Skip to main content
Log in

Guidance of a mobile robot using an array of static cameras located in the environment

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a new proposal for positioning and guiding mobile robots in indoor environments. The proposal is based on the information provided by static cameras located in the movement environment. This proposal falls within the scope of what are known as intelligent environments; in this case, the environment is provided with cameras that, once calibrated, allow the position of the robots to be obtained. Based on this information, control orders for the robots can be generated using a radio frequency link. In order to facilitate identification of the robots, even under extremely adverse ambient lighting conditions, a beacon consisting of four circular elements constructed from infrared diodes is mounted on board the robots. In order to identify the beacon, an edge detection process is carried out. This is followed by a process that, based on the algebraic distance, obtains the estimated ellipses associated with each element of the beacon. Once the beacon has been identified, the coordinates of the centroids for the elements that make up the beacon are obtained on the various image planes. Based on these coordinates, an algorithm is proposed that takes into account the standard deviation of the error produced in the various cameras in ascertaining the coordinates of the beacon’s elements. An odometric system is also used in guidance that, in conjunction with a Kalman Filter, allows the position of the robot to be estimated during the time intervals required to process the visual information provided by the cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AICON 3D. (Online). Available: http://www.aicon.de/.

  • Borestein, J., Everet, H. R., & Feng, L. (1996). Where am I? Sensor and methods for mobile robot positioning. The University of Michigan. Available: http://www-personal.umich.edu/~johannb/shared/pos96rep.pdf.

  • Chung, J., Kim, N., Kim, J., & Park, C. (2001). POSTRACK: a low cost real-time motion tracking system for VR application. In Proceedings seventh international conference on virtual systems and multimedia (pp. 383–392).

  • Fernández, I., Lázaro, J. L., Mazo, M., & García, S. (2002). A non linear multicamera system calibration method for tele-operated robot. In International conference TELEC‘02 (Vol. 1, pp. 15–24), Universidad de Alcalá, España.

  • Fernández, I., Lázaro, J. L., Mazo, M., & García, S. (2003a). Local positioning system (LPS) for indoor environments using a camera array. In The 11th international conference on advanced robotics. ICAR’2003 (Vol. 2, pp. 613–618), Coimbra, Portugal.

  • Fernández, I., Lázaro, J. L., Mazo, M., & García, S. (2003b). Sistema de posicionamiento local (LPS) en interiores utilizando un array de cámaras. In Seminario anual de automática electrónica industrial e instrumentación. SAAEI’2003 (Vol. 1, pp. 165–170), Vigo, España.

  • Fiala, M. (2004). Pseudo-random linear image marker (PLIM) self-identifying marker system. (Tech. Rep. NRC/ERB-1112, NRC 47173). National Research Coucil, Canada, http://iit-iti.nrc-cnrc.gc.ca/iit-publications-iti/docs/NRC-47173.pdf.

  • Hada, Y., Takase, K., Ohgki, K., Matsukuma, K., Hirata, R., & Okumura, S. (2002). Indor navigation of multiple móbile robots in a dynamic environment using iGPS. In Proceedings of the 2002 IEEE international conference on robotics & automotion (pp. 2682–2688), Washington, DC.

  • Heikkilä, J. (2000). Geometric camera calibration using circular control points. IEEE Transactions Pattern Analysis and Machine Intelligence, 25, 1066–1076.

    Article  Google Scholar 

  • Hoff, W. A., Nguyen, K., & Lyon, T. (1996). Computer vision-based registration techniques for augmented reality. In Proceedings of intelligent robots and control systems XV, intelligent control systems and advanced manufacturing (pp. 538–548).

  • Hoover, A., & Olsen, B. D. (2000). Sensor network perception for mobile. In IEEE conference on robotics and automation (pp. 965–980).

  • Huabin, T., Lei, W., & Zengqi, S. (2004). Accurate and stable vision in robot soccer. In Control, automation, robotics and vision conference ( ICARCV 2004) (Vol. 3, pp. 2314–2319).

  • Kruse, E., & Wahl, F. M. (1998). Camera-based observation of obstacle motions to derive Statistical data for mobile robot motion planning. In ICRA (pp. 662–667).

  • Lavest, J. M., Viala, M., & Dhome, M. (1998) Do we really need an accurate calibration pattern to achieve a reliable camera calibration?. In ECCV’1998 (Vol. 1, pp. 158–174), Freiburg, