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Abstract This paper presents an enhanced ontology formalization, combining

previous work in Conceptual Structure Theory and Order-Sorted Logic. Most

existing ontology formalisms place greater importance on concept types, but in this

paper we focus on relation types, which are in essence predicates on concept types.

We formalize the notion of ‘predicate of predicates’ as meta-relation type and

introduce the new hierarchy of meta-relation types as part of the ontology definition.

The new notion of closure of a relation or meta-relation type is presented as a means

to complete that relation or meta-relation type by transferring extra arguments and

properties from other related types. The end result is an expanded ontology, called

the closure of the original ontology, on which automated inference could be more

easily performed. Our proposal could be viewed as a novel and improved ontology

formalization within Conceptual Structure Theory and a contribution to knowledge

representation and formal reasoning (e.g., to build a query-answering system for

legal knowledge).

P. H. P. Nguyen (&)

Justice Technology Services, Department of Justice, Government of South Australia,

30, Wakefield Street, Adelaide, SA 5000, Australia

e-mail: philip.nguyen@sa.gov.au

K. Kaneiwa

National Institute of Information and Communications Technology, 3-5 Hikaridai, Seika, Soraku,

Kyoto 619-0289, Japan

e-mail: kaneiwa@nict.go.jp

D. R. Corbett

Schafer Corporation, 3811, N. Fairfax Drive, Arlington, VA, USA

e-mail: daniel.corbett.ctr@darpa.mil

M.-Q. Nguyen

Department of Computer Science, University of Quebec at Montreal, Montreal, QC, Canada

e-mail: nguyen.minh-quang@uqam.ca

123

Artif Intell Law (2009) 17:291–320

DOI 10.1007/s10506-009-9082-z



Keywords Ontology formalization � Knowledge representation � Automated

reasoning � Conceptual Structure Theory � Order-Sorted Logic � Type theory �
Concept type � Relation type � Meta-relation type � Legal reasoning

1 Introduction

In a formalism based on Conceptual Structure Theory (Corbett 2003; Nguyen and

Corbett 2006a, b, 2007), an ontology is essentially a mapping between a real world and

an abstract conceptual world, and consists of a concept type hierarchy, a relation type

hierarchy, and formal relationships between them. This formalization is similar to

what is proposed by Web Ontology Language (OWL) in which an ontology is defined

as a collection of a set of classes (unary predicates), a set of properties (binary

predicates), and a set of declarations describing how classes and properties are related

(W3C 2004). Ontology is usually considered different from database. Ontology

represents shared and commonly-agreed-to knowledge while database stores specific

knowledge for a particular application or set of related applications (Dillion et al.

2008). The two structures are complementary in problem solving. Ontologies could

even be considered to be hard-coded in computer systems (Greiner et al. 2001) as they

express factual knowledge not varied across applications. However, in our formalism,

ontology is a formal definition of relationships between a real and an abstract worlds,

and as such, it contains information in both worlds. This means that our definition of

ontology encompasses both traditional definitions of ontology and database, and could

be considered the same as that of knowledge base in its broadest meaning.

Independently from the above, a formalization of ontology based on Order-Sorted

Logic has also been proposed (Cohn 1989; Kaneiwa 2004), and one of its

applications to upper event ontology has been presented (Kaneiwa et al. 2007). In this

logic, an ontology is represented by a ‘‘sort hierarchy’’ and a ‘‘predicate hierarchy’’.

The former is a hierarchy of objects in the domain of discourse, structured according

to a set of partially ordered sorts (simply called a ‘‘sort’’). Order-Sorted Logic makes

a distinction between classes and instances of those classes (Smith et al. 2005), e.g.,

‘‘earthquake’’ is a class of events while ‘‘the 2004 earthquake in Indonesia’’ is an

instance of that class. This is similar to the definitions of concept type and instance of

concept type in Conceptual Structure Theory. In addition, classes and instances could

be further described or qualified through their n-ary predicates. The relationships

between these predicates form another hierarchy, called predicate hierarchy, which

complements the sort hierarchy in the ontology. Predicates in Order-Sorted Logic are

similar to relation types and instances of relation types in Conceptual Structure

Theory. For example, a criminal justice ontology could consist of a hierarchy of

individuals (offenders and victims) and a hierarchy of offences, which are predicates

on those individuals. Individuals could be sorted by place of residence and by gender,

to form the sort hierarchy, while offences could be classified according to their nature

and their degree of severity, to form the predicate hierarchy. Hybrid inference

systems that link taxonomical information in the sort hierarchy with assertional

information in the assertional knowledge base have also been proposed (Beierle et al.

1992; Kaneiwa 2001). This is similar in Conceptual Structure Theory to establishing
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relationships between the hierarchical structure of concept types and the instances of

relation types linking those concept types.

This paper attempts to further enhance the conceptual structure ontology

formalism by incorporating new ideas from the above, especially with regard to

formalization of predicate on concepts and predicate on other predicates. The latter

is a second-order relation between predicates and concepts, similar to meta-

predicate of SICStus Prolog or other higher-order logics such as HiLog (Chen et al.

1993). However, the introduction of the hierarchy of meta-relation types and its

formalization in an ontology are presented for the first time in this paper.

In our ontology formalism, taxonomical and assertional information is combined

in a single and coherent structure in order to facilitate automated inference. We also

attempt to identify semantic properties of our ontology formalism to ensure its

completeness and soundness, e.g., our formal definition of property of an ontological

object (i.e., a concept type, a concept, a relation type, a relation, a meta-relation type,

or a meta-relation) bears some similarities with the ontological conceptual ideas

proposed by Dillon et al. (Dillion et al. 2008) and is a special case of the OWL

ObjectProperty construct (W3C 2004). The end result of our effort is the production

of a more complete ontology, called the closure of the original ontology, in which

missing arguments and properties in relation types, meta-relation types, and their

instances are supplemented.

Our main motivation for this research is in the area of formal reasoning, of which

one application is the development of systems that can answer queries on topics that

do not explicitly exist in databases, through automated inference based on

ontological relationships between database objects and their predicates. This

motivation is similar to that described in (Kaneiwa 2004). For example, in the

justice arena we may wish to have a system that can automatically answer questions

like the following: ‘‘Knowing only that John’s father is in jail, does John have a

Police record and is he being monitored by a welfare agency?’’ We will see at the

end of this paper how an ontology built according to our formalism could help

answer these types of question.

This paper is organized as follows: Sect. 2 summarizes the ontology formalism

previously proposed within Conceptual Structure Theory. Section 3 proposes an

extension to the formalism with the introduction of a new meta-relation type

hierarchy within the definition of an ontology. Section 4 describes the new notion of

closure in relation and meta-relation types. Section 5 explores important properties

of the new formalism, in particular to address the issue of missing arguments and

missing properties in relation and meta-relation types. Section 6 concludes the

paper together with some directions for future research. Note that Sects. 3, 4 and 5

expand on ideas briefly presented in (Nguyen et al. 2008).

2 Ontology formalization in Conceptual Structure Theory

This section summarizes previous work on ontology formalization within Concep-

tual Structure Theory (Corbett 2003; Nguyen and Corbett 2006a, b). In this

approach, an ontology is defined as a semantically consistent subset of a canon,
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which is in essence a mapping of a real world into an abstract conceptual world. To

simplify, we consider the two concepts of ontology and canon identical in this

paper.

Definition 1 (Original Ontology): An ontology O is a 5-tuple O = (T, I,\, conf,
B) in which:

(1) T is the set of types, i.e., T = TC [ TR where TC is the set of concept types
and TR the set of relation types.

(2) I is the set of individuals or instances of concept types in TC.
(3) The symbol ‘‘\’’is the subsumption relation in T, representing the semantic

generalization or specialization relationship between two concept types or two

relation types.
(4) conf is the conformity function that links each individual in I to the infimum

(or greatest lower bound) of all concept types that could represent that

individual.

(5) B is the canonical basis function that defines for each relation type in TR the

tuple of all concept types (called relation type arguments) that can be used in

that relation type. For a relation type R, the number of elements in B(R) is

called the arity (or valence) of R or of B(R).
(6) The function B must also satisfy the following association rule, called B-rule:

If a relation type subsumes another relation type, then they must have the same
arity and their values through B (i.e., the two tuples of concept type
arguments) must also be related through the subsumption relation
‘‘\’’between their respective arguments.

