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Abstract The increasing availability of personal data of a sequential nature, such as

time-stamped transaction or location data, enables increasingly sophisticated sequen-

tial pattern mining techniques. However, privacy is at risk if it is possible to reconstruct

the identity of individuals from sequential data. Therefore, it is important to develop

privacy-preserving techniques that support publishing of really anonymous data, with-

out altering the analysis results significantly.

In this paper we propose to apply the Privacy-by-design paradigm for designing

a technological framework to counter the threats of undesirable, unlawful effects of

privacy violation on sequence data, without obstructing the knowledge discovery op-

portunities of data mining technologies. First, we introduce a k-anonymity framework

for sequence data, by defining the sequence linking attack model and its associated

countermeasure, a k-anonymity notion for sequence datasets, which provides a formal

protection against the attack. Second, we instantiate this framework and provide a

specific method for constructing the k-anonymous version of a sequence dataset, which

preserves the results of sequential pattern mining, together with several basic statistics

and other analytical properties of the original data, including the clustering structure.

A comprehensive experimental study on realistic datasets of process-logs, web-logs and

GPS tracks is carried out, which empirically shows how, in our proposed method, the

protection of privacy meets analytical utility.
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1 Introduction

The pervasive, automated collection of personal data, combined with increasingly so-

phisticated data mining techniques, is leading to a new generation of personalized intel-

ligent services. On the other hand, the collection and the disclosure of personal, often

sensitive, information increases the risks of privacy violation. For this reason, many

recent research works have focused on privacy-preserving data mining and anonymity-

preserving data publishing [9,32,12,20]; several techniques have been proposed, that

allow to extract knowledge while trying to protect the privacy of users and customers

(or respondents) represented in the data1. Remarkably, the techniques based on the

k-anonymity concept provide anonymous versions of the original datasets, where the

personal data of each respondent is indistinguishable from those of other k respondents.

An important field in data mining research concerns the analysis of sequence data.

User’s actions as well as customer transactions are stored together with their time-

stamps, making the temporal sequentiality of the events a powerful source of infor-

mation. For instance, web-logs describe the full activity of website visitors. Also, the

spreading of mobile devices, such as cell phones, GPS devices and RFIDs, has become a

great source of spatio-temporal data. Companies and public institutions can now study

the sequential/mobile behavior of their customers/citizens to improve offered services.

A lot of advanced techniques have been investigated to extract patterns and models in

databases of sequences [8,30], as well as in databases of moving objects (trajectories)

[18]. For both legal and ethical reasons, the data owners (or custodians) should not

compromise the privacy of their customers and users, and therefore should not reveal

their personal sensitive information. The point is that a long sequence of events oc-

curred to an individual, or of locations visited by an individual, may reveal a lot about

the individual itself, even if it is de-identified in the data. Quoting Robert O’Harrow

Jr. in No Place to Hide (Free Press, 2005): "Most of privacy violations are not caused

by the revelation of big personal secrets, but by the disclosure of many small facts in a

row. Like killer bees, one is just a nuisance, but a swarm can be lethal." In the last few

years, several techniques have been proposed to develop technological frameworks for

countering the threats of undesirable and unlawful effects of privacy violation, without

obstructing the knowledge discovery opportunities of data mining technologies. The

common result obtained is that no general method exists which is capable of both

dealing with generic personal data and preserving generic analytical results.

In this paper, we propose the application of the Privacy-by-design paradigm for

designing a framework to counter the threats of privacy violation on sequence data,

without obstructing the knowledge discovery opportunities of data mining technolo-

gies. First, we discuss the Privacy-by-design principle, introduced in the ’90s by Ann

Cavoukian, the Information and Privacy Commissioner of Ontario - Canada, by high-

lighting how it has been embraced by United States and Europe. Then, we describe the

idea of Privacy-by-design in data mining domain proposed in [26] and apply it for the

design of framework which assures an anonymous publication of sequence data, while

preserving a good quality of some data analysis.

The proposed framework is based on the well-known notion of k-anonymity. The

concept of k-anonymity (and variants) has been extensively studied for relational data

in tabular format, as a formal protection model against privacy breaches; instead, to

1 In statistics, the problem has been extensively studied in the field of statistical disclosure
control.
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the best of our knowledge, no principled extension of this concept to sequential data has

been put forward. A discussion on related works is reported in Sec. 8, which highlights

how many extensions to the original idea of k-anonymity have been put forward, to

overcome its limited ability to protect privacy in the general case of tabular data.

Within this context, the contribution of this paper is twofold.

First, we introduce a k-anonymity framework for sequence data, by defining the se-

quence linking attack model and its associated countermeasure, namely the k-anonymous

version of a sequence dataset. It provides a formal protection framework against the

attack. We justify how this framework achieves a strong protection in the case of se-

quential data, despite the rather weak protection of ordinary k-anonymity for tabular

data.

Second, we instantiate this framework by providing a specific method for con-

structing the k-anonymous version of a sequence dataset, with the aim of preserving

sequential pattern mining. We empirically validate the effectiveness of our anonymiza-

tion technique with realistic web-log and process-log data, as well as with a large-scale,

real-life dataset of GPS trajectories of vehicles with on-board GPS receivers, tracked

in the city of Milan, Italy. The results of our experiments, where we compare the set

of sequential patterns obtained before and after the application of our anonymization

technique, show that we substantially preserve such frequent sequential patterns, espe-

cially in dense datasets. Clearly, preserving frequent (sequential) patterns is a hard task,

so we hoped to obtain, as a collateral benefit of our approach, that other interesting

analytical properties of the original data are preserved by the proposed anonymization

method. Remarkably, we found in our experiments that, besides sequential patterns,

also various basic statistics are preserved after our transformation, such as the distri-

bution of sequence lengths and the frequency of individual elements in the sequences,

as well as the clustering structure of the original dataset.

The combined effects of our findings, reported in this paper, is that a simple and

effective anonymity protection model exists for personal data of a sequential nature,

and that such model admits a practical and efficient method to obtain non-trivial

anonymous versions of sequential datasets, where analytical utility is preserved to a

broad extent.

The rest of the paper is organized as follows. In Section 2 we discuss the Privacy-

by-design paradigm. After recalling the basics of sequential pattern mining in Section

3.1, we introduce in Section 3.2 the k-anonymity framework for sequence data and

study the associated attack and protection model. Then, we state in Section 4 the

privacy-preserving k-anonymization problem and propose a solution in Section 5. The

experimental results for pattern mining and clustering are presented in Section 6. Sec-

tion 7 discusses the impact of our solution on the society and the legal ground. Finally,

Section 8 gives an account of relevant related works, and Section 9 concludes.

2 Privacy-by-design

Privacy-by-design is an approach to protect privacy by inscribing it into the design

specifications of information technologies from the very start. It was developed by On-

tario’s Information and Privacy Commissioner, Dr. Ann Cavoukian, in the 1990s, as

a response to the growing threats to online privacy that were beginning to emerge at

that time. This paradigm represents a significant innovation with respect to the tradi-

tional approaches for protecting privacy, which focus on providing remedies for privacy
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breaches after-the-fact. On the contrary, Privacy-by-design requires that organizations

think about privacy in a proactive mode; in other words, we have a significant shift

from a reactive model to proactive one that requires to prevent privacy issues instead

of to remedy to them.

In the last year, many companies are realizing the necessity to adopt and consider

privacy at every stage of their business. They have been turning to the concept and

principle of Privacy-by-design to integrate privacy requirements into their business

model. The main problems related to this promising paradigm, considered the next

generation of the privacy protection, are that: (1) in many contexts it is not completely

clear which are the approaches to incorporate Privacy-by-design, and (2) it is growing

the need for a new legal framework to protect privacy where the major aspect should

be Privacy-by-design.

2.1 Privacy-by-design in Law

The Privacy-by-design model for privacy and data protection has been recognized

in legislation. Privacy officials in Europe and the United States are embracing this

paradigm as never before.

