Skip to main content
Log in

Guiding robots’ behaviors using pheromone communication

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper describes an ongoing project to investigate the uses of pheromones as a means of communication in robotics. The particular example of pheromone communication considered here was inspired by queen bee pheromones that have a number of crucial functions in a bee colony, such as keeping together and stabilizing the colony. In the context of a robotic system, one of the proposed applications for robot pheromones is to allow a group of robots to be guided by a robot leader. The robot leader could release different chemicals to elicit a range of behaviors from other members of the group. A change of the operating temperature of tin oxide gas sensors has been implemented in order to differentiate different chemicals. This paper provides details of the robots used in the project and their behaviors. The sensors, especially the method of using the tin oxide gas sensors, the robot control algorithms and experimental results are presented. In this project, pheromones were used to trigger congregating behavior and light seeking in a group of robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, J. (1976). The sensing of chemicals by bacteria. Scientific American, 234(4), 40–47.

    Article  Google Scholar 

  • Agosta, W. C. (1992). Chemical communication. New York: Scientific American Library.

    Google Scholar 

  • Atema, J. (1996). Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. The Biological Bulletin, 191(1), 129–138.

    Article  Google Scholar 

  • Brooks, R. (1991). New approaches to robotics. Science, 253(5025), 1227–1232.

    Article  Google Scholar 

  • Genovese, V., Dario, P., Magni, R., & Odetti, L. (1992). Self organizing behavior and swarm intelligence in a pack of mobile miniature robots in search of pollutants. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1575–1582), Raleigh, NC.

  • Hayes, A. T., Martinoli, A., & Goodman, R. M. (2002). Distributed odor source localization. IEEE Sensors Journal, 2(3), 260–271.

    Article  Google Scholar 

  • Hayes, A. T., Martinoli, A., & Goodman, R. M. (2003). Swarm robotic odor localization: off-line optimization and validation with real robots. Robotica, 21, 427–441.

    Article  Google Scholar 

  • Holland, O., & Melhuish, C. (1996a). Some adaptive movements of animats with single symmetrical sensors. In Proceedings of the fourth international conference on simulation of adaptive behavior, from animals to animats 4 (pp. 55–64), Cape Cod, MA.

  • Holland, O. E., & Melhuish, C. (1996b). Getting the most from the least: lessons for the nanoscale from minimal mobile agents. In Proceedings of the fifth international workshop on the synthesis and simulation of living systems, artificial life V (pp. 59–66), Nara, Japan.

  • Ishida, H., Suetsugu, K., Nakamoto, T., & Moriizumi, T. (1994). Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sensors and Actuators A: Physical, 45(2), 153–157.

    Article  Google Scholar 

  • Ishida, H., Hayashi, K., Takakusaki, M., Nakamoto, T., Moriizumi, T., & Kanzaki, R. (1996). Odour-source localization system mimicking behavior of silkworm moth. Sensors and Actuators A: Physical, 51(2–3), 225–230.

    Article  Google Scholar 

  • Kazadi, S., Goodman, R., Tsikata, D., Green, D., & Lin, H. (2000). An autonomous water vapor plume tracking robot using passive resistive polymer sensors. Autonomous Robots, 9(2), 175–188.

    Article  Google Scholar 

  • Kazama, T., Sugawara, K., & Watanabe, T. (2005). Traffic-like movement on a trail of interacting robots with virtual pheromone. In Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (pp. 383–388).

  • Kerkut, G. A., & Gilbert, L. I. (1985). Comprehensive insect physiology, biochemistry and pharmacology. Oxford: Pergamon.

    Google Scholar 

  • Lee, A. P., & Reedy, B. J. (1999). Temperature modulation in semiconductor gas sensing. Sensors and Actuators B: Chemical, 60(1), 35–42.

    Article  Google Scholar 

  • Lilienthal, A., & Duckett, T. (2004). Experimental analysis of gas-sensitive Braitenberg vehicles. Advanced Robotics, 18(8), 817–834.

    Article  Google Scholar 

  • Mamei, M., & Zambonelli, F. (2005). Physical deployment of digital pheromones through RFID technology. In Proceedings of the IEEE swarm intelligence symposium (pp. 281–288).