2.1 Notations

The following notations will be used in this paper unless otherwise stated:

• C: a concept type

• R: a relation type

• MR: a meta-relation type

• t: a type (t could be a C, R or MR)

• TC: the set of all concept types

• TR: the set of all relation types

• TMR: the set of all meta-relation types

• T: the set of all types (i.e., T = TC [ TR [ TMR)

• c: a concept (or instance of a concept type)

• r: a relation (or instance of a relation type)

• mr: a meta-relation (or instance of a meta-relation type)

• i: an individual or instance of a type (i could be a c, r or mr)

• IC: the set of all concepts

• IR: the set of all relations

• IMR: the set of all meta-relations

• I: the set of all individuals or instances of all types (i.e., I = IC [ IR [ IMR)

• U: the set of all tuples (in general)

294 P. H. P. Nguyen et al.

123



• s(S): the set of all tuples defined over the set S
• T: a tuple

• e: a component (or element) of a tuple (tuple components are written between

angle brackets, e.g., T = \e1, …, en[)

As a convention, we also use nouns with the first character in upper case to label

concept types and concepts (e.g., Man, Person, Family), verbs with the first character

in lower case to label relation types and relations (e.g., isDaughterOf, monitors,

hasAttribute), and non-verbs (usually nouns and prepositions) with the first character

in lower case to label properties of a type or an instance (e.g., byAdoption, minimum

JailTerm) (the formal definition of property will be given later).

2.2 Types and instances

In this paper, the words ‘‘class’’, ‘‘individual’’, ‘‘instance’’ have meanings similar to

those defined in OWL (Bechhofer 2004). The notions of relation type and instance

of relation type introduced here are similar to those of relation schema and relation

instance in Relational Model Theory (Codd 1970).

In Statements (1) and (2) of Definition 1, a concept type is a class of entities that

share some common properties. Its instances are simply called concepts. A relation

type (also called conceptual relation type, concept relation type, and relational

concept type in other work) is a class of relations over one or multiple concept

types, with those relations sharing some common properties. Like concept type, a

relation type also has instances, called relations (also called conceptual relations

(ISO 2007), concept relations, and relational concepts in other work). For example,

‘‘Man’’ is a concept type, and ‘‘John’’ is an individual or an instance of that concept

type (this relationship is stated as: ‘‘John is a man’’).

To ensure completeness and soundness of the TC and TR structures, we assume that

they are semi-lattices, which means that there is always a unique infimum for any two

types in each structure. This assumption is common in ontology formalization, such

as in Formal Concept Analysis (Wille 1982; Stumme 2002) and in Order-Sorted

Logic (Kaneiwa 2004). This unique infimum, if it does not exist already, could also

be created using a technique proposed for ontology merging in (Nguyen and Corbett

2006b) as merging of existing ontologies may initially produce pairs of concept

types, each with multiple infima. We also assume that the TC and TR lattices are

bounded, that is, they include the Top and Bottom types (also called Universal and

Absurb types, and usually represented by the symbols ‘‘>’’ and ‘‘\’’).

It should be emphasized that in our formalism, types (or classes) and their

instances are grouped in separate sets. The set of type instances I [also called the

universe of discourse (ISO 2007)] is separate from the set of types T.

2.3 Choice between concept type and relation type

While some ideas can be naturally classified as a concept type (e.g., Man, Animal,

etc.) or a relation type (e.g., isRelatedTo, isMarriedTo, etc.), in some other cases,
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the choice between the two types is arbitrary and usually depends on the domain of

discourse and on the intended usage of the resulting ontology. Most relation types

can also be converted to semantically equivalent concept types, e.g., stealing can be

defined as a concept type, or as a relation type linking a thief and a victim.

Note that Conceptual Structure Theory is initially inspired by J. Sowa’s

conceptual graph theory (Sowa 1984; Sowa 2000; ISO 2007) in which all

conceptual graphs are bipartite. This means that a concept can only connect to

another concept through a relation, and a relation can only link to another relation

through a concept (except when subsumption relations are represented).

2.4 Subsumption relation

In Statement (3) of Definition 1, a type is said to subsume another type when the

former is a semantic generalization of the latter, or the latter is a semantic
entailment or specialization of the former (Smith 2003). With regard to relation type

subsumption, this could be translated as a logical implication relation between

predicates or propositions within the framework of logic programming, i.e., a

relation in the form of ‘‘p(x) ? q(x) in which the superordinate predicate q has a
more abstract meaning than the subordinate predicate p’’ (Kaneiwa 2001; in our

formalism, we say that q subsumes p). For example, the subsumption relation

Man \ Person means that the concept type Person subsumes the concept type Man
as the former semantically generalizes the latter or the latter semantically

specializes or entails the former. We can also express this idea as a subsumption

relation between two relation types isMan \ isPerson or isMan(x) ? isPerson (x),
i.e., if ‘‘John is a man’’, then ‘‘John is a person’’. Another similar example is

isDaughterOf \ isChildOf. Other examples in the criminal justice ontology

(Breuker et al. 2002) are steals \ offends (as stealing is a particular case of

committing an offence) and murder \ manslaughter (as murder is a type of

manslaughter with premeditation).

Subsumption is mainly used for inference, e.g., if a type is subsumed into another

type, and if an instance of the first type exists then we can infer another instance of

the second type. For example, if ‘‘Hurricane Galveston hit Texas in 1900’’, then we

can infer that ‘‘There was a natural disaster in Texas in 1900’’, since the concept

type Hurricane is subsumed into the concept type NaturalDisaster.

Another aspect of our formalism is that the subsumption relation applies to types

only, and not to their instances, i.e., the notion of instance subsumption does not

exist or is meaningless, although one instance may be inferred from another, such as

in the above example.

It should be noted that the logical implication relation (e.g., p ? q) could also

represent a causal or a parthood (or part-of) relation between p and q. Both of these

relations are proper relation types in our formalism, and not subsumption or

semantic entailment relations. This means that different types of predicate or

relation could translate into the same first-order logic statement and could be

equally used to infer the same new assertion (see also Sect. 3.4 on Translation to

First-Order Logic).
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Finally, note that the subsumption relation defined in our formalism is broad (as

opposed to strict), that is, mathematically it is reflexive (i.e., Vt [ T t \ t).

2.5 Type conformance

In Statement (4) of Definition 1, the conf function expresses the idea of an

individual conforming to a particular type. For each individual, it defines the

(unique) infimum (or greatest lower bound) of all concept types that that individual

could represent, e.g., the individual ‘‘John’’ conforms to the concept type ‘‘Man’’,

which is the infimum of all concept types that ‘‘John’’ could represent, such as

‘‘Man’’, ‘‘Person’’, ‘‘Mammal’’, ‘‘Living Entity’’, etc., and therefore ‘‘John’’ is an

instance of those concept types, i.e., ‘‘John is a man, a person, a mammal and a

living entity.’’

2.6 Relation usage pattern

In Statement (5) of Definition 1, the function B expresses the usage pattern (or

canonical basis) of each relation type as it identifies all concept types that can be

used in that relation type, i.e., B: TR ? s(TC) where s(TC) denotes the set of all

tuples over TC, formally defined as s(TC) = [{n[0} (TC)n.

As per the mathematical definition of a tuple, the order in which its components

(also called arguments) are listed, is significant, that is, they can not be swapped

without altering the identity of that tuple. It should also be noted that mathemat-

ically a tuple is different from a set (in which duplicate members are not allowed)

and also different from a multiset (in which duplicate members are allowed but the

order in which members are listed is irrelevant). In particular, s(TC) is different from

the set of all subsets of TC, usually denoted as 2TC . It is also different from the set of

all multisets over TC.

As an example of relation usage pattern, let us consider the relation type

isDaughterOf. Its value through the B function could be defined as the tuple

(Woman, Person) in which the first argument is the daughter and the second

argument is the parent. That relation type could have two instances isDaughterOf
(Woman:Mary, Person:Sue) and isDaughterOf (Woman:Sue, Person:Mary) with

quite opposite meanings. Thus in a relation type, the order in which its arguments

are listed (through the B function) contributes to the definition of the intensional
meaning of the relation type and its instances.

The B function is similar to the ARG function of a predicate introduced in

(Kaneiwa and Tojo 1999). Both attempt to define a unique structure for the

arguments of a relation type or a predicate.

2.7 Relation subsumption and argument subsumption

In Statement (6) of Definition 1, the B-rule is an attempt to link subsumption

between two relation types and subsumption between their arguments. For example,

let us consider the subsumption relation between two relation types ‘‘isDaughter-
Of \ isChildOf’’ with B(isDaughterOf) = (Woman, Person) and B(isChildof)
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= (Person, Person). In this case, the B-rule imposes that the first argument in the

first relation type (i.e., Woman) is subsumed into the first argument of the second

relation type (i.e., Person), and likewise for their second arguments (i.e.,

Person \ Person).

2.8 Ontology construction

Through Definition 1, we see that ontology contains both static and generic

information (such as types), and dynamic and particular information (such as

individuals). The type hierarchies in the ontology are relatively static, often meant

to be shared across different applications in the same domain of discourse. They

usually represent common knowledge agreed to by experts of the domain, and

usually are not built with a specific application in mind. The ontology also contains

more dynamic and specific information (such as individuals), which is traditionally

maintained in a separate database (e.g., the Customer or Billing database in a

commercial company). In our ontology formalism, the conf and B functions are

constantly re-evaluated as individuals are updated. A new piece of information

concerning an individual may change the conf value for that individual, and/or may

necessitate the creation of a new type. A new relation may introduce new arguments

and hence may change the B value of the corresponding relation type.

3 Proposed new ontology formalism

This section expands ideas introduced in (Nguyen et al. 2008). We first introduce

the new mathematical concepts of tuple membership, tuple extension and tuple

subsumption, and then use them in our proposed new ontology formalism.

3.1 Tuple membership, extension and subsumption

Definition 2 (Tuple Membership, Extension and Subsumption):

1. Tuple Membership: A component e of a tuple T is written as e [ T.
2. Tuple Extension: Let T1 = \e1, …, en[be an n-tuple and T2 = \f1, …, fm[be

an m-tuple, T1 is said to be an extension of T2 (or T1 is said to extend T2, and

we write T1 = ext(T2)) if all components of T2 are also present in T1 with

their relative listing order respected, i.e., T1 = ext(T2) ,\e1, …, en[ =

ext(\f1, …, fm[) , (m B n) and (Vk, l 1 B k B l B m Ai, j with 1 B i B

j B n and ei = fk and ej = fl)
3. Tuple Subsumption: Let T1 be an n-tuple and T2 be an m-tuple with m B n, T1 is

said to subsume T2 (and we write T2 \ T1) if there exists an m-tuple T2
0 such

that:

• T1 = ext(T2
0) and

• Each component of T2 is subsumed into the corresponding component of

T2
0, i.e., if T2 = \f1, …, fm[ and T2

0 = \fi
0, …, fm

0[ then Vi 1 B i B m
fi \ fi

0
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Notes:

1. In Definition 2(1), the notation ‘‘e [ T’’ is normally reserved for set
membership, and means that e is a member of the set T (but here T is not a

set but a tuple). We can thus write: T = \e1, …, en[, Vi 1 B i B n ei [ T
2. Definition 2(2) also implies that Vk 1 B k B m Ai 1 B i B n ei = fk
3. Definition 2(3) is an expansion of the definition of the subsumption relation

‘‘\‘‘[introduced in Definition 1(3)] to tuples.

Example 1 (Tuple Subsumption): Let T1 = \Person, LivingEntity, Person[ and

T2 = \Woman, Animal[.

We have the tuple subsumption relation: T2 \ T1 because we can select

T2
0 = \Person, LivingEntity[ and fulfill the tuple subsumption conditions with:

• T1 = ext(T2
0)

• Woman \ Person (i.e., 1st argument of T2 \ 1st argument of T2
0)

• Animal \ LivingEntity (i.e., 2nd argument of T2 \ 2nd argument of T2
0)

Proposition 1 (Tuple Extension and Subsumption Properties): The tuple extension
relation is: (VT1, T2, T3 [ U)

(1) reflexive, i.e., T1 = ext(T1)

(2) anti-symmetrical, i.e., T1 = ext(T2) and T2 = ext(T1) ) T1 = T2

(3) subsuming, i.e., T1 = ext(T2) ) T2 \ T1

(4) transitive, i.e., T1 = ext(T2) and T2 = ext(T3) ) T1 = ext(T3)

(5) transitive-2, i.e., T1 \ T2 and T3 = ext(T2) ) T1 \ T3

(6) transitive-3, i.e., T2 = ext(T1) and T2 \ T3 ) T1 \ T3

Proof This proposition can be easily proved with the definitions of tuple extension

and tuple subsumption. In particular, Statement (3) means that tuple extension

implies tuple subsumption, i.e., if T1 extends T2 then T1 subsumes T2. It is proved by

selecting T2
0 = T2 in the definition of tuple subsumption [Definition 2(3)] and by

using the reflexive property of tuple extension (Statement 1).

3.2 Meta-relation type

Definition 3 (Meta-relationType): A meta-relation type is a non-subsumption

relation between at least one relation type and a number of concept types. An

instance of a meta-relation type is called a meta-relation.

Notes:

1. A meta-relation type is a predicate on concept types and relation types with at

least one relation type present. If a meta-relation type does not involve at least

one relation type, it is simply a (simple) relation type. While a relation type

represents a predicate on concept types, a meta-relation type is essentially a

‘‘predicate of predicates’’.
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2. The main difference between relation type subsumption (i.e., subsumption

between relation types) and meta-relation type is that subsumption is based on

semantic generalization or specialization while meta-relation type is based on

other types of semantic relationship.

3. In some cases, a meta-relation type can be semantically translated into a

(simple) relation type (see Example 2).

4. We will use the phrase ‘‘relational object’’ to designate a relation type, a

relation, a meta-relation type or a meta-relation in general.

Example 2 (Meta-relation Type): The expression likelyCauses(Earthquake, Tsu-
mani) is a predicate on two concept types, expressing that an earthquake may cause

a tsunami. It is a (simple) relation type in this case.

It could be generalized as likelyCauses(Entity, Entity), in which Entity could be

either a concept type or a relation type. In this case it could be considered a meta-

relation type, in which the occurrence of the first entity could likely cause that of the

second entity. For example, the assertion ‘‘a person in a dysfunctional family is likely

to commit an offence’’ could be represented in the ontology if we construct the two

relation types isInDysfunctionalFamily(Person) and offends (Offender, Victim), and

define likelyCauses(isInDysfunctionalFamily, offends) as an instance of the meta-

relation type likelyCauses(Entity,Entity), in which each argument is a instance of the

generic relation type Entity.

We could further generalize the predicate as a meta-relation type likelyCauses
(Antecedent, Consequent) linking two events (or situations), an antecedent event and

a consequent event, with an event being defined as a combination of a number of

concept and relation types (i.e., an event is a subset of TC [ TR). For example, if we

wish to express that ‘‘Driving in bad weather may cause accident’’, we could consider

the concept and relation types: BadWeather, drives(Person), hasAccident (Person),
and define the meta-relation between them as likelyCauses({drives, BadWeather},
{hasAccident}) in which the antecedent is a combination of driving and bad weather

and the consequent is the accident.

3.3 New ontology formalization

Definition 4 (New Ontology with Meta-relation Type Hierarchy): An ontology O
is a 5-tuple O = (T, I,\, conf, B) as per Definition 1 with in addition the following

features:

(1) The set of types T is extended to include the set of meta-relation types TMR,

i.e., T = TC [ TR [ TMR.

(2) The set of individuals or instances I is expanded to include the set of relations

IR and the set of meta-relations IMR, i.e., I = IC [ IR [ IMR with IC being the

set of all concepts (or instances of concept types), IR the set of all relations
(or instances of relation types) and IMR the set of all meta-relations (or

instances of meta-relation types).

(3) The subsumption relation ‘‘\’’, which represents semantic generalization or

specialization between types, is extended to be also defined over the set of
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meta-relation types, enabling the latter to be structured as a third hierarchy in

the ontology, the hierarchy of meta-relation types.

(4) The function conf is extended to be defined over the combined set of IC, IR,

and IMR, i.e., conf: I ? T

with : 8c 2 IC conf cð Þ 2 TC

8r 2 IR conf rð Þ 2 TR

8mr 2 IMR conf mrð Þ 2 TMR

In the above, conf(c) is the infimum of all concept types that the instance c
could represent, conf(r) is simply the relation type of which r is an instance,

and conf(mr) is the meta-relation type representing the instance mr.

(5) The function B, which defines the usage pattern of a predicate, is extended to

be defined over the combined set of all relation types and meta-relation types,

i.e.,
B : TR [ TMR ! s TCð Þ [ sðTC [ TRÞ

with: 8R 2 TR B Rð Þ 2 s TCð Þ
8MR 2 TMR B MRð Þ 2 sðTC [ TRÞ

(6) The B-rule is broadened as follows:

New B-rule (Relation and Meta-relation Type Extension): If a relation (or

meta-relation) type R subsumes another relation (or meta-relation) type S
(i.e., S \ R), then there is a relation (or meta-relation) type, called an

extension of R with respect to S and denoted as RS
^ (or simply R^ for short),

such that the four following statements hold:

(a) S \ R^
(b) B(R^) = ext(B(R))
(c) B(S) \ B(R^)
(d) B(R) \ B(R^)

Figure 1 graphically represents the main notions introduced above.

Notes:

1. Definition 4(1) introduces the new concept of meta-relation type to Conceptual

Structure Theory, and together with Definition 1(3), enable the new meta-

relation type hierarchy to be added to the ontology definition. This hierarchy is

first introduced in this paper.

It should be noted that in OWL, the OWL ObjectProperty construct could be

used to express object predicates, in a way equivalent to our definition of

relation type. However, there are no OWL constructs that are similar to our

definition of meta-relation type to express ‘‘predicates of predicates of objects’’.

2. Definition 4(2) introduces the new concepts of instance of relation type and

instance of meta-relation type to Conceptual Structure Theory.

3. Definition 4(5) means that the new B function now defines:

• for a relation type, the tuple of concept types that can be used in that relation

type, and
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• for a meta-relation type, the tuple of concept types and relation types that can

be used in that meta-relation type.

Thus, the new B function can now also express the structure of predicate on

concept types, as well as predicate on a combination of other predicates and

concept types.

By convention, when r is a relation of type R, we also denote by B(r) the

tuple of concepts (called arguments of r) that are used in r, and whose

components are instances of the corresponding components of B(R), although

mathematically, B is a function defined over TR and TMR only, not IR, nor IMR.

Since B(R) is the most important feature in a relation (or meta-relation) type

R, we usually represent B(R) together with R. For example, if R = isDaugh-
terOf is a relation type, then we often write (especially in Conceptual Graph

Theory (Sowa 1984)) R = isDaughterOf (Woman, Person), which means that

we effectively write R(B(R)), and we say that Woman and Person are the two

arguments of the relation type isDaughterOf while in reality, they are the two

components of the 2-tuple B(isDaughterOf). Similarly, when mr is a meta-

relation of type MR, we also denote by B(mr) the tuple of concepts and relations

(called arguments of mr) that are used in mr and whose components are

instances of the corresponding components of B(MR).

4. In general, any object in the ontology, whether it is a concept type, a relation

type, a concept or a relation, is defined by a label (or name) and the ‘‘context’’

of the object in the ontology. Together they represent the intensional meaning
of the object. The clearer this context can be specified, the more accurate is the

definition of the object. In our formalism, the context of the object is its

relationships with other objects with respect to the three relations: \, conf and

B. The main goal of any ontology formalism is to define that context as clearly

and as accurately as possible for any ontological object. In a way, our emphasis

in representing the intensional meaning of an object through its various

relationships with other objects is similar to the approach used for object

definition in the theory of Latent Semantic Analysis (LSA).

5. In Definition 4(6), the new B-rule states in essence that if a relation (or meta-

relation) type R subsumes another relation (or meta-relation) type R0, then there

exists a new relation (or meta-relation) type R^ that extends the arguments of R
such that each argument of R0 is subsumed into a corresponding argument of R^.

In other words, the arguments of R0 (in fact their appropriate supertypes) are

‘‘merged’’ into the arguments of R to create the set of arguments for R^. The

new B-rule can thus be summarized as: ‘‘Arguments of a relation or meta-
relation subtype can be merged into arguments of its supertype’’.

Finally, note that two subsuming relation (or meta-relation) types can have

different arities, but the arguments of their extensions (as defined by the new

B-rule) must be semantically related in a consistent manner.

6. The new B-rule is the first step to supplement missing arguments in relation and

meta-relation types, similarly to the manipulation of predicate arguments in

Order-Sorted Logic (Kaneiwa 2004; Nitta 1995).
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We will see later that the building of the closure of a relation (or meta-relation)

type includes a recursive application of the extension of that relation (or meta-

relation) type against all other relation (or meta-relation) types in the ontology.

The completion of missing arguments in predicates facilitates automated

inference on facts and assertions (Fig. 1).

Example 3 (Subsumption between Meta-relation Types): In a traffic accident

ontology, to express the causal relation between an act performed under some

atmospheric condition and its effect, such as ‘‘Driving into a hurricane will cause

accident’’ and ‘‘Moving in bad weather may cause damage’’, we could define the

following meta-relation types:

• causes(drives(Person), Hurricane, Accident)
• likelyCauses(moves(Entity), BadWeather, Damage)

In this case, we have a subsumption relation between those two meta-relation

types ‘‘causes \ likelyCauses’’ since the new B-rule could be satisfied with the

following subsumption relations between their arguments:

• drives \ moves (with also a subsumption relation between these relation types’

own arguments: Person \ Entity)

• Hurricane \ BadWeather
• Accident \ Damage

Example 4 (Extension of Relation Type): Suppose that we have in our ontology

two relation types: steals (Thief, TheftVictim) and offends(Offender). Semantically,

we have: steals \ offends and we could construct the extended relation type:

offends^(Offender, OffenceVictim) by adding a supertype of TheftVictim, which is

OffenceVictim, to the tuple of arguments of the extended type.

3.4 Translation to first-order logic

To assist with clarification of the semantics of relations and meta-relations, their

translation into first-order logic may sometimes be highly desirable, especially to

Real World

Concept type

Relation

Concept

Relation type

Conceptual World

Meta-relation

IMR

Meta-relation type

TMR

IR

TC

TR

conformance

conformance

BB

IC

Fig. 1 Proposed ontology formalization

Meta-relation and ontology closure 303

123



clarify the intensional meaning of each argument within the context of the whole

relation or meta-relation. This translation happens at the instance level of the

relation and meta-relation types.

For example, at the type level, the meta-relation type likelyCauses (isInDysfunc-
tionalFamily (Person), offends (Person, Person)) simply expresses a possible causal

relationship between being in a dysfunctional family and being involved in an

offence (with the two arguments of the relation type offends representing the

offender and the victim, respectively).

Suppose now that we would like to represent the following assertions into the

ontology:

• A person in a dysfunctional family is likely to offend.

• A person in a dysfunctional family is likely to be the victim of an offence.

• A person in a dysfunctional family is likely to self-harm.

These assertions could be represented by the three following instances of the

meta-relation type likelyCauses as follows:

1. likelyCauses (isInDysfunctionalFamily (Person:x), offends (Person:x, Person:y))
2. likelyCauses (isInDysfunctionalFamily (Person:x), offends (Person:y, Person:x))
3. likelyCauses (isInDysfunctionalFamily (Person:x), offends (Person:x, Person:x))

(with self-harm defined in the legal sense as committing an offence against

oneself)

The above can also be written in first-order logic notations as:

1. Vx [ {Person} isInDysfunctionalFamily (x) ? Ay [ {Person} offends (x,y)
2. Vx [ {Person} isInDysfunctionalFamily (x) ? Ay [ {Person} offends (y,x)
3. Vx [ {Person} isInDysfunctionalFamily (x) ? offends (x,x)

(with the logical connective ‘‘?’’ loosely interpreted as ‘‘possibly implies’’—see

also Sect. 6)

The above highlights the importance of the order and meaning of each argument

in a relation or meta-relation. They contribute to clarifying the intensional meaning

of the overall relation or meta-relation. This is also the reason why arguments of a

relation or meta-relation are mathematically defined as a tuple, rather than as a set or

multiset (see the differences between them in Sect. 2.6).

4 Ontology closure

4.1 Type and instance properties

The main difference between a relation type and a relation is that the latter may

include specific information that is pertinent to the particular context in which the

relation is expressed. For example, isDaughterOf is a relation type, linking two

concept types: Woman, Person. To express that ‘‘Mary is the daughter of John by

adoption’’, we can use the relation type isDaughterOf but with a qualifier

byAdoption. This means that the two instances of the concept types Woman and
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Person (which are Mary and John) are linked through a particular instance of the

relation type isDaughterOf, which contains the additional qualifier: byAdoption (this

will be formally defined as a property of the relation). And we write: isDaughterOf
(Woman: Mary, Person: John, \byAdoption[). In general, a relation contains

specific information that is not already contained in the concepts that it links. In the

example, the qualifier byAdoption is not specific to the concept Mary, nor to the

concept John, but is specific to a particular case (i.e., an instance) of the relation

type isDaughterOf. If the specific information of the relation can be accommodated

by other concept types (that are already in the concept type hierarchy of the

ontology), then those concept types should be added to the corresponding relation

type. For example, if we have ChildParentRelationship as a concept type in the

ontology, then we can have a 3-ary relation isDaughterOf (Woman: Mary, Person:
John, ChildParentRelationship: Adoption), which is an instance of the new relation

type isDaughterOf(Woman, Person, ChildParentRelationship).
Another example is to represent the assertion ‘‘Sue is married to John for

5 years’’ into the ontology. In this case, we can define isMarriedTo as a relation type

between two persons and isMarriedTo(Person: Sue, Person: John, \duration,
5 years[) is an instance of that relation type (with duration as a property of the

relation). However, if Time (or Duration) is a concept type that is already included

in the concept type hierarchy, then we should consider isMarriedTo as a relation

type between three concept types: Person, Person and Duration, i.e., isMarriedTo
(Person, Person, Duration). And the above assertion could be translated as

isMarriedTo (Person: Sue, Person: John, Duration: 5 years). This is the case of the

criminal justice ontology described in (Breuker et al. 2002), in which time and

space, among other concept types such as person, role, action, process, procedure,

time, space, document, information, intention, etc., are defined as part of the concept

type hierarchy.