In 2010, at the annual conference of “Data Protection and Privacy Commissioners”

the International Privacy Commissioners and Data Protection Authorities approved

a resolution recognizing Privacy-by-design as an essential component of fundamental

privacy protection [2]. This resolution encourages the adoption of the principles of

Privacy-by-design as part of an organization’s default mode of operation, and invites

Data Protection and Privacy Commissioners to promote this paradigm for the incorpo-

ration of its foundational principles in privacy policy and legislation in their respective

jurisdictions.

A year earlier, the EU Article 29 Data Protection Working Party and the Work-

ing Party on Police and Justice issued a joint Opinion, advocating for incorporating

the principles of Privacy-by-design into a new EU privacy framework [1]. In March

2010, the European Data Protection Supervisor recommended to “include unequivo-

cally and explicitly the principle of Privacy-by-design into the existing data protection

regulatory framework” [34]. This recommendation was taken into consideration in the

recent revision of the Data Protection Directive (95/46/EC). The European Union

Data Protection Directive has always included provisions requiring data controllers to

implement technical and organizational measures in the design and operation of ICT,

But this has proven insufficient. Therefore, in the comprehensive reform of the data

protection rules proposed on January 25, 2012 by the EC, the new data protection

legal framework introduces, with respect to the Directive 95/46/EC, the reference to

data protection by design and by default (Article 23 of the Proposal for a Regulation

and Article 19 of the Proposal for a Directive). These articles compel the controller to

“implement appropriate technical and organizational measures and procedures in such

a way that the processing will meet the requirements of this Regulation and ensure

the protection of the rights of the data subject.” and to “implement mechanisms for

ensuring that, by default, only those personal data are processed which are necessary

for each specific purpose of the processing ...”.

Privacy-by-design has been embraced with the same enthusiasm in the United

States. In the last years the U.S. Federal Trade Commission hosted a series of public

roundtable discussions on privacy issues in the digital age and in a recent staff report
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[29] it describes a proposed framework with three main recommendations: privacy by

design, simplified consumer choice, and increased transparency of data practices.

Moreover, in April 2011, Senators John Kerry (D-MA) and John McCain (R-AZ)

proposed their legislation entitled “Commercial Privacy Bill of Rights Act of 2011” that

would require companies that collect, use, store or transfer consumer information to

implement a version of Privacy-by-design when developing products.

2.2 Privacy-by-design in Data Mining

As stated above, in many contexts it is not clear what means applying the Privacy-

by-design principle and which is the best way to applying it for obtaining the desired

result. In this section, we present the articulation of the general “by design” principle

in the data mining domain proposed in [26].

In the literature, several techniques have been proposed to develop technological

frameworks for countering the threats of undesirable and unlawful effects of privacy

violation, without obstructing the knowledge discovery opportunities of data mining

technologies. The common result obtained is that no general method exists which is

capable of both dealing with “generic personal data” and preserving “generic analytical

results”. Monreale in [26] introduce the idea to inscribe privacy protection into the

knowledge discovery technology by design, so that the analysis incorporates the relevant

privacy requirements from the very start, evoking the concept of Privacy-by-design

discussed above.

The articulation of the general “by design” principle in the data mining domain is

that higher protection and quality can be better achieved in a goal-oriented approach.

In such an approach, the data mining process is designed with assumptions about:

(a) the sensitive personal data that are the subject of the analysis;

(b) the attack model, i.e., the knowledge and purpose of a malicious party that has an

interest in discovering the sensitive data of certain individuals;

(c) the category of analytical queries that are to be answered with the data.

These assumptions are fundamental for the design of a privacy-preserving frame-

work. First of all, the techniques for privacy preservation strongly depend on the nature

of the data to be protected. Second, a valid framework has to define the attack model

based on a specific adversary’s background knowledge and an adequate countermeasure.

Different assumptions on the background knowledge entail different defense strategies.

Finally, a privacy-preserving strategy should find an acceptable trade-off between

data privacy and data utility. To reach this goal it is fundamental to consider the cate-

gory of analytical queries to be answered with the transformed data for understanding

which data properties is necessary to preserve. As an example, the design of a defense

strategy for spatio-temporal data should consider that these data could be used to

analyze collective mobility behavior in a city.

Under the above assumptions, we claim that it is conceivable to design a privacy-

preserving analytical process able to: i) transform the data into an anonymous version

with a quantifiable privacy guarantee - i.e., the probability that the malicious attack

fails; and ii) guarantee that a category of analytical queries can be answered correctly,

within a quantifiable approximation that specifies the data utility, using the trans-

formed data instead of the original ones



6 Anna Monreale et al.

In the following, we show how we apply the Privacy-by-design for the design of a

framework for the publication of anonymous sequence data. First, we analyze the pri-

vacy issues related to this kind of data, second, we identify the attack model and third,

we provide a method for assuring anonymity in sequence data taking into consideration

the data analysis that we want to maintain valid.

3 Privacy Model

In this section we discuss the privacy issues in the publication of sequence data and

provide a formal definition for the attack model we consider here. Before presenting the

core ideas of our framework, we recall some useful preliminaries on frequent sequential

pattern mining.

3.1 Preliminaries: frequent sequential pattern mining

We briefly review the basics of frequent sequential pattern mining. Let I = {l1, l2, . . . , ln}

denote a set of items (e.g., events, actions, spatial locations or regions). A sequence

S = s1s2 . . . sm (si ∈ I) is an ordered list of items; an item can occur multiple times

in a sequence. A sequence T = t1t2 . . . tw is a subsequence of S (T � S) if there

exist integers 1 ≤ i1 < . . . < iw ≤ m such that ∀1 ≤ j ≤ w tj = sij . A sequence

database D is a multiset of sequences D = {S1, S2, . . . , SN}. The support of a se-

quence T in a database D is the number of sequences in the database containing T ,

i.e.: suppD(T ) = |{S ∈ D|T � S}|. The relative frequency of a sequence T in a database

D is given by freqD(T ) = suppD(T )/|D|, where |D| is the total number of sequences

in D. Given a frequency threshold σ, a sequence T is called σ-frequent in a database

D if freqD(T ) ≥ σ (or suppD(T ) ≥ σ · |D|). A σ-frequent sequence is also called σ-

frequent sequential pattern. The collection of all σ-frequent (sequential) patterns in D
is denoted by S(D, σ).

The frequent sequential pattern mining problem is formulated as follows: given

a sequential database D and a frequency threshold σ, find all σ-frequent sequential

patterns, i.e. the collection S(D, σ). Since its first definition, many algorithms for se-

quential patterns have been proposed [8,30].

3.2 Sequence Linking Attack

An intruder who gains access to a published database of personal (micro-)data can

conduct attacks on this database in order to make inferences, also on the basis of back-

ground knowledge that (s)he possesses. We generically refer to this agent as an attacker;

specifically, we refer to the linking attack model, i.e., the ability to link the released

data to other external information, which enables the re-identification of (some of) the

respondents associated with the data. In relational data, linking is made possible by

quasi-identifiers, i.e., attributes that, in combination, can uniquely identify individuals,

such as birth date and gender. The remaining attributes represent the private respon-

dent’s information, that may be violated by the linking attack. In privacy-preserving

data publishing techniques, such as k-anonymity, the goal is precisely to find coun-

termeasures to this attack, and to release person-specific data in such a way that the

ability to link to other information using the quasi-identifier(s) is limited.
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In the case of sequential (person-specific) data, where each record is a temporal

sequence of events occurred to a specific person, the above dichotomy of attributes into

quasi-identifiers (QI) and private information (PI) does not hold any longer: here, a

(sub)sequence of events can play both the role of QI and the role of PI. To see this point,

consider the case where sequences represent trajectories, i.e., lists of locations visited

by an individual in the given order: the attacker may know a sequence of locations

visited by some specific person P : e.g., by shadowing P for some time, the attacker

may learn that P was in the shopping mall, then in the park, and then at the train

station, represented by the sequence <mall, park, station>. The attacker could employ

such sequence to retrieve the complete trajectory of the P in the released dataset: this

attempt would succeed, provided that the attacker knows that P ’s sequence is actually

present in the dataset, if the known sequence <mall, park, station> is compatible with

(i.e., is a subsequence of) just one sequence in the dataset. In this example of a linking

attack in the sequence domain, the subsequence known by the attacker serves as QI,

while the entire sequence is the PI that is disclosed after the re-identification of the

respondent. Clearly, as the example suggests, is rather difficult to distinguish QI and

PI: in principle, any specific location can be the theater of a shadowing actions by a spy,

and therefore any possible sequence (of locations, in this example) can be used as a QI,

i.e., as a means for re-identification. Put another way, distinguishing between QI and

PI among the elements of a sequence, being them locations or events, means putting

artificial limits on the attacker’s background knowledge; on the contrary, it is required

in privacy and security research to have assumptions on the attacker’s knowledge that

are as liberal as possible, in order to achieve maximal protection.

