and R2L attack class,
and the performance of majority classes is only slightly
backward in few metrics. The comparative experimental

results show that CWVAEGAN-1DCNN improves the
recall for minority classes.

The overall performance of different class-balancing
methods on three test sets of KDD and UNSWNB15 is
shown in the Figs. 11, 12 to 13. CWVAEGAN-1DCNN get
the best results on accuracy, F1 score and G-mean. On the
UNSWNB15 dataset, the recall of CWVAEGAN CNN are

Normal Dos Probe U2R R2L

CNN 96.98 76.61 55.67 5 15.32

ROS-CNN 92.61 56.26 80.32 6 12.75

SMOTE-CNN 96.59 56.75 82.19 11 10.93

ADSYN-CNN 96.3 79.72 58.94 13.5 4

VAEGAN-CNN 97.52 89.94 96.57 35 32

CWVAEGAN-CNN 96.58 91.08 90.54 57 66.7

0

20

40

60

80

100

Fig. 9 Recall of different class-balancing methods on KDDTEST+
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Fig. 10 Recall of different class-balancing methods on KDDTEST21

5% lower than other methods, and on the KDD test set, the
precision backward by 2% 9%. The experiment shows that
CWVAEGAN is an effective class-balancing method.

All the results reported above demonstrate that
CWVAEGAN-1DCNN has better performance than ROS-
CNN, SMOTE-CNN and ADASY-CNN. The reason is that
ROS only simple replicate the original data, SMOTE and
ADASY are random synthesis of the original data accord-
ing to the k-nearest neighbor principle, and lack of learning
the distribution of the original data.

4.4.4 Experiment 4: performance comparison
with advanced IDSs

We compare CWVAEGAN-1DCNN with the methods
mentioned in Section 4.3.2. The results on KDDTEST+ and
KDDTEST21 are shown in Tables 7 and 8 respectively.
Table 9 shows the results on the testset of UNSWNB15,
best results in each column are boldfaced. In this paper, the
performance data given in references of advanced IDSs are
used to compare with CWVAEGAN-CNN.

Accuracy Precision DR F1 score G-mean

CNN 75.01 80.77 75.01 72.15 77.84

ROS-CNN 78.26 92.34 67.41 77.93 78.90

SMOTE-CNN 81.16 96.43 69.48 80.76 81.85

ADSYN-CNN 80.10 96.16 67.74 79.49 80.71

VAEGAN-CNN 86.84 88.63 86.84 86.71 87.73

CWVAEGAN-CNN 90.11 90.73 90.11 89.9 90.42

30.00
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50.00

60.00

70.00

80.00

90.00
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Fig. 11 Performance of different class-balancing methods on KDDTEST+
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Fig. 12 Performance of different class-balancing methods on KDDTEST21

Fig. 13 performance of different class-balancing methods on UNSWNB15

Table 8 Performance
comparison of different IDS on
KDDTEST

Model Acc Precision DR F1 G-mean

RNN-IDS [15] 83.28 73.06 73.12 83.22 84.09

IGAN-IDS [23] 84.45 / / 84.17 /

TSE-IDS [16] 85.79 88 86.8 / /

SAVAER-DNN [22] 89.36 / 95.98 90.08 /

I-SiamIDS [17] 80 80.73 86.87 83.66 /

ICVAE-DNN [19] 85.97 97.39 77.43 86.27 /

Ours 90.11 90.73 90.11 89.9 81.76
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Table 9 Performance
comparison of different IDS on
KDDTEST21

Model Acc Precision DR F1 G-mean

LSTM4 [40] 66.74 / / 76.21 /

GFBLS [40] 67.47 / / 76.29 /

RNN-IDS [15] 68.55 / / / /

TSE-IDS [16] 72.52 85.00 72.50 / /

SAVAER-DNN [22] 80.30 / 95.19 86.92 /

ICVAE-DNN [19] 75.43 96.2 72.86 68.62 /

Ours 81.53 86.11 81.53 82.4 70.71

According to Table 7, on the KDDTEST+, the accu-
racy of CWVAEGAN-1DCNN is 90.11%, which is higher
than other methods. Precision, F1 score and G-mean of
CWVAEGAN-1DCNN are, 90.73%, 89.9%, and 81.76%,
which are close to the best value of other meth-
ods CWVAEGAN-1DCNN has better performance on
KDDTEST+.

In Table 8, on the KDDTEST21, the accuracy and pre-
cision of CWVAEGAN-1DCNN are 81.53% and 86.11%
respectively, which are higher than other methods. Recall
and F1 score of CWVAEGAN-1DCNN are 81.53% and
82.4% respectively, which ranked second in all meth-
ods. CWVAEGAN-1DCNN has better performance on
KDDTEST21.

Table 9 shows that CWVAEGAN-1DCNN achieves
88.86% accuracy, 90.46% precision, 88.96% Dr, 87.71%
F1 score, and 80.48% G-mean on UNSWNB15, which are
lower than other IDS sightly.

CWVAEGAN-1DCNN’s results in accuracy, F1 score,
and DR ranked third, but there are only small gaps.
CWVAEGAN CNN performance on UNSWNB15 dataset
is not as good as that on NSLKDD. This is because
the learning effect of 1DCNN classifier on UNSWNB15’s
training set isn’t good. Figure 8 illustrates that the learning
effect of CWVAEGAN-1DCNN on UNSWNB15’s training
set can only reach 90%, which limits the performance of the
overall IDS.