A relation or meta-relation type is an n-ary relation, and in principle, the larger its

arity (the value of n), the better for deductive reasoning. However, this must be

balanced against the cost of processing involved in the creation of a new relation or

meta-relation type, which in turn may necessitate the creation of new concept types

to fully express the intensional meaning of the new relation or meta-relation type.

When a new ontological object is inserted into the ontology, a review of existing

entries in the ontology is required to ensure the consistence between new and

existing objects. For example, we may need to ask the following questions:

• Which existing concept types subsume, or are subsumed into, the newly

introduced concept type, i.e., where to insert the new concept type to the concept

type hierarchy?

• Could the new concept type be used as a new argument in existing relation or

meta-relation types, in replacement for some existing arguments or properties?

• Could the conf values of some existing concepts, relations or meta-relations be

changed to the new type?

To avoid proliferation of new concept types of minor significance, a new

information item in a relation or meta-relation type could be defined as one of its

properties, rather than as a new concept type argument. In general, such a decision
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depends on the domain of discourse (e.g., concept types foreign to the domain may

not need to be added) and on practical constraints on the computing environment of

the ontology (e.g., a need to record new relations quickly into the ontology).

In our formalism, any extra piece of information that pertains to the intensional
meaning of a type or an instance and that cannot be accommodated by existing
types is called a property and retained as an attribute of that type or instance.

By convention, we write type and instance properties between angle brackets,

such as \byAdoption[ and \duration, 5 years[ in the above examples.

The ontology properties defined in (Dillion et al. 2008) are what we classify in

this paper as relation types, relations, type properties and instance properties, and

what are termed concept predicates in Order-Sorted Logic (Kaneiwa 2004; Dillion

et al. 2008) also considers that ‘‘ontology properties are quite close to attributes in
object-oriented modeling’’ with which our formalism concurs. But our break-down

of these ontological properties into different categories permits finer classification of

these types of information.

4.2 Axioms on properties

Unless otherwise stated, for a relation or meta-relation type, we will use the words

‘‘type properties’’ to designate its proper properties (as defined above) as well as its

arguments. The propagation of properties between types and instances are governed

by the following axioms, which are essentially derived from the semantic

relationships between the various ontological objects defined in Definition 4.

Axiom 1 (Type Property Inheritance): For any type, its properties are inherited

by all of its instances, and by all of its subtypes.

Notes:

1. For a relation or meta-relation type, its properties include its concept type

arguments, their properties (i.e., properties of the concept type arguments), and

properties that are proper to the relation or meta-relation type. The propagation

of the arguments and properties of a supertype S to a subtype R transforms the

latter to a richer type, called inherited type and denoted as RS
V, or simply RV (the

superscript V expresses the downward propagation of arguments and proper-

ties). In essence, this is the inverse of the extended type RS^ defined in

Definition 4(6).

2. Axiom 1 is also a generalization of a statement in (Dillion et al. 2008) that ‘‘every

ontology property of the superclass is a property of the subclasses as well’’.

Example 5 (Property Inheritance): Suppose that we have in an ontology:

• The relation type ‘‘murder’’ with one argument ‘‘Person’’ and one property of

‘‘minimumNoParoleTerm: 2 years’’.

• The relation type ‘‘manslaughter’’ with one argument ‘‘Person’’ and one

property of ‘‘minimumJailTerm: 3 years’’.
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As per Axiom 1 and other previous defined semantic rules, we can deduce that:

1. A subsumption relation between two types: murder \ manslaughter (as murder

is a type of manslaughter with premeditation).

2. All instances of murder carry a minimum no-parole period of 2 years (property

inheritance by instance), e.g., if John is convicted of a murder charge, then John

should have a minimum no-parole term of 2 years.

3. All instances of manslaughter carry a minimum jail term of 3 years (property

inheritance by instance), e.g., if John is convicted of a manslaughter charge,

then John should have a minimum jail term of 3 years.

4. The type murder carries a minimum jail term of 3 years (property inheritance

by subtype).

5. All instances of murder carry a minimum jail term of 3 years (property inheritance

by instance), e.g., if John is convicted of a murder charge, then John should have a

minimum jail term of 3 years with a minimum no-parole term of 2 years.

Axiom 2 (Instance Property Generalization): For any instance of a type and for

any supertype of that type, there is another instance of that supertype such that the

properties of the first instance also hold true for the second instance.

Note: In simple terms, Axioms 1 and 2 could be summarized as: ‘‘Type
properties go down and instantiate, while instance properties go up’’.

Example 6 (Instance Property Generalization): In Example 5, if in addition we

have the following instance:

• r1 = murder(Person: John,\jailTerm: 10 years[) (i.e., ‘‘John is condemned to

10-year imprisonment for murder’’),

Then we can infer the following instance of the type manslaughter, which is a

supertype of murder:

• r2 = manslaughter(Person: John, \jailTerm: 10 years[) (i.e., ‘‘John is con-

demned to 10-year imprisonment for manslaughter’’).

Combining with the previous result from Example 5, we can now say that ‘‘John is

condemned to 10-year imprisonment with a minimum 2-year no-parole term’’.

As mentioned in Note 4 of Definition 1, the concept of subsumption applies to

types only and not to their instances. In the above, we cannot say that the

relation (instance) r1 is subsumed into the relation r2, but we can say that r2 is

inferred from r1.

Example 7 (Instance Property Generalization): Suppose now that we have 2

relation types and 1 instance:

• steals(Thief)
• offends(Offender, OffenceVictim)
• r1 = steals(Thief:John) (i.e., ‘‘John is a thief’’)

Since steals \ offends, we can deduce the following:
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• r2 = offends(Offender:John, OffenceVictim:\), i.e., ‘‘John commits an offence

against some unknown person’’, as the instance ‘‘John’’ of the argument ‘‘Thief’’

in r1 could ‘‘go up’’ to r2.

Example 8 (Instance Property Generalization): Suppose that we have 2 relation

types and 2 instances:

• steals(Thief)
• offends(Offender, OffenceVictim)
• r1 = steals(Thief:John) (i.e., ‘‘John is a thief’’)

• r2 = offends(Offender: John, OffenceVictim:Mary) (i.e., ‘‘John commits an

offence against Mary’’)

First, since we have steals \ offends, we can deduce the inherited type steals
(Thief, TheftVictim) from Axiom 1. But we cannot deduce that the instance steals
(Thief: John, TheftVictim: Mary) (i.e., ‘‘John steals from Mary’’) is valid, because

the instance of the OffenceVictim argument of the relation offends (that is ‘‘Mary’’)

does not ‘‘go down’’ (it can only ‘‘go up’’ as per Axiom 2).

Axiom 3 (Relation and Meta-relation Type Closure): For any relation (or meta-

relation) type R, there is another relation (or meta-relation) type R*, called the

closure of R, that satisfies the following conditions:

(1) R* contains all the arguments of R, together with all the properties of R and all

the properties of the arguments of R, if exist.

(2) R* contains all the arguments of each supertype of R, with possibly additional

properties for those arguments (i.e., properties that are specific to the semantics

of R).

(3) For each subtype of R and for each argument of that subtype, R* contains a

supertype of that argument, together with all properties of that argument, if exist.

(4) R* contains no semantically redundant arguments and properties.

Notes:

1. Statement (1) means that R* is a semantic specialization of R as R* contains the

full semantics of R. Statement (2) means that R* is a result of a recursive

application of Axiom 1 (type inheritance) against all supertypes of R. Statement

(3) means that R* is a result of a recursive application of the new B-rule (type

extension) against all subtypes of R. Statement (4) simply means that R* is

tidied up to remove redundant semantics. Therefore, Axiom 3 is essentially a

combination of Axioms 1 and 2.

2. We denote by T*R and T*MR the sets TR and TMR to which their closures are

added. The original subsumption relation with the same meaning (i.e., semantic

generalization or specialization) is also extended to the new sets. Statement (1)

therefore means R* is subsumed into R, or R* \ R.

Example 9 (Relation Type Closure): Suppose that we have the following relation

types in an ontology:
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• commitViolentAct(Offender, Victim, ViolenceMotive, ViolenceInstrument) (e.g.,

an instance of it may be: ‘‘John threatens Mary with a knife because Mary

annoys him’’).

• rob(Robber, Victim, StolenObject) (e.g., an instance of it may be: ‘‘John robs a

pen from Mary’’).

• robWithViolence(Robber) (e.g., an instance of it may be: ‘‘John is a violent robber’’)

Then we have the following subsumption relations:

• robWithViolence \ rob
• robWithViolence \ commitViolentAct

And we can infer the following relation type closure:

• robWithViolence*(Robber, Victim, StolenObject, ViolenceInstrument) (e.g., an

instance of it may be: ‘‘John commits a violent robbery with gun against a bank

and steals a large sum of money’’). This is because according to the above

Axioms, we have:

• Robber = infimum {Robber, Offender}

• StolenObject = infimum {StolenObject, ViolenceMotive}

Example 10 (Relation Type Closure): Suppose that we have the following relation

types in an ontology:

• picksPocket (PettyLarcenist, PickpocketVictim, StolenAmount)
• steals (Thief)
• offends(Offender,OffenceVictim,OffenceAct,OffenceInstrument)

Note that petty larceny is a minor theft, such as pick pocketing. Semantically, we

have:

• picksPocket \ steals \ offends
• PettyLarcenist \ Thief \ Offender

As per Axiom 3, we could define the following relation type closures:

• picksPocket*(PettyLarcenist, PickpocketVictim, OffenceAct: \pickPocketing[,
OffenceInstrument: \byHands[, StolenAmount)

• steals*(Thief, TheftVictim, OffenceAct: \stealing[, OffenceInstrument,
StolenObject)

• offends*(Offender, OffenceVictim, OffenceAct, OffenceInstrument, OffenceMotive)

Axiom 4 (Relation and Meta-Relation Closure): For any relation (or meta-

relation) r of type R, there is another relation (or meta-relation) r*, called the closure

of r, such that r* is an instance of the type closure R*. In addition, r* contains all the

arguments of r, together with all the properties of r, and all the properties of the

arguments of r, if exist.

Note: Axiom 4 simply states the following: Vr [ IR [ IMR conf(r) = R ? Ay [
I*R [ I*MR conf(r*) = R* ( = (conf(r))*) in which I*R and I*MR are the sets IR and
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IMR to which their closures are added. In simple terms, this Axiom states that ‘‘the
conformance of the closure is the closure of the conformance’’.

Example 11 (Relation Closure): Suppose that we have the following types and

instances in an ontology:

• steals(Thief, TheftVictim)
• offends(Offender)
• steals(Thief:John, TheftVictim:Mary) (i.e., ‘‘John steals from Mary’’)

• offends(Offender:John) (i.e., ‘‘John is an offender’’)

As per Axioms 3 and 4, we can infer the following relation closure:

• offends*(Offender:John, OffenceVictim:Mary) (i.e., ‘‘John commits an offence

against Mary’’) as the argument TheftVictim of the relation type steals could be

merged (‘‘go up’’) into the arguments of the supertype offends.

Example 12 (Relation Closure): Suppose that we have the following types and

instance in an ontology:

• picksPocket(PettyLarcenist, PickpocketVictim, StolenAmount)
• steals(Thief)
• offends(Offender, OffenceVictim, OffenceAct, OffenceInstrument)
• picksPocket(PettyLarcenist: John, PickpocketVictim: Mary, StolenAmount:

$5.00) (i.e., ‘‘John picked $5.00 from Mary’s pocket’’).

We have picksPocket \ steals \ offends, and as per Axioms 3 and 4, we can

infer the following relation closures:

• picksPocket*(PettyLarcenist: John, PickpocketVictim: Mary, OffenceAct:
\pickPocketing[, OffenceInstrument: \byHands[, StolenAmount: $5.00), i.e.,

‘‘John picked $5.00 from Mary’s pocket’’.

• steals*(Thief: John, TheftVictim: Mary, OffenceAct: \pickPocketing[, Offen-
ceInstrument: \byHand[, StolenObject: $5.00), i.e., ‘‘John steals $5.00 from

Mary by picking with his hand in Mary’s pocket’’).

• offends*(Offender: John, OffenceVictim: Mary, OffenceAct: \pickPocketing[,
OffenceInstrument: \byHand[, OffenceMotive: $5.00), i.e., ‘‘John commits an

offence against Mary by picking $5.00 with his hand from Mary’s pocket’’.

Definition 5 (Ontology Closure): For an ontology O, the ontology O* obtained by

adding all the type and instance closures built as per Axioms 3 and 4 is called the

closure of the ontology O.

Notes:

• The sets T*R, T*MR (in Axiom 3), I*R and I*MR (in Axiom 4) are part of the new

ontology O*.

• For the rest of this paper, whenever we refer to the closure of a type or instance,

we imply that the ontology in the background is the closure of the original

ontology.
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Proposition 2 (Soundness of Type Extension and Closure): For any relation (or
meta-relation) types R and S such that S \ R, R* is an extension of R with respect to
S, i.e., VR,S [ TR [ TMR S \ R ? R* = RS^

Proof This proposition can be easily proved with the definition of extension (in the

sense of the new B-rule of Definition 4) and closure (Axiom 3).

Note: Proposition 2 reinforces the idea expressed in Axiom 3(3) that type closure

is obtained by a process that includes a recursive extension of that type with respect

to each of its subtypes.

Proposition 3 (Soundness of Type Closure): Let R be a relation (or meta-relation)
type. The following statements hold:

(1) (R*)* = R*
(2) R* \ R
(3) Each argument of R* is the infimum of all the semantically-related arguments

of all supertypes of R and of an argument of R, if exists.

Proof Statement (1) holds because there can only be one unique infimum for any

set of concept types as per Definition 1(1). Statements (2) and (3) could easily be

proven with the definition of the subsumption relation between relation or meta-

relation types.

Note: Proposition 3 expresses that type closure is a semantic specialization of the

original type, and incorporates the semantics of the part of the ontology in the

background that relates to that type (i.e., its context or its relationship with the rest

of the ontology). Therefore, we can say that in an ontology closure, the semantics of

a type and its context are condensed into the type closure.

4.3 Ontology closure construction

The process of building the closure of a relation type could be formalized as a

function f, called the relation type closure function, that associates each relation

type with its closure, i.e., f: TR ? T*R with VR [ TRf(R) = R* .

In order to define f, let us first define the following:

• For a relation type S in TR, let fS^ be a function from the set of all supertypes of S
(denoted as Sup(S) = {R [ TR | S \ R}) to the set TR^ of all relation types and

their extensions (as per the new B-rule). The function fS^ simply associates each

supertype of S with its extension with respect to S, i.e., VS [ TR fS^:

Sup(S) ? T^R with VR [ Sup(S) fS^(R) = RS^

• Similarly, for a relation type S in TR, let fS
V be a function from the set of all

subtypes of S (denoted as Sub(S) = {R [ TR | R \ S}) to the set TR
V of all

relation types and their inheritances (as per Axiom 1). The function fS
V simply

associates each subtype of S with its inheritance from S, i.e., VS [ TR fS
V:

Sub(S) ? TR
V with VR [ Sub(S) fS

V(R) = RS
V

• In the above, note that VS,R [ T R [ Sup(S) , S [ Sub(R)
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The relation type closure function f could finally be defined as:

8R 2 TR f ðRÞ ¼ R� ¼
Y

fW2SupðRÞg
f V
W

Y

fS2SubðRÞg
fS^ðRÞ

0
@

1
A

In essence, the closure of a relation type is obtained by performing a recursive

application of relation type extension (the new B-rule) with respect to all of its

subtypes (i.e., upward propagation of arguments and properties), followed by a

recursive application of relation type inheritance (Axiom 1) from all of its

supertypes (i.e., downward propagation of arguments and properties).

The construction of a meta-relation type closure function can be performed

similarly to the above. The building of those two type closure functions shows how

Axiom 3 is satisfied in practice.