As a consequence of this discussion, we take in this work the radical assumption

that any sequence that can be linked to a small number of individuals is a potentially

dangerous QI and a potentially sensitive PI ; then, we study an anonymity model that

tries to achieve the maximal protection possible under this challenging assumption.

The crucial point in defining the sequence linking attack lies exactly in the definition

of QI and PI, which is formalized by the concept of harmful sequence, parametric w.r.t.

an anonymity threshold k.

Definition 1 (k-Harmful Sequence) Given a sequence dataset D and an anonymity

threshold k, a sequence T is k-harmful (in D) iff 0 < suppD(T ) < k.

In other words, a sequence is k-harmful if it is a subsequence of a number of se-

quences in D smaller than k and greater than 0. Essentially, harmful sequences are

potentially dangerous QIs because they occur only a few times in the dataset (but

at least once): thus, a harmful sequence can be used to select a few specific complete

sequences in the dataset. Moreover, each harmful sequence reveals information pertain-

ing to a small (but not empty) set of persons, hence information that is private in the

sense that it reveals a specific, unusual behavior, which potentially violates the right

to privacy of a few individuals that follow a path off the crowd (perhaps revealing per-

sonal preferences, habits, etc.) Conversely, non-harmful sequences are not considered

dangerous, neither as QI nor as PI: a non-harmful sequence either does not occur in

the dataset (and therefore does not help the attacker) or occurs so many times that

(i) it is not useful as a QI, as it is compatible with too many subjects, and (ii) it is

not useful as PI, as it reveals a sequential behavior common to many people. We now

formalize the sequence linking attack model and our proposed countermeasures, based

on the discussion above.
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Definition 2 (Sequence Linking Attack) The attacker, given a published sequence

dataset D where each sequence is uniquely associated with a de-identified respondent,

tries to identify the sequence in D associated with a given respondent X, based on the

following additional knowledge: (i) a (QI) sequence T relative to X, and (ii) the fact

that respondent X is present in D. We denote by probD(T ) the probability that the

sequence linking attack with a QI sequence T succeeds (over D).

From a data protection perspective, we aim at controlling the probability probD(T ),
for any possible QI sequence T . The linking attack can be performed by using either a

harmful or a non-harmful sequence. Clearly, harmful sequences are dangerous because

the attacker has a high probability to uniquely identify the entire sequence of a re-

spondent. In general, given an arbitrary sequence dataset D, there’s no way to prevent

re-identification. To solve this problem, we introduce the k-anonymous version of a

sequence dataset D, parametric w.r.t. an anonymity threshold k > 1.

Definition 3 (k-Anonymous version of a Sequence Dataset) Given an anonymity

threshold k > 1 and two sequence datasets D and D′, we say that D′ is a k-anonymous

version of D iff each k-harmful sequence in D is not k-harmful in D′.

Here, k plays the same role as in ordinary k-anonymity, i.e., k is the minimal accept-

able cardinality of a set of indistinguishable objects, considered a sufficient protection

of anonymity in the given situation. Notice that, according to Def. 3, the harmful se-

quences in the original dataset become non-harmful in the anonymous version, while no

constraints apply to non-harmful sequences in the original dataset: those may be either

non-harmful or harmful in the anonymous version. We now show that the probability

of success of a linking attack in the k-anonymous version of a sequence dataset has an

upper bound of 1
k .

Theorem 1 Given a k-anonymous version D′ of a sequence dataset D, we have that,

for any QI sequence T , probD′(T ) ≤ 1
k
.

Proof Two cases arise.

Case 1: if T is a k-harmful sequence in D, then, by Def. 3, T is not a k-harmful sequence

in D′, i.e., either suppD′(T ) = 0, which implies probD′(T ) = 0, or suppD′(T ) ≥ k,

which implies probD′(T ) = 1
suppD′ (T ) ≤ 1

k .

Case 2: if T is not a k-harmful sequence in D, then, by Def. 3, T can have an arbitrary

support in D′. If T is not k-harmful in D′, then the same reasoning in Case 1 applies;

otherwise, 0 < suppD′(T ) < k. In this case, we have that the probability of success of

the linking attack via T to person X is the probability that X is present in D′ times

the probability of picking X in D′, i.e.,

probD′(T ) =
suppD′(T )

suppD(T )
×

1

suppD′(T )
=

1

suppD(T )
≤

1

k

where the final inequality is justified by the fact that X is present in D by the assump-

tion of the linking attack, and therefore suppD(T ) ≥ k due to the hypothesis that T

is not k-harmful in D. This concludes the proof.

Thanks to Thm. 1, we have a formal mechanism to control the probability of success

of the sequence linking attack: given D, choose a suitable anonymity threshold k and

publish a k-anonymous version of D: thus, we are guaranteed that such probability has

an upper bound of 1
k .
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It is natural to ask ourselves whether this level of privacy protection is adequate, in

reference to the specified attack model: to further discuss this point, let’s play the devil’s

advocate. Consider the following continuation of the above example, where person P

has been shadowed by a spy in its itinerary represented by the sequence S =<mall,

park, station>; assume that the attacker retrieves in the k-anonymous version of the

sequence dataset a large number (≥ k) of sequences containing S as a subsequences, and

that all such sequences contain the location red-light-district, after S. In this situation,

the attacker, albeit cannot identify precisely his victim’s itinerary with high probability,

can safely conclude that P has visited the red-light-district anyway, no matter which

precise itinerary has been followed. This resembles the motivation for introducing l-

diversity, an extension of k-anonymity aimed at avoiding precisely the situation where

all the tuples from the same anonymity group, albeit large, share the same value of

a PI attribute (see Sec. 8 for references). In our sequential setting, is this situation a

bug or a feature? Two cases arise, depending on the status we want to assume for the

location/event red-light-district: it is certainly a PI, but is it a QI or not?

– red-light-district is a PI but not a QI: this option introduces an asymmetry between

PI and QI, similar to what happens in the original k-anonymity framework: in our

example, this implies that the attacker cannot shadow person P in location red-

light-district, which is an arbitrary assumption. In general, this option weakens

considerably the attack model, as it makes rather unsupported assumptions about

what the attacker can or cannot use as a QI. This observation lies at the heart of the

many critics raised against k-anonymity in the tabular case. Even if distinguishing

between PI and QI may allow, in principle, to avoid an inference like the one

depicted in the example above, this possibility comes at the price of making the

overall protection model weaker and unrealistic. This is the reason why we propose

to abolish the distinction from QI and PI in our framework.

– red-light-district is both a PI and a QI: this the option we chose in our model,

and therefore the conclusion that person P has visited the red-light-district can

indeed be taken. Then two possible situations apply: either this is not a sensitive

information, as it is shared with many other persons (at least k − 1), or having

visited the red-light-district is perceived as sensitive for anybody. Clearly, the option

depends on the particular situation and perception. In the first case, there’s nothing

to do, this is precisely what our models accounts for. In the second, it is clear that

red-light-district is a sensitive location per se, and therefore the data should be

suitably sanitized from this information, with some form of hiding or concealment.

This is an orthogonal issue w.r.t. the model presented in this paper, which may

very well co-exist with some pre-processing aimed at hiding the globally sensitive

locations or events in the sequential data.

