Skip to main content
Log in

Hybrid image plane/stereo (HIPS) manipulation for robotic space applications

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Manipulation systems for planetary exploration operate under severe limitations due to power and weight restrictions and extreme environmental conditions. Typically such systems employ carefully calibrated stereo cameras and carefully calibrated manipulators to achieve precision on the order of ten millimeters with respect to instrument placement activities. The environmental and functional restrictions under which these systems are used limit the operational accuracy of these approaches. This paper presents a novel approach to stereo-based manipulation designed to robustly achieve high precision levels despite the aforementioned limitations. The basic principle of the approach, known as Hybrid Image Plane/Stereo (HIPS) Manipulation, is the generation of camera models through direct visual sensing of the manipulator’s end-effector. The HIPS method estimates and subsequently uses these models to position the manipulator at a target location specified in the image-planes of a stereo camera pair using stereo correlation and triangulation. In-situ estimation and adaptation of the manipulator/camera models in this method accounts for changes in the system configuration, thus ensuring consistent precision for the life of the mission. The end result is a increase in positioning precision by a factor of approximately two for a limited version of HIPS, and an order of magnitude increase in positioning precision for the full on-line version of HIPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, P. K., Timcenko, A., Yoshimi, B., & Michelman, P. (1992). Trajectory filtering and prediction for automated tracking and grasping of a moving object. In Proceedings of the 1992 IEEE international conference on robotics and automation (Vol. 2, pp. 1850–1856), May 1992.

  • Baumgartner, E. T., Leger, P. C., Schenker, P. S., & Huntsberger, T. L. (1998). Sensor-fused navigation and manipulation from a planetary rover. In Proceedings of the SPIE symposium on sensor fusion and decentralized control in robotics systems, Boston, November 1998.

  • Baumgartner, E. T., et al. (2005). The Mars Exploration Rover instrument positioning system. In Proceedings of the IEEE aerospace conference, Big Sky, MT, March 2005.

  • Bonitz, R. G. (1997). Mars surveyor ’98 lander MVACS robotic arm control system design concepts. In Proceedings of the 1997 IEEE international conference on robotics and automation (pp. 2465–2470), Alburquerque, NM.

  • Chen, W. Z., Korde, U., & Skaar, S. B. (1994). Position-control experiments using vision. International Journal of Robotics Research, 13(3), 199–208.

    Article  Google Scholar 

  • Erickson, J., et al. (2002). Mars Exploration Rover surface operations. In Proceedings of the 53rd international astronautical congress, the world space congress, Houston, TX, October 2002. paper No. IAC-02-Q.3.1.03.

  • Feddema, J. T., Lee, C. S. G., & Mitchell, O. (1992). Model-based visual feedback control for a hand–eye coordinated robotic system. IEEE Computer, 25(8), 21–31.

    Google Scholar 

  • Feddema, J. T., Lee, C. S. G., & Mitchell, O. (1993). Visual servoing: Real-time control of robot manipulators based on visual sensory feedback. In K. Hashimoto (Ed.), Visual servoing (Vol. 7, pp. 105–138). Singapore: World Scientific.

    Google Scholar 

  • Gennery, D. (2001). Least-squares camera calibration including lens distortion and automatic edition of calibration points. In A. Grun & T. Huang (Eds.) Calibration and orientation of cameras in computer vision (pp. 123–136). Berlin: Springer.

    Google Scholar 

  • Gennery, D. B. (2006). Generalized camera calibration including fish-eye lenses. International Journal of Computer Vision, 68(3), 239–266.

    Article  Google Scholar 

  • Hager, G. D., Kriegman, D. J., & Morse, A. S. (1998). The block island workshop: A summary. In D. J. Kriegman, G. D. Hager, & A. S. Morse (Eds.) The confluence of vision and control (pp. 273–281). London: Springer.

    Google Scholar 

  • Huntsberger, T., et al. (2002). Rover autonomy for long range navigation and science data acquisition on planetary surfaces. In Proceedings of the 1992 IEEE international conference on robotics and automation (Vol. 32, pp. 3161–3168).

  • Hutchinson, S., Hager, G., & Corke, P. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651–670.

    Article  Google Scholar 

  • Kennedy, B., et al. (2001). LEMUR: limbed excursion mechanical utility rover. Autonomous Robots, 11, 201–205.

    Article  MATH  Google Scholar 

  • Kennedy, B., et al. (2002). Limbed excursion mechanical utility rover: LEMUR II. In Proceedings of the 53rd annual international astronautical congress, Houston, TX.

  • Maki, J. N., et al. (2003). Mars Exploration Rover engineering cameras 12. Journal of Geophysical Research, 108(E12), 8071.

    Article  Google Scholar 

  • Matijevic, J. R. (1998). The Pathfinder mission to Mars: Autonomous navigation and the Sojourner microrover. Science, 5362, 454–455.

    Article  Google Scholar 

  • Matijevic, J. R., Goldstein, B. G., & Welch, R. V. (2001). The Mars Exploration Rover: An in situ science mission to Mars. In Proceedings of the 31st international conference on environmental systems, Orlando, FL, July 2001. paper No. 2001-01-2136.

  • Nickels, K., et al. (2006). Vision-guided self-alignment and manipulation in a walking robot. In Proceedings of the 2006 IEEE international conference on system of systems engineering, Los Angeles, CA, USA, April 2006.

  • Powell, M. W., et al. (2005). Scientific visualization for the Mars Exploration Rovers. In Proceedings of the 2005 IEEE international conference on robotics and automation.

  • Ruf, A., & Horaud, R. (1999). Visual servoing of robot manipulator, Part I: Projective kinematics. International Journal of Robotics Research, 11, 1101–1118.

    Google Scholar 

  • Savage, D., & Cook-Anderson, G. (2004). NASA selects investigations for the Mars Science Laboratory. Jet Propulsion Laboratory, December 2004, Press Release 04-398.

  • Skaar, S. B., Brockman, W. H., & Hanson, R. (1987). Camera space manipulation. International Journal of Robotics Research, 6(4), 20–32.

    Article  Google Scholar 

  • Smith, P. (2004). The Phoenix mission to Mars. In Proceedings of the IEEE aerospace conference (Vol. 1, p. 342), March 2004.

  • Squyres, S. et al. (2003). Athena Mars rover science investigation. Journal of Geophysical Research, 108(E12), 8062.

    Article  Google Scholar 

  • Stroupe, A., et al. (2005). Behavior-based multi-robot collaboration for autonomous construction tasks. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Edmonton, AB, Canada, August 2005.

  • Tunstel, E., et al. (2002). FIDO rover field trials as rehearsal for the NASA 2003 Mars Exploration Rovers Mission. In Proceedings of 9th international symposium on robotics & applications, 5th world automation congress (pp. 320–327), Orlando, FL, June 2002.

  • Urmson, C., et al. (2001). A sensor arm for robotic Antarctic meteorite search. In Proceedings of the 3rd international conference on field and service robotics, Helsinki, Finland, July 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, M.L., Baumgartner, E.T., Nickels, K.M. et al. Hybrid image plane/stereo (HIPS) manipulation for robotic space applications. Auton Robot 23, 83–96 (2007). https://doi.org/10.1007/s10514-007-9032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9032-0

Keywords

Navigation