With regard to instance closure, it can be inferred from type closure through the

conf function. In essence, for a relation or meta-relation r, its closure r* is built by

adding any extra arguments and properties obtained from the closure of conf(r) (i.e.,

(conf(r))*), as per Axiom 4.

Example 13 (Relation Type Closure Construction): Suppose that we have the

following three relation types in the ontology:

• W = offends (Offender, Witness)
• R = steals (Thief, Victim)
• S = picksPocket (PickPocket, StolenAmount)

We have: picksPocket \ steals \ offends

The closure of each of the above relation types is constructed as follows, e.g., to

construct the closure of steals, we first define its extension with respect to its

subtype offends, then apply type inheritance from its supertype picksPocket, i.e.,

• f(R) = R* = fW
V (fS^ (steals(Thief, Victim))) = fW

V (steals^(Thief, Victim, Stolen-
Object)) = steals*(Thief, Victim, Witness, StolenObject) (with StolenObject as a

supertype of StolenAmount)
• f(S) = S* = fW

V (fR
V (picksPocket(PickPocket, StolenAmount))) = fW

V (picksPock-
etV(PickPocket, Victim, StolenAmount)) = picksPocket*(PickPocket, Victim,
Witness, StolenAmount)

• f(W) = W* = fS^ (fR^ (offends(Offender, Witness))) = fS^ (offends^(Offender,
Victim, Witness)) = offends*(Offender, Victim, Witness, OffenceMotive) (with

OffenceMotive as a supertype of StolenAmount)

In the above, note that the order of arguments in the relation types, their

intensional meanings, and the creation of new supertypes StolenObject and

OffenceMotive are determined by the ontology designer and domain expert.

4.4 Final notes on ontology closure

1. As mentioned in Note 4 of Definition 4, whenever we refer to a relational object r,

we means ‘‘r within the context of the ontology O’’ and that context helps provide

312 P. H. P. Nguyen et al.

123



the missing arguments to r, as well as other properties that r inherits through its

relationships with other objects. Closure is in essence an attempt to merge the

contextual information of the object into the definition of the object itself.

2. Semantically, there is no new information introduced by the notion of closure

but the addition of all possible arguments and properties that a relation/meta-

relation type/instance could use facilitates inference and search on knowledge

bases.

3. Closure is a way in Conceptual Structure Theory to complete missing

arguments in a relation type or instance, similar to the way Order-Sorted Logic

supplements missing arguments in concept predicates (Kaneiwa 2004; Nitta

1995) in order to improve inference and reasoning.

5 Properties of new ontology formalism

5.1 Line of identities

In a previous example on subsumption, we said that if ‘‘John is a man’’, then ‘‘John

is a man, a person, and a living entity’’. The set of concept types {Man, Person,

LivingEntity} constitutes the line of identities of the concept ‘‘John’’. This notion

can be extended to relation and meta-relation types and their instances.

Definition 6 (Line of Identities): A line of identities Id is a function between the

set of individuals and the set of all subsets of types, i.e., Id: I ? 2TC [ 2TR [ 2TMR

defined by Vi [ I Id(i) = {t [ T | conf(i) \ t}.

Notes:

1. Definition 6 means that for each individual i, its line of identities is the set of all

supertypes of conf(i). Based on the definition of infimum and conf, Definition 6

is equivalent to: Vi [ I conf(i) = infimum(Id(i)), and also equivalent to the

combination of the following three statements:

(1) Vi [ IC VC [ Id(c) conf(c) \ C
(2) Vr [ IR VR [ Id(r) conf(r) \ R
(3) Vmr [ IMR VMR [ Id(mr) conf(mr) \ MR

2. Line of identities is a feature that can be used to distinguish between a

taxonomy and an ontology. In a taxonomy, the line of identities of any

individual is a totally-ordered set (ordered by the subsumption relation) while in

an ontology there may be individuals whose line of identities is a partially-

ordered set (e.g., when an individual belongs to a type which has two different

immediate supertypes, i.e., two different suprema or least upper bounds). In

simple parlance, when applied to a human, we say in this case that the person

has multiple personalities or identities.

5.2 Semantic equivalence

Semantic equivalence is a definition that concerns types only, not instances.
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Definition 7 (Semantic Equivalence): Two types t and t0 are said to be

semantically equivalent (or simply equivalent) and written as t : t0 if and only if

t \ t0 and t0\ t.

Notes:

1. In the case of concept type, two equivalent concept types can be used

interchangeably in the ontology, and said to be synonymous in common

languages (e.g., Car and Automobile).

2. In the case of relation type, two equivalent relation types may not be

straightforwardly interchangeable since there may be a difference in the number

and/or in the order of their arguments. However, in natural languages, the two

relation types ‘‘marries’’ and ‘‘isMarriedTo’’ can be used interchangeably in

any context (e.g., ‘‘John marries Sue’’ and ‘‘Sue is married to John’’). However,

for these two relation types to be semantically equivalent (as per our

mathematical definition), the order of their concept arguments must be defined

consistently in the ontology, e.g., the ontology should have marries(Husband,
Wife) and isMarriedTo(Husband, Wife), and not marries(Husband, Wife) and

isMarriedTo(Wife, Husband). In general, the order of arguments in a relation or

meta-relation type is arbitrarily chosen by the ontology designer, but it must be

consistently chosen for all semantically-related relation or meta-relation types

in the ontology. This ensures that the ontology is semantically as well as

syntactically consistent.

Proposition 4 (Soundness of Semantic Equivalence): For any two relations or
meta-relations r and r0 such that conf(r) and conf(r0) are not semantically
equivalent, there exist i, a component of the tuple B(r) (written as i [ B(r)), and i0, a
component of the tuple B(r0), such that conf(i) 62 Id(i0) or conf(i0) 62 Id(i) holds true.

Proof This Proposition is equivalent to: Vr,r0 [ IR [ IMR Vi [ B(r) Vi0 [ B(r0) if

conf(i) [ Id(i0) and conf(i0) [ Id(i) then we must have: conf(i) : conf(i0). This is

true because the antecedent implies that Id(i) = Id(i0) or B(r) = B(r0) and this in

turn implies that conf(i):conf(i0).

Proposition 5 (Soundness of Semantic Equivalence and Closure): For any two
semantically equivalent relation or meta-relation types R1 and R2, their closures
R1* and R2* are semantically equivalent and have the same arity.

Proof This Proposition can be easily proved with the definitions of closure and

semantic equivalence.

5.3 Semantic disjunction

Semantic disjunction is a property that concerns types and instances.

Definition 8 (Semantic Disjunction):

(1) Two types are said to be semantically disjoint if one does not subsume the

other.
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(2) Two types are said to be semantically strictly disjoint if one does not subsume

the other and if their infimum is the Bottom type.

(3) Two instances are said to be semantically disjoint if the line of identities of any

one instance is not entirely included in the line of identities of the other, i.e.,

Vi,i0 [ I Id(i) X Id(i0) and Id(i0) X Id(i).

Proposition 6 (Soundness of Semantic Equivalence and Disjunction):

(1) For any two semantically equivalent types R1 and R2, their closures R1* and
R2* are semantically equivalent and have the same arity.

(2) Two types are semantically disjoint if and only if they are not semantically
equivalent.

(3) Two instances are semantically disjoint if and only if their conformances (i.e.,
their values through the function c) are not semantically equivalent.

(4) If two types R and R0 are semantically disjoint, then we have either:
Ac [ B(R*) such that c 62 B(R0*) or Ac0 [ B(R0*) such that c0 62 B(R*).

(5) If two instances i and i0 are semantically disjoint, then we have:

• Aj [ Id(i) such that j 62 Id(i0)
• Aj0 [ Id(i0) such that j0 62 Id(i)
• Aj [ Id(i) Aj0 [ Id(i0) such that j and j0 do not subsume each other.

Proof This Proposition can be easily proved with the definitions of closure,

semantic equivalence and semantic disjunction.

Example 14 (Semantic Disjunction): Suppose that we define the relation types

flies, walks and moves as follows:

• flies (Plane) (i.e., we restrict the act of flying to planes only)

• moves(Person) (i.e., we restrict the act of moving to people only)

• walks(Person) (i.e., we restrict the act of walking to people only)

Then the following pairs of relation types are semantically disjoint because their

arguments are disjoint (although it may seem natural to think that flies \ moves):

{moves, flies} and {walks, flies}.

However, if our ontology is broadened to redefine the relation type moves as:

moves(Entity) (i.e., anything (or any entity) can move), then we can have the

following subsumption relations: flies \ moves and walks \ moves (this is because

the new B-rule is satisfied in this case with Plane \ Entity and Person \ Entity).