In the end, the above discussion brings evidence that our sequence anonymity

model, albeit simple, has a solid motivation. But clearly, according to our definition,

there are many possible k-anonymous versions of a sequence dataset D, corresponding

to different ways of dealing with the k-harmful sequences of D. For example, harmful

sequences can be either discarded or, on the contrary, replicated or generalized (e.g.,

by removing some of their items); also, any combination of the above techniques yields

a k-anonymous dataset. Also, many trivial and not useful examples of k-anonymous

version of a given dataset exist, such as the empty dataset (which is a k-anonymous

version of any given dataset).
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From a statistics/data mining point of view, we are only interested in the k-

anonymous versions that preserve some interesting analytical properties of the original

dataset D. The goal of the rest of this paper is exactly to illustrate the practical sig-

nificance of our framework, by providing a first practical instance of our model, where

the protection of privacy meets analytical utility.

4 Pattern-preserving k-anonymity

We now tackle the problem of constructing a k-anonymous version of D that preserves

the collection of frequent sequential patterns in the original data set D. Our approach is

based on a specific way of hiding all the k-harmful sequences, capable of controlling the

introduced distortion and producing excellent results in the case of dense sequential

datasets, according to a notion of density that will be clarified later (see Section 5).

As a side effect, we obtain that the k-anonymous version also preserves the clustering

structure of the original dataset. The pattern-preserving k-anonymization problem can

be formulated as follows:

Definition 4 (optimal P2kA problem) Given a sequence dataset D, and an anonymity

threshold k > 1, find a k-anonymous version D′ of D such that the collection of all
k
|D| -frequent patterns in D is preserved in D′, i.e., the following two conditions hold:

S(D′, k/|D′|) = S(D, k/|D|)
∀T ∈ S(D′, k/|D′|) freqD′(T ) = freqD(T ).

Clearly, the above requirement is quite strict, as the pattern collection in the anony-

mous version is supposed to coincide with that in the original dataset. In this paper, we

present a method that approximates the optimal solution, i.e., one which assures that

(i) D′ is indeed a k-anonymous version of D, and (ii) S(D′, k/|D′|) and S(D, k/|D|)
are "similar". In particular the two conditions of Def. 4 are relaxed to:

S(D′, k/|D′|) ⊆ S(D, k/|D|)
∀T ∈ S(D′, k/|D′|) freqD′(T ) ≃ freqD(T ).

In the experimental section (see Section 6) we express this similarity in terms of two

measures which quantify how much pattern support changes, and how many frequent

patterns we miss. As a first step towards an "optimal" algorithm, we show that our

algorithm provides excellent results on real dense datasets in term of pattern similarity

(see Section 6), and guarantees that the disclosed dataset is k-anonymous.

5 The BF-P2kA algorithm

In this section we present our BF-P2kA (Brute Force Pattern-Preserving k-Anonymization)

algorithm (Algorithm 1), which allows to anonymize a dataset of sequences D. The ra-

tionale behind our approach is that infrequent subsequences are potentially dangerous,

and should be hidden in the disclosed dataset. To perform this step, a straightforward

solution would consist in extracting all infrequent sequential patterns (say, sequential

patterns with support less than k), and search for those patterns within each sequence

in D. Once a pattern T is found in a sequence S, all occurrences of T in S should be
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removed. The first issue concerning this solution is the extraction of infrequent pat-

terns, which can be computationally expensive even for small datasets. Moreover, this

action does not ensure that frequent sequential patterns (with support higher than k)

are preserved. Indeed, for each deletion of the infrequent pattern T , the support of all

its proper subsequences (including those subsequences with support higher than k) is

decremented by 1.

In fact, we show that solving the relaxed P2kA problem is NP-hard. The relaxed

P2kA problem can be formulated as a special case of the sequence hiding problem

introduced in [4,3]. Given a support threshold k and a dataset of sequences D, let

S<k be the set of infrequent sequential patterns in D, and S≥k the set of frequent

sequential patterns in D. The sequence hiding formulation of the P2kA problem requires

to transform D in a database D′ such that

1. ∀S ∈ S<k, suppD′(Si) = 02

2.
∑

S∈S≥k
|suppD(S)− suppD′(S)| is minimized

Solving the sequence hiding problem is demonstrated to be NP-hard in [4,3]. Hence,

we propose a heuristic that provides an approximated solution in polynomial time.

Instead of handling sequences directly, our algorithm operates on a prefix tree which

guarantees good performances on dense datasets, both in terms of computational time

and percentage of preserved frequent sequential patterns.

Our approach consists of three steps. During the first step, the sequences in the

input dataset D are used to build a prefix tree T . The second step, given a minimum

support threshold k, anonymizes the prefix tree. This means that sequences whose

support is less than k are pruned from the prefix tree. Then part of these infrequent

sequences is recovered by updating the corresponding branches in the pruned prefix

tree. The third and last step post-process the anonymized prefix tree, as obtained in

the previous step, to generate the anonymized dataset of sequences D′.

Algorithm 1: BF-P2kA(D, k)

Input: A sequence database D, an integer k

Output: A k-anonymous sequence database D′

// Step I: PrefixTree construction

T = PrefixTreeConstruction(D);
// Step II: PrefixTree anonymization

Lcut = ∅;
foreach v ∈ N s.t. ∃(R, v) ∈ E do

Lcut = Lcut ∪ TreePruning(v,T , k);
end

T ′ = TreeReconstruction(T ,Lcut);
// Step III: Generation of anonymized sequences

D′ = SequenceGeneration(T ′);
return D′

2 In the original formulation, the requirement is that the support is ≤ a given threshold.
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5.1 Step I: Prefix Tree Construction

The first step of the BF-P2kA algorithm (Algorithm 1) is the construction of a prefix

tree T , given a list of sequences D. A prefix tree is more compact than a list of sequences.

It is defined as a triplet T = (N , E ,R), where N = {v1, . . . , vN} is a finite set of N

labeled nodes, E ∈ N×N is a set of edges, and R ∈ N is a fictitious node and represents

the root of the tree. Each node of the tree (except the root) has exactly one parent and

it can be reached through a unique path, which is a sequence of edges starting with

the root node. An example of path for the node d (denoted P(d, T )) is the following:

P(d, T ) = (R,a), (a, b), (b, c), (c, d).

Each node v ∈ N has entries in the form 〈id, item, support〉 where id is the identifier

of the node v, item represents an item of a sequence, and support is the support of the

sequence represented by the path from R to v.

Algorithm 2: PrefixTreeConstruction(D)

Input: A sequence database D

Output: A prefix tree T = (N , E ,R)
R = CreateNode(NULL, 0);
N = {R}; E = {};
foreach distinct S in D do

current = R;

for 1 ≤ i ≤ |S| do

if ∃(current, v) ∈ E s.t. v.item = si then
v.support = v.support+ suppD(S);
current = v;

else
v = CreateNode(si, suppD(S));
N = N ∪ v;

e = CreateEdge(current,v);
E = E ∪ e;

current = v;
end

end

end

return T = (N , E ,R)

The PrefixTreeConstruction function considers each element si of every sequence

S, starting from the first element, and updates the corresponding node in T (i.e., the

node v s.t. v.item = si) by adding the support of S to v.support. This process is

iterated until a path from the root to a node corresponding to si already exists in

T . Otherwise, it creates the nodes corresponding to the remaining elements of S and

updates T accordingly, setting the support of new nodes to suppD(S).
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Step II: Prefix Tree Anonymization

The main phase of Algorithm 1 is the second step; we introduce some notions to simplify

its explanation.

Definition 5 (minimum prefix) Let S = s1s2 . . . sn and T = t1t2 . . . tk be two

sequences such that T is a subsequences of S and sp is the first item of S such that

T � s1s2 . . . sp. The sequence S′ = s1 . . . sp is the minimum prefix of S containing the

sub-sequence T .

Let us consider the sequences S = ABCDECDF and T = ACD. The sequence

S′ = ABCD is the minimum prefix of S containing the sub-sequence T .