All the above results show that CWVAEGAN-1DCNN’s
performance is better than other methods. We can conclude
that CWVAEGAN can effectively solve the class-imbalance

problem, and CWVAEGAN-1DCNN has an efficient
intrusion detection capability, but there is still a slight gap
compared with advanced methods. When there are a large
number of samples in training set, the classifier can not fully
learn, which limits the performance of the overall IDS.

4.4.5 Experiment 5: visualization comparison
of class-balancing methods

Starting with the first evaluation, we take a look at the
mean and standard deviations of the real and fake dataset,
the log transformed values of all the numeric columns are.
The assumption is made that if a synthesizer already fails
to capture these basic properties, more derived features
will likely suffer the same fate. In the NSL-KDD dataset
(Fig. 14). We observe that all of the five synthesizers capture
these properties, while VAE has a hard time reproducing
these values.

Then we draw the column correlation matrix between the
datasets synthesized by different methods and the original
dataset, and compare the absolute difference between the
synthesizer and the original dataset correlation matrix. We
can intuitively see the difference between data generated
and original data. Figure 15 shows the column wise
correlations of the NSL-KDD dataset.

Then we compare the absolute difference of 4 synthesiz-
ers. In Fig. 16, it can be seen intuitively that CWVAEGAN
has the best effect among all synthesizers. SMOTE and
ROS have good fitting effect on discrete features, that the
difference between generated data is small, but they do not

Table 10 Performance
comparison of different IDS on
UNSWNB15

Model Acc Precision DR F1 G-mean

IGAN-IDS [23] 82.53 / / 82.86 /

TSDL [18] 89.13 / / / /

TSE-IDS [16] 91.27 / 91.30 / /

SAVAER-DNN [22] 93.01 / 91.94 93.54 /

ICVAE-DNN [19] 89.08 86.05 95.68 90.61 /

KG-DBN [20] 86.49 / 86.49 / /

Ours 88.86 90.46 88.96 87.71 80.48
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Fig. 14 Mean and standard deviations of each column of the real and synthetic NSL-KDD dataset

perform well on the continuous data. On the contrary, VAE
performs well on continuous data sets, while the fitting
effect on discrete features is general. Only CWVAEGAN
performed best among the five methods.

4.4.6 Experiment 6: statistical test

In order to illustrate the superiority of the methods proposed
in this paper, we use statistical test to see if the performance
of the four methods in Tables 8, 9 and 10 on three
datasets are significantly different. RNN-IDS, IGAN-IDS
and I-siamIDS accuracy values are missing, so we discard
them and carry out significance test on the remaining four
methods. We take the accuracy of the four methods on the
three datasets as the standard of significance test. First, we
use Friedman test [42] to detect whether there are significant

differences between the four methods. Friedman test is a
sort based statistical method, When the p − value obtained
by Friedman test is less than 0.05, we think that these
methods have significant differences. The p−value of these
methods is 0.532, which is greater than 0.05, and we think
that these four methods are comparable.

Similarly, we compared the six class-balancing methods
mentioned in Experiment 3, and through Friedman test
obtained a p − value of 0.0121, which is obvious that
there are significant differences between the six methods.
Friedman test can only be used to determine whether there
is a significant difference between the measurement results
of multiple models, but it does not know whether there
is a difference between any two models, which is what
post-hoc nimenyi test [42] aims to solve. We use post-
hoc nimenyi test and get a p − value matrix, as Table 11

Fig. 15 Associations per column from the real dataset and CWVAEGAN. The third one is the absolute difference between the synthesizer and the
original
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Fig. 16 The absolute difference of associations per column between real dataset and each of the synthesizers

shows the relationship of various class-balancing methods.
By drawing the thermodynamic diagram of p-value, we can
intuitively see that CWVAEGAN-CNN is comparable with
SMOTE-CNN and VAEGAN-CNN, and is significantly
different from the other three methods.

Table 11 P-value matrix of post-hoc nimenyi test for different class-balancing methods

CNN ROS-CNN SMOTE-CNN ADSYN-CNN VAE/GAN-CNN Ours

CNN 1 0.9 0.364 0.878 0.092 0.013

ROS-CNN 0.9 1 0.878 0.9 0.500 0.155

SMOTE-CNN 0.364 0.878 1 0.9 0.9 0.752

ADSYN-CNN 0.878 0.9 0.9 1 0.626 0.245

VAE/GAN-CNN 0.092 0.500 0.9 0.626 1 0.9

Ours 0.013 0.155 0.752 0.245 0.9 1

5 Conclusions

To solve the class imbalance problem in IDS, CWVAEGAN
is proposed. We build an IDS based on CWVAEGAN
(CWVAEGAN1D-CNN) to solve the problem of class
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imbalance. Compared with the existing IDS, CWVAEGAN
is used to generate minority classes samples, which
improves the overall performance of the IDS. We apply
CWVAEGAN-1DCNN to 2 datasets, and the experimental
results shows that our method is superior to the other
18 algorithms, including the most advanced detection
technology. But the performance on UNSWNB15 dataset is
slightly inferior to other advanced methods, which should
be further improved.
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