Example 15 (Justice System with Relation Types): This is an example with a

governmental justice administration system. Let us suppose that we have the

following information, derived from facts and common findings:

1. Any offender would have a record with Police.

2. Children in a dysfunctional family are more likely to offend.

3. Children in a family whose parents are often absent are monitored by a welfare

agency for possible assistance.
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And suppose that we also have in our knowledge database the only piece of

information concerning an adolescent named ‘‘John’’, that is ‘‘John’s parents are in

jail’’. We would like the system to answer the following queries:

1. Is John being monitored by a welfare agency?

2. Does John have a Police record?

To systematically answer the above queries, we would first attempt to build an

ontology O as follows:

• O = (T, I, \, conf, B)

• T = TC [ TR

• TC = {Person, WelfareAgency, DysfunctionalFamily, FamilyWithParentInJail,

Offence, PoliceRecord}

• TR = {monitors, likelyCauses, hasAttribute}

• I = IC [ IR

• IC = {John}

• IR = Ø

• The function conf is defined by: conf(John) = Person
• The function B is defined as represented by the single arrows in Fig. 2

From the initial facts and common findings, we could define two additional

relation types: hasParentInJail and isInDysfunctionalFamily, with a subsumption

relation between them: hasParentInJail \ isInDysfunctionalFamily. However, in

order to simplify the ontology by avoiding having to introduce a meta-relation type

between those two relation types, we could turn them into equivalent concept types:

DysfunctionalFamily and FamilyWithParentInJail, as the choice of defining a new

notion as a concept type or a relation type is arbitrary to the ontology designer. We

then have a subsumption relation between those two new concept types:

FamilyWithParentInJail \ DysfunctionalFamily.
The final ontology could be represented as per Fig. 2 (using graphical

representation similar to that for Conceptual Graphs (Sowa 1984, 2000)), in which:

DysfunctionalFamily 

FamilyWithParentInJail 

monitors 

Offence 

PoliceRecord 

hasAttribute 

likelyCauses 

WelfareAgency 

hasAttribute 

Person: John 

Fig. 2 Example of criminal justice ontology with relation types
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• The relation type likelyCauses is a causal relation between the 2 new concept

types: likelyCauses (DysfunctionalFamily, Offence).
• The relation type hasAttribute links the concept type Offence to the concept type

PoliceRecord indicating that having a Police record is an attribute of committing

an offence: hasAttribute(Offence, PoliceRecord).
• The relation type monitors links the concept type WelfareAgency to the concept

type DysfunctionalFamily indicating that dysfunctional families are monitored

by welfare agencies: monitors(WelfareAgency, DysfunctionalFamily).

Note that in all figures, rectangles represent concepts and concept types, ovals

represent relation types, double ovals represent meta-relation types, dark arrows

represent links expressed in the function B, and block arrows represent subsumption

relations between types.

By navigating in the above ontology, we would find that the answer to question 1

is ‘‘yes’’ and that to question 2 is ‘‘likely’’.

Example 16 (Justice System with Meta-relation Types): The answer to the

questions in Example 15 can also be achieved with an ontology formalization that

includes meta-relation types. Such an ontology O is the same as in the above

example except the following:

• T = TC [ TR [ TMR

• TC = {Person, WelfareAgency, Offence, PoliceRecord}

• TR = {hasParentInJail, isInDysfunctionalFamily, monitors, hasAttribute}

• TMR = {likelyCauses, causes}

• There are now two subsumption relations: hasParentInJail \ isInDysfunction-

alFamily

• causes \ likelyCauses

In this ontology, note that:

• likelyCauses is now a meta-relation type, expressing a possible causal relation

between a relation type and a concept type, i.e., likelyCauses (isInDysfunction-
alFamily, Offence).

• causes is a new meta-relation type, expressing a definite causal relation between

two relation types, i.e., causes(isInDysfunctionalFamily, monitors).
• The two new meta-relation types form the meta-relation type hierarchy of the

ontology.

• likelyCauses is both a relation type (in Example 15) and a meta-relation type (in

Example 16). The difference is in the types of their arguments.

By navigating in the ontology represented by Fig. 3, we would, of course, obtain

the same answers as in Example 15.

The main difference between Figs. 2 and 3 is that reasoning in the latter follows

more closely the semantics of the assertions, e.g., in Fig. 3, is expressed the

assertion ‘‘being in a dysfunctional family likely causes an offence’’ while in Fig. 2,

the assertion ‘‘a dysfunctional family likely causes an offence’’ is represented. This

nuance may be of significance in some cases. For example, in a court of law, a

defense statement such as ‘‘being in a disadvantaged family led to the offence’’ is

Meta-relation and ontology closure 317

123



stronger than a statement such as ‘‘a disadvantaged family (of which the defendant

is a member) led to the offence’’. The new formalism allows representation of both

statements and is therefore more flexible.

Example 17 (Justice System with Relation Closure): This is another way to answer

the same questions as in Example 15, by using relation type closure instead of meta-

relation type. In this formalization, we first organize the general information into an

ontology with the following 3 relation types and 1 concept type (Fig. 4):

• hasParentInJail(Person)
• hasAbsentParent(Person, MonitoringWelfareAgency)
• isInDysfunctionalFamily(Person, Offence: \moreLikely[)
• Offence: \hasPoliceRecord[

monitors 

Offence 

PoliceRecord 

hasAttribut

isInDysfunctionalFamil

hasParentInJail 

Person: John 

likelyCause

causes 

Person

Person

WelfareAgency 

Fig. 3 Example of criminal justice ontology with meta-relation types

Offence:  
<moreLikely> 

<hasPoliceRecord> 

MonitoringWelfareAgency 

isInDysfunctionalFamil

hasAbsentParen

Person: John 

Person

hasParentInJail 

Person

Fig. 4 Example of criminal justice ontology with relation closure
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Note that \moreLikely[ is now a property of the relation type isInDysfunction-
alFamily and \hasPoliceRecord[ is a property of the concept type Offence.

Semantically, we have the following subsumption relations between the above

relation types: hasParentInJail \ hasAbsentParent and hasAbsentParent \ isIn-
DysfunctionalFamily. From the information in the knowledge base, we also have the

relation: hasParentInJail (Person: John).
Based on Axioms 1, 3 and 4, we can deduce the following relation closure:

hasParentInJail*(Person: John, MonitoringWelfareAgency, Offence:\moreLikely[
\hasPoliceRecord[). This new relation permits us to infer: ‘‘John is being

monitored by a welfare agency, more likely to offend, and more likely to have a

Police record’’. This answer is possible through the use of the ontology closure in

our new formalism.

6 Conclusion and future work

This paper proposed an extension to the ontology formalization previously

suggested for Conceptual Structure Theory, by integrating new ideas from Order-

Sorted Logic and other logics. The enhanced formalism offers a flexible way to

represent facts and assertions in the ontology.

Unlike OWL, our proposed ontology formalism contains multiple conceptual

hierarchies enabling representation of complex relationships such as ‘predicate of

predicates’ through n-ary relation type or meta-relation type. The expressive

concepts are needed to deal with ontological relationships among any number of

concepts and their predicates. In particular, the new notion of relation and meta-

relation type closure enables completion of missing arguments in these types. The

end result is the production of an ‘ontology closure’, which is sound for formal

reasoning. Closure is in essence an attempt to merge contextual information of a

relational object into the definition of the object itself, thus leading to a better and

more precise expression of the semantics of the object. Based on such an ontology,

we could answer queries concerning topics that are not explicitly present in the

existing knowledge base.

Concerning future work, as mentioned in Sect. 3.4, the use of modal logic

(expressing the notions of necessity and possibility) in conjunction with first-order

logic, called first-order modal logic, could be explored to more accurately translate

relations and meta-relations defined under our formalism into that new logic.

Similarly, first-order temporal logic could also be explored to provide better

translation of temporal constraints and temporal properties into first-order logic.

It would also be interesting to develop further detailed algorithms to automatically

construct the closure of any type, and automatically determine the equivalence,

disjointness, subsumption between any two concept, relation or meta-relation types.

Another research direction could be the application of the proposed ontology

formalism to a particular domain of discourse, and compare its performance or

usefulness against other formalisms. Further ontological properties may be derived

from such a specific domain. A possible application could be in legal reasoning and

criminal justice administration, in which an ontology and an inference engine could
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be built on top of existing knowledge bases to profile individuals and/or to answer

complex queries that currently could only be answered by human experts.
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