We also recall the well-known notions of edit distance and Longest Common Sub-

sequence.

Definition 6 (Edit distance) Let S and T be two sequences. The edit distance

between S and T is given by the minimum number of operations needed to transform

a sequences into the other, where an operation is an insertion, deletion, or substitution

of a single item.

Definition 7 (LCS) Let T be a set of sequences. The Longest Common Subse-

quence (LCS) is the longest subsequence common to all sequences in T .

The first operation performed during step II is the pruning of the prefix tree with

respect to the minimum support threshold. This operation is executed by the TreeP-

runing function (see Algorithm 3), which modifies the tree by pruning all the infrequent

subtrees and updating the support of the path to the last frequent node. TreePruning

visits the tree and, when the support of a given node v is less than the minimum sup-

port threshold k, computes all the sequences represented by the paths which contain

the node v and which start from the root and reach the leaves of the sub-tree with

root v. Note that for construction each node of this sub-tree has support less than

k. All the computed (k-harmful) sequences and their supports are inserted into the

list Lcut. Next, the subtree with root n is cut from the tree. Therefore, the procedure

TreePruning returns a pruned prefix tree and the list Lcut. After the pruning step,

the algorithm tries to reattach the harmful sequences in Lcut onto the pruned tree,

using the TreeReconstruction function (see Algorithm 4). For each harmful sequence

S in Lcut, TreeReconstruction computes the LCS between S and every sequence rep-

resented by the tree. Suppose that T is the sequence such that the computed LCS is

subsequence of T . Then, the TreeReconstruction function selects the path of the tree

that represents the minimum prefix (see Definition 5) of T containing the LCS, and

increases the support of the related nodes by adding the support of S in Lcut. If there

are more LCSs having the same length, the function ClosestLCS function returns the

LCS and the sequence in T such that the edit distance between them is minimum.

This choice allows to increase the support of a limited set of nodes not belonging to

the LCS, thus reducing the noise.

Step III: Generation of anonymized sequences

The second step of Algorithm 1 returns an anonymized prefix tree, i.e., a prefix tree

where only k-frequent subsequences are represented. The third step our method allows
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to generate the anonymized dataset D′. This phase is performed by the Sequence-

Generation procedure, which visits the anonymized prefix tree and generates all the

represented sequences. In general, the number of sequences represented in T ′ is equal

or less than the size of the original database, since some pruned sequences can not be

appended during the TreeReconstruction step.

Algorithm 3: TreePruning(v, T , k)

Input: A node v, a prefix tree T = (N , E ,R), an integer k

Output: A list of infrequent sequences Lcut

Ntemp = {}; Etemp = {};

Lcut = {};
if v.support < k then

newnode = CreateNode(v.item,v.support);
Ntemp = Ntemp ∪ newnode current = v;

repeat
oldnode = vi s.t. (vi, current) ∈ E ;

newnode = CreateNode(oldnode.item, v.support);
oldnode.support = oldnode.support− v.support

Ntemp = Ntemp ∪ newnode;

e = CreateEdge(newnode, current);
Etemp = Etemp ∪ e;

current = oldnode;
until current = R ;

Rtemp = current;

Ttemp = (Ntemp, Etemp, Rtemp);
Tsub = (Nsub, Esub, Rsub) = SubTree(T , v);
Ttemp = Ttemp ∪ Tsub;

T = T \ Tsub;
Lcut = the set of all sequences in Ttemp;

else

foreach vi ∈ N s.t. ∃(v, vi) ∈ E do
Lcut ∪ TreePruning(vi, T , k);

end

end

return Lcut

We now show that (i) our approach guarantees that the disclosed dataset D′ is a

k-anonymous version of D, and (ii) the set of sequential patterns in D′ is a subset of

those in D.

Theorem 2 Given a sequence dataset D and an anonymity threshold k > 1, the

dataset D′ returned by Algorithm 1 satisfies the following conditions:

1. D′ is a k-anonymous version of D,

2. S(D′, k/|D′|) ⊆ S(D, k/|D′|).

The proof is based on the fact that the TreeReconstruction function does not alter the

structure of the pruned tree.
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Proof (sketch)

1. By construction, the pruning step in Algorithm 3 prunes all the subtrees with

support less than k, then the prefix tree T only contains k-frequent sequences.

Nevertheless, the reconstruction step (see Algorithm 4) does not change the tree

structure of T , it only increases the support of existing sequences which are already

k-frequent in D. In conclusion, at the end of the second step of Algorithm 1, the

sequential patterns which are represented in T ′ are at least k-frequent in D.

2. At the end of the pruning step in Algorithm 3, all infrequent branches in T are

cut off. However, this could also imply that some k-frequent sequential patterns are

pruned out, if they are only supported by multiple infrequent paths in the prefix tree

T . Then, the prefix tree T contains a subset of the S(D, k). Moreover, as already

stated, during the reconstruction step the tree structure of T is unchanged, i.e.,

patterns represented in T ′ were still represented in T after the pruning step. Finally,

the set of sequential patterns supported by D′ is a subset of those supported by D.

Algorithm 4: TreeReconstruction(T , Lcut)

Input: A prefix tree T , a list of sequences Lcut

Output: An anonymized reconstructed prefix tree T ′

foreach distinct S ∈ Lcut do
cand = ClosestLCS(S,T );
L = the set of nodes in T belonging to the first minimum prefix containing

cand;

if L is not empty then

foreach v ∈ L do
v.support = v.support+ suppLcut

(S);
end

end

end

return T

Even if our approach does not assure that S(D′, k/|D′|) = S(D, k/|D|), we show in

Section 6 that the difference between the two sets is very small in practice. In particular,

we will show that, generally speaking, the higher the density of the dataset, the higher

the number of preserved sequential patterns. For this reason, we give a formal definition

of density which is based on our prefix tree representation.

Definition 8 (Density of a sequence dataset) Given a sequence dataset D =
{S1, . . . , SN}, its density is the compression ratio introduced by the related prefix tree

T = (N , E ,Root(T )), and is defined as

density(D) = 1−
|N |

∑N
i=1 |Si|

where |N is the number of nodes in T , and |Si| is the length of sequence Si.

When the compression introduced by the prefix tree is low (i.e., the dataset is

sparse), some frequent subsequences tend to appear in different isolated and infrequent
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branches which are likely to be pruned during the pruning step of our algorithm.

Moreover, during the reconstruction step, a significant portion of these branches can

not be recovered. On the other hand, in denser datasets, this situations are more

unlikely to happen, since many sequences are represented by a small part of the prefix

tree. Indeed, a significant portion of frequent patterns is preserved.

5.2 Complexity Analysis

In this section we discuss the time complexity of the BF-P2kA algorithm. We use N to

denote the number of sequences in D, and n to denote the sum of lengths of sequences

in D, i.e., the size of D.

Theorem 3 The BF-P2kA algorithm anonymizes a sequence database D in O(n2)
time.

First of all, we observe that both the PrefixTreeConstruction function and the

last step, i.e., the generation of the anonymized sequences, require O(n) time. The

time complexity of the anonymization step instead depends on the TreeReconstruction

Algorithm that has to compute the LCS and the edit distance for each infrequent

sequence. These two operations require O(n2) time using dynamic programming.

Assuming that the average length of the sequences is significantly smaller than the

number of sequences in D, we can assert that the overall complexity of our algorithm is

O(N2). Notice that, in most real-world applications, the compression introduced by the

prefix tree is significant (see Section 6). In these cases, the complexity of our approach

turns out to be subquadratic. Finally, another influencing factor is the k parameter,

but it can only be estimated experimentally. In Section 6 we analyze the running time

of our algorithm for increasing values of k.

5.3 Running example

We present now an example which shows how our approach works. We consider the

dataset of sequences presented in Fig. 1(a) and a minimum support threshold equal to

2. During the first phase of our method the algorithm builds the prefix tree depicted

in Fig. 2(a), which represents the sequences in a more compact way.