  • Melhuish, C., Holland, O., & Hoddell, S. (1999). Convoying: using chorusing to form travelling groups of minimal agents. Robotics and Autonomous Systems, 28(2–3), 207–216.

    Article  Google Scholar 

  • Michener, & Duncan, C. (1974). The social behavior of the bees a comparative study. Cambridge: Belknap Press of Harvard University Press.

    Google Scholar 

  • Morrison, S. R. (1987). Selectivity in semiconductor gas sensors. Sensors and Actuators, 12(4), 425–440.

    Article  MathSciNet  Google Scholar 

  • Nakamoto, T., Fukuda, T., & Moriizumi, T. (1991). Gas identification system using plural sensors with characteristics of plasticity. Sensors and Actuators B: Chemical, 3(1), 1–6.

    Article  Google Scholar 

  • Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11, 319–324.

    Article  MATH  Google Scholar 

  • Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (2003). Handbook of machine olfaction. Weinheim: Wiley–Interscience.

    Google Scholar 

  • Purnamadjaja, A. H., & Russell, R. A. (2000). A sense of smell for a humanoid robot. In Proceedings of the international conference on artificial intelligence in science and technology (pp. 312–316), Hobart, Australia.

  • Purnamadjaja, A. H., & Russell, R. A. (2005a). Pheromone communication in a robot swarm: necrophoric bee behavior and its replication. Robotica, 23(6), 731–742.

    Article  Google Scholar 

  • Purnamadjaja, A. H., & Russell, R. A. (2005b). Congregation behavior in a robot swarm using pheromone communication. In Proceedings of the Australasian conference on robotics and automation, Sydney, Australia.

  • Roger, K., & Erika (1997). Handbook of biosensors and electronic noses: Medicine, food and the environment. Boca Raton: CRC.

    Google Scholar 

  • Rozas, R., Morales, J., & Vega, D. (1991). Artificial smell detection for robotic navigation. In Proceedings of the fifth international conference on advanced robotics ‘Robots in unstructured environments’ (pp. 1730–1733).

  • Russell, R. A. (1995). Laying and sensing odor markings as a strategy for assisting mobile robot navigation tasks. Robotics & Automation Magazine, IEEE, 2(3), 3–9.

    Article  Google Scholar 

  • Russell, R. A. (1999). Odour detection by mobile robots. River Edge: World Scientific.

    MATH  Google Scholar 

  • Russell, R. A. (2004). Robotic location of underground chemical sources. Robotica, 22(1), 109–115.

    Article  Google Scholar 

  • Sandini, G., Lucarini, G., & Varoli, M. (1993). Gradient driven self-organizing systems. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Yokohama (pp. 429–432).

  • Sears, W. M., Colbow, K., & Consadori, F. (1989). Algorithms to improve the selectivity of thermally-cycled tin oxide gas sensors. Sensors and Actuators, 19(4), 333–349.

    Article  Google Scholar 

  • Seiyama, T., Kato, A., Fujiishi, K., & Nagatani, M. (1962). A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 34, 1502–1503.

    Article  Google Scholar 

  • Sugawara, K., Kazama, T., & Watanabe, T. (2004). Foraging behavior of interacting robots with virtual pheromone. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3074–3079), Sendai, Japan.

  • Svennebring, J., & Koenig, S. (2004). Building terrain-covering ant robots: a feasibility study. Autonomous Robots, 16(3), 313–332.

    Article  Google Scholar 

  • Watson, J. (1984). The tin oxide gas sensor and its applications. Sensors and Actuators, 5, 29–42.

    Article  Google Scholar 

  • Willis, M. A. (2005). Odor-modulated navigation in insects and artificial systems. Chemical Senses, 30(Supplement 1), i287–i288.

    Article  MathSciNet  Google Scholar 

  • Wyatt, T. D. (2003). Pheromones and animal behavior: Communication by smell and taste. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anies Hannawati Purnamadjaja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purnamadjaja, A.H., Russell, R.A. Guiding robots’ behaviors using pheromone communication. Auton Robot 23, 113–130 (2007). https://doi.org/10.1007/s10514-007-9035-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9035-x

Keywords

Navigation