During the anonymization step, the prefix tree is modified by the TreePruning

procedure with respect to the minimum support threshold. In particular, this procedure

searches the tree for all the highest nodes in the tree hierarchy with support less than

2 and returns the two nodes 〈12, S, 1〉 and 〈13,D, 1〉. Next, it selects the paths that

contain these nodes and which start from the root and reach each leaves belonging to

the subtrees of these nodes. Then, it generates all the sequences represented by these

paths and inserts them into the list Lcut, which now contains the sequences (BKS, 1)
and (DEJF, 1).

Finally, the TreePruning procedure eliminates from the tree the subtrees induced

by the infrequent nodes listed above and updates the support of the remaining nodes.

The prefix tree obtained after the pruning step is shown in the Fig. 2(b).

The infrequent sequences within Lcut are then processed in this way: (BKS, 1) in-

creases the support of nodes 〈10,B, 2〉 and 〈11,K, 2〉, producing 〈10,B, 3〉 and 〈11,K, 3〉;
(DEJF, 1) increases the support of nodes 〈1, A,6〉, 〈7,D, 3〉, 〈8, E, 3〉 and 〈9, F, 3〉.
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s1 A B C D E F

s2 A B C D E F

s3 A B C D E F

s4 A D E F

s5 A D E F

s6 A D E F

s7 B K S

s8 B K

s9 B K

s10 D E J F

(a) A dataset of sequences

s′1 A B C D E F

s′2 A B C D E F

s′3 A B C D E F

s′4 A D E F

s′5 A D E F

s′6 A D E F

s′7 A D E F

s′8 B K

s′9 B K

s′10 B K

(b) Anonymized sequences

Fig. 1 A toy example
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(c) Anonymized Prefix Tree

Fig. 2 Prefix tree processing

Therefore we obtain 〈1, A,7〉, 〈7,D, 4〉, 〈8, E, 4〉 and 〈9, F, 4〉.
The prefix tree obtained after the anonymization step is shown in Fig. 2(c). Finally,

the SequencesGeneration procedure provides the anonymized sequence dataset shown

in Fig. 1(b).
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6 Experiments and results

In this section, we present some applications of our anonymization approach on several

real-world datasets. The first bunch of experiments concerns a process-log datasets and

a web-log dataset. The second group of experiments is related to several datasets of

sequences obtained by preprocessing a huge set of moving objects. Finally, we report

on a clustering task applied to a small process-log dataset.

Since our main goal is to preserve sequential patterns as much as possible, we

compare the collections of pattern extracted before and after the anonymization pro-

cess. To measure the similarity between two collection of patterns, we use two met-

rics. The first one is the popular F-Measure which is computed as F = 2(precision ·

recall)/(precision+recall), where the precision is computed as the ratio of σ-frequent

patterns in D′ which are also σ-frequent in D, and the recall is computed as the por-

tion of σ-frequent patterns in D that are also σ-frequent in D′. However, even though

a pattern belongs to both collections, it may happens that its support in D′ is signifi-

cantly different than its original support in D. Hence, we introduce the second metric

measures the pattern frequency similarity and is defined as:

SupSim =
1

∣

∣

∣

Ŝ(σ)
∣

∣

∣

∑

s∈Ŝ(σ)

min{freqD′(s), freqD(s)}

max{freqD′(s), freqD(s)}

where Ŝ(σ) = S(D′, σ)∩S(D, σ). It quantifies the similarity in support of each pattern

belonging to both collections.Both measures range between 0 and 1. When two collec-

tions of subsequences are identical, the two measures are all equal to 1. To extract the

collections of sequential patterns, we used PrefixSpan [30] in all our experiments. All

the experiments were performed on a 2.0GHz Intel Core 2 Duo processor with 2GBytes

RAM, running Windows.

6.1 Experiments on process-logs and web-logs

We worked on a process log and a web-log datasets. The first dataset comes from

the usage of a real-world system developed by Think33, which is an object repository

managing system that allows the users to operate on the same objects from different

locations. This dataset contains about 300,000 transactions on 11 tasks, for a total of

about 1 million of performed tasks. The logs span along 6 months of executions. The

second comes from webserver logs for msnbc.com and news-related portions of msn.com

for the entire day of September, 28, 1999 (Pacific Standard Time)4. Each sequence in

the dataset corresponds to page views of a user during that twenty-four hour period.

Each event in the sequence corresponds to a user’s request for a page. Requests are

recorded at the level of 17 page categories (as determined by a site administrator). The

number of total event sequences is about 1 million. In the following we refer to these

datasets as think3 and msnbc datasets, respectively.

Due to PrefixSpan limitations, we preprocessed the think3 and msnbc in order to

consider only sequences with at most 51 and 25 events respectively. We also removed

all small sequences (less than 4 and 5 events respectively). To extract the collection of

3 http://www.think3.com
4 http://archive.ics.uci.edu/ml/



Anonymity Preserving Sequential Pattern Mining 19

Dataset |I| |D| Length σ Compr.

think3 11 61367 7.34 0.025 96.7%

msnbc 17 286260 9.37 0.015 58.0%

Table 1 Dataset statistics

frequent patterns, we used a minimum support threshold of 1.5% for msnbc and 2.5%

for think3, in order to make the pattern comparison task feasible. Tab. 1 reports some

basic statistics of the three datasets, together with the compression rate introduced by

the prefix tree.

Our experiments were conducted as follows: we first anonymized the three datasets

using different values of k. Since the output of our algorithm depends on the order

in which sequences are processed, we launched BF-P2kA 20 times for each value of k.

Then, for each value of k we compared the collection of frequent patterns extracted from

the original dataset and the collection extracted from all the k-anonymized dataset. We

averaged the results on the 20 trials for each value of k. For think3, we also compared

our results with those obtained by applying the condensation-based anonymization

approach presented in [7]. At the best of our knowledge, this is the only candidate

competitor in this area. Notice however that this work is intended as a way to provide

anonymized strings, and preserve some statistics for classification purposes, rather than

a way to preserve frequent sequential pattern results.

The results are reported in Fig. 3. The support similarity score is satisfactory in

general, and even for high anonymization thresholds the values of SupSim are quite

high. Concerning the F-Measure measure, for think3 it is quite high for any value of k

(see Fig. 3(a)). For msnbc the value of F (see Fig. 3(b)) decrease slowly from a value

of 0.63 (for k = 10) down to 0.47 (for k = 500). As expected, the condensation-based

method is not able to preserve local sequential patterns: the values of F are always

below 0.4, while SupSim is always around 0.60 (see Fig. 3(c)). We also measured the

percentage of sequence that were lost after the anonymization process. For think3 the

loss is limited to a minimum of 1% for k = 10, till a maximum of 5% for k = 100 (see

Fig. 3(e)). For msnbc the loss is higher but still reasonable: it increases logarithmically

from a minimum of 5% for k = 10 to a maximum of 25% for k = 500 (see Fig. 3(f)).

Notice also that all the measures are quite stable: the processing order of sequences

does not influence significantly the quality of the results.

To give an idea of the influence of the k parameter on time performances, Fig. 4

shows the running time of our algorithm applied to msnbc dataset. The processing time

decreases exponentially with increasing values of k and, in this particular case, it starts

to be acceptable for k = 100, which is a reasonable value for this large dataset.

We also measured some basic statistics for assessing the distortion introduced by

our anonymization algorithm. In particular, we computed the distribution of sequence

lengths before and after anonymization, and the frequency of each single item (in terms

of item count divided by the total number of items in the datasets). The results are

depicted in Fig. 5. For think3, the distortion is always very low, for both k = 50 and

k = 100. By comparing these statistics with those obtained by processing the same

dataset using the condensation-based method, we notice that the length distortion in-

troduced by this method is quite similar to the one induced by our algorithm (see

Fig. 5(c)). The item frequency distortion however is sensibly higher (see Fig. 5(d)) for

some items. In the case of msnbc, due to its sparseness, several long (and infrequent)
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Fig. 3 Anonymization results for a process-log and a web-log datasets

sequences are transformed in shorter ones (see Fig. 5(e)). However the trend of the dis-

tribution is maintained. Finally, the item frequency distortion is acceptable in general

(see Fig. 5(f)). We do not report error bars here because the results were extremely

stable (the standard deviation was always below 10−4).

6.2 Experiments on moving objects

Here, we present an application to a moving object dataset. Object trajectories are

first transformed into sequences of crossed locations, and then processed with our

anonymization approach.
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Density Regions |D| Length Compr.

0.010 113 82341 8.327 60.4%

0.035 31 28663 9.152 86.3%

0.038 16 23744 6.239 93.8%

Table 2 Statistics for different density threshold

We explain now the procedure used to obtain the input datasets. We used a set

of GPS trajectories made available within the European project GeoPKDD5; these

data are acquired from private cars equipped with a GPS receiver under a special car

insurance contract, and cover a whole week in the metropolitan area of Milan, Italy.

Each trajectory is a sequence of pairs of coordinates x and y with relative timestamp.

To perform our experiments, we preprocessed these data using the definition of Regions

of Interest (RoI’s) given in [18], where the authors discretize the working space through

a regular grid with cells of small size. Then the density of each cell is computed by

considering each single trajectory and incrementing the density of all the cells that

contain any of its points. Finally a set of RoI’s is extracted by means of a simple

heuristics using a density threshold.

As a result, a set of Roi’s provides a coverage of dense cells through different sized,

disjoint, rectangular regions with some form of local maximality. Once the set of RoI’s

has been extracted, we preprocess all the input trajectories translating each one from a

sequence of points to a sequence of RoI’s. The order of visit is maintained by means of

timestamps. An example of this simple procedure of translation is shown in Fig. 6 —

on the left we can see all the trajectories and a set of RoI’s extracted; on the right we

show a trajectory and we evidence which RoI’s it crosses. This new dataset represents

the input dataset for the anonymization algorithm.

The datasets used in our experiments are built using all the trajectories in the

dataset described above with different density thresholds. These values have been cho-

sen in order to obtain an adequate number of RoI’s, since low density values correspond

5 http://www.geopkdd.eu
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Fig. 5 Dataset statistics before and after anonymization

to few big regions, and higher values produce few small regions. In that way, we obtain

different sets of RoI’s meaning different sets of items in the input sequences. Tab. 2

summarizes the datasets used in our experiments (together with the compression in-

troduced by the prefix tree). Notice that the number of trajectories is different among

the datasets because trajectories that do not cross any region are dropped.

Our experiments were conducted as follows: we first anonymized the three datasets

using values of k between 10 and 500. Then, for each value of k we compared the

collection of frequent patterns extracted from the original dataset and the collection

extracted from the k-anonymized dataset using different support thresholds. Chosen

support threshold are such that the number of patterns is significant for our comparison
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(a) (b)

Fig. 6 Trajectories and regions.

purposes, and the one-to-one comparison is feasible in a reasonable amount of time,

given our computational resources.

In Fig. 7 and Fig. 8 we report the results of our experiments. As expected, the

denser the datasets, the better the results. However, for high support thresholds and

relatively low values of k (say, less than 100), our algorithm performs well with all the

datasets, both in terms of F-Measure and support similarity. For higher values of k, we

have a low accuracy and a good support approximation in the first dataset (Fig. 7(a)

and 7(b)), a good accuracy and a low support approximation in the second dataset

(Fig. 7(c) and 7(d)), and a very good accuracy and support approximation in the third

one (Fig. 7(e) and 7(f)). Notice that, even for high support thresholds, the number

of extracted patterns is still significant for our evaluation. Finally, the number of lost

sequences (see Fig. 8) is quite low for the first two datasets (less than 10% and 20%

respectively for any value of k), and it is still reasonable for the last dataset when

k < 100.

6.3 Clustering results

So far, we have discussed the impact of our k-anonymization approach on the collec-

tions of local patterns. Although the main goal of the BF-P2kA algorithm is to preserve

the collection of extracted sequential patterns, we also investigated its impact on clus-

tering results. For this task, we used the HAC algorithm [27], which is a hierarchical

agglomerative approach using edit distance (see Definition 6). In particular, we use a

variant which stops the aggregation process when a desired number of clusters is ob-

tained. Since this algorithm requires high computational time and memory resources,

applying it to the datasets described in Sections 6.1 and 6.2 turns out to be unfeasible.

Hence, we apply this algorithm to a tractable data sample related to the ProM tutorial6

6 http://www.processmining.org
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Fig. 7 Values of F-Measure and SupSim for different location datasets

(a process mining toolkit), containing 2104 syntectic logs from a technical assistance

chain process of a phone company.

In Fig. 9 we report the (normalized) distance matrices, sorted by cluster labels,

for the original dataset and for k=50 and k=100 (for this experiment we processed

sequences in their original order). Notice that, after the anonymization process, the or-

der of the data instances is not strictly preserved. For this reasons, some blocks in the

matrix are shifted. Nevertheless, the clustering structure does not change significantly.

For k = 50, the two distance matrices are similar, while, for k = 100, the distances

within a same cluster are smoothed, but the clustering structure is preserved. Actually,

the separation of clusters becomes sharper after anonymization: this is a natural conse-
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Fig. 8 Lost sequences on Milan traffic data

quence of our approach, which hides the infrequent subsequences. From the clustering

point of view, this turns out to be a kind of outlier removal or smoothing step. As a

future work, it is worth investigating the aspects of clustering in a k-anonymization

framework more accurately.

7 Considerations on societal and legal impact

Privacy is highly critical in different scenarios. In a European company it is not allowed

to collect private data for any reason even for research and/or business purposes. The

European Directive requires that users must be informed and explicitly agree that the

specified data can be collected and used for specific goals. Clearly, this is a very big

limitation considering the great value of the knowledge that is intrinsically hidden in

the human data left every day by people as digital traces. The opportunities and the

ability of transforming these data, describing in details our society, into knowledge

could help the understanding of many complex phenomena. The problem is that for

doing that we need to collect and analyze these big data and the privacy regulation

tends to limit these opportunities with the aim of protecting one of the most important

individual personal right, the privacy’s right.

The framework proposed in this paper together with our theoretical and empirical

results, presented on the above sections, show that by following the privacy-by-design

principle, adapted in the data mining domain, we can find a data environment that

respects the privacy’s right at individual level while enabling the free usage of data. As

a consequence the application of our technique permits the diffusion of novel opportu-

nities in terms of applications and services that exploit the availability of big data. In

other words, our framework is an example of how it is possible to set an environment

where we can provide services and applications useful for the collectivity, thanks to the

contribution of each user, who provides his/her activity logs, while protecting his/her

right to have a private life.

In our specific context, where data have a sequential nature, making data anony-

mous means to have the possibility of collecting and analyzing sequence data such
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(a) Original data

(b) k=50 (c) k=100

Fig. 9 Clustering results on ProM dataset (3 clusters)

as web logs, spatio-temporal data, query logs without putting at risk the privacy of

individuals represented in the data. Unfortunately, many examples of re-identification

from supposedly anonymous data have been reported in the scientific literature and in

the media, from health records to query logs to GPS trajectories. A very famous ex-

ample is the case of the AOL user re-identified by analyzing the 20 million Web search

queries collected by AOL and released on the Internet in 2006 [11]. The application

of our privacy transformation would make the re-identification of the user hard and

controllable, because after the anonymizatoin process we have a theoretical guarantee

on the probability of re-identification of each user.

Our framework has also an impact on the legal ground; its main goal is to make

anonymous the user personal data according to Directive 1995/46/EC. To this end, the

framework is defined according to the content of this directive and provides technologi-

cal tools to legal experts for the evaluation of data anonymity. The key concepts of the

directive that we took into consideration in the design of our framework are: anony-

mous data, personal data and identifiable person. The concept of “anonymous data”

is not explicitly reported in the directive; but, this notion can be derived from the

definition of “personal data” that is defined as any information relating to an identified

or identifiable natural person (data subject). Here, an “identifiable person” is defined as

a person who can be identified, directly or indirectly, in particular by reference to an

identification number or to one or more factors specific to his physical, physiological,

mental, economic, cultural or social identity. The directive also states that the princi-
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ple of protection must apply to any information concerning an identified or identifiable

individual while shall not apply to data rendered anonymous in such a way that the

data subject is no longer identifiable.

In our context, we identified “personal data”, i.e., the sequences of user actions which

can be both sensitive information to be protected and knowledge to be used as a means

of re-identification (as discussed in Section 3.2), and designed a data transformation

strategy for making any data subject no longer identifiable by a sequence of known

user actions.

Our framework also provides a criterium for measuring data anonymity, i.e., the

probability of success of a sequence linking attack. This represents a possible solution

to one of the main legal open problems: “how to measure the degree of anonymity in

the data”.

Lastly, the application of our framework, based on the principle of the privacy by

design, is an example of how this paradigm can help accountable organizations in their

responsibility for personal information protection. An accountable organization should

identify privacy risks and appropriately taking them into account in developing its

business models and related technologies. In few words it should mitigate and minimize

the risks and effects of privacy breaches. This result is guaranteed by our framework

since we consider the possible privacy risks in the publication of sequence data and

provide both a defense strategy against them and a tool for the risk evaluation.

8 Related work

A lot of recent research works have focused on techniques for privacy-preserving data

mining [9] and privacy-preserving data publishing. Important techniques include per-

turbation, condensation, and data hiding with conceptual reconstruction. The first

step before data publishing is to remove the personally identifying information. In [32]

(and much earlier in statistics by [15]), it has been shown that removing personally

identifying information is not enough to protect privacy. In this work, Samarati and

Sweeney propose a classification of the attributes in quasi-identifiers and sensitive at-

tributes. Moreover, [31] propose k-anonymity to generalize the values of quasi-identifier

attributes in each record so that it is indistinguishable with at least k−1 other records

with respect to the quasi-identifier. Although it has been shown that the k-anonymity

framework presents some flaws and limitations [21], and that finding an optimal k-

anonymization is NP-hard [24], the k-anonymity model is still practically relevant and

in recent years a large research effort has been devoted to develop algorithms for k-

anonymity [12,20].

Anonymity in spatio-temporal data. Recently, privacy-preserving data mining

has been studied in conjunction with spatio-temporal data and trajectory mining [19,

14]. k-anonymity is the most popular method for the anonymization of spatio-temporal

data. It is often used both in works concerning privacy issues in location-based services

(LBSs) [13,23] and in those on anonymity of trajectories [5,28,38,36]. In the work

presented in [5], the authors study the problem of privacy-preserving publishing of

moving object database. They propose the notion of (k, δ)-anonymity for moving ob-

jects databases, where δ represents the possible location imprecision. In particular, this

is a novel concept of k-anonymity based on co-localization that exploits the inherent

uncertainty of the moving objects whereabouts. In this work authors also propose an

approach, called Never Walk Alone, for obtaining a (k, δ)-anonymous moving objects
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database. The method is based on trajectory clustering and spatial translation. [28]

address privacy issues regarding the identification of individuals in static trajectory

datasets. They provide privacy protection by: (1) first enforcing k-anonymity, meaning

every released information refers to at least k users/trajectories, (2) then reconstructing

randomly a representation of the original dataset from the anonymization. [38] study

problem of k-anonymization of moving object databases for the purpose of their pub-

lication. They observe the fact that different objects in this context may have different

quasi-identifiers and so, anonymization groups associated with different objects may

not be disjoint. Therefore, a novel notion of k-anonymity based on spatial generaliza-

tion is provided. In this work, authors propose two approaches in order to generate

anonymity groups that satisfy the novel notion of k-anonymity. These approaches are

called Extreme Union and Symmetric Anonymization. Finally, we are also aware of

very recent work [36], where Terrovitis and Mamoulis suggested a suppression-based

algorithm that, given the head of the trajectories, reduces the probability of disclos-

ing the tail of the trajectories. This work is based on the assumption that different

attackers know different and disjoint portions of the trajectories and the data pub-

lisher knows the attacker knowledge. So, the proposed solution is to suppress all the

dangerous observations in the database.

Sequence Anonymity. An interesting work is presented by [6] where the authors

propose a hiding technique. In particular, they address the problem of hiding sequences

considered sensitive from a sequential database. A first work attacking the problem

of limiting disclosure of sensitive rules by reducing their significance, while leaving

unaltered or minimally affecting the significance of others, non-sensitive rules is [10].

One of the most important contributions of this paper is the proof that finding an

optimal sanitization of a dataset is NP-hard. A heuristic using greedy search is thus

proposed. In [16] the objective is to hide individual sensitive rules instead of all rules

produced by some sensitive itemsets. The work in [33] proposes two distortion-based

heuristic techniques for selectively hiding sensitive rules.

In literature, the work that is more related to ours is [7], where authors propose

a condensation model for anonymization of string data inspired to k-anonymity. This

approach differs from ours since it generates a synthetic dataset based on a probabilistic

model. Moreover, authors do not provide any formal upper bound for the privacy

guarantees. Finally, in our work we want to preserve the sequential pattern mining

results while Aggarwal et al. are interested in preserving the behavior of the anonymous

dataset in the context of classification applications.

An interesting work is presented in [22] where Malin introduces a formal model for

privacy protection, called k-unlinkability, to prevent trail re-identification in distributed

data. The property introduced differs from ours as it based on the k-map [35] notion

adapted for distributed environments, while our notion of k-harmful sequence is related

to k-anonymity. k-map differs from the k-anonymity as in the first model each record

in the released dataset links to at least k entities in the real world, while in the second

model each record occurs at least k times in the released data.

Finally, some research works have focused on anonymity on transaction databases

but these techniques are not suitable for sequence data [17,37].
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9 Conclusion and future work

We introduced a new definition of k-anonymity for personal sequential data which pro-

vides an effective privacy protection model, and presented a method that transforms

sequential datasets into a k-anonymous form, while preserving the utility of data with

reference to a variety of analytical properties. For the design of the proposed frame-

work for anonymous publishing of sequence data we have applied the Privacy-by-design

principle after defining its articulation in the data mining field. Through a wide set of

experiments with various real-life sequential datasets, we demonstrated that the pro-

posed technique substantially preserves sequential pattern mining results both in terms

of number of extracted patterns and their support; results are extremely interesting in

the case of dense datasets. Although we developed our method with the main goal of

preserving pattern mining, we also found evidence that various analytical properties of

the original data are preserved, including the distribution of sequence lengths and the

frequency of individual elements, as well as the original clustering structure.

Clearly, the proposed anonymization method is not the only possible instance of the

proposed model, and more research is needed to investigate whether better alternatives

exist to produce a k-anonymous version of high quality. Certainly, our proposed solution

compares favorably with other first-cut possibilities. Among those, we mention the

possibility of publishing directly the sequential patterns that are found frequent w.r.t.

to the anonymity threshold k; this option is weak for two reasons: first, only patterns

(and associated support) are published, not real data, and second, mining at very

low support thresholds generally yields an output of unmanageable size, as we verified

experimentally on our datasets, even for rather large values of k. Another option would

be to try and construct a new dataset that admits the desired collection of frequent

patterns as a result, an operation known as inverse mining, already shown to be a

high complexity task already in the case of itemset mining [25]; this option is therefore

even more unpractical than the previous. Our method, instead, has a quadratic worst-

case complexity (in the size of the database), which is often over-pessimistic in many

practical cases with dense datasets.

Further research will also investigate new approaches to preserve pattern mining

results also in other challenging contexts, such as sparse datasets or long sequences.

One possible strategy might require the usage of a different and more compact data

structure, instead of the prefix tree which is used here. Moreover, another investigation

possibility could be oriented to a relaxed privacy constraint. Instead of guaranteeing the

full satisfaction of k-anonymity, we could enable better pattern mining results despite

of a less aggressive (and slightly more risky) pruning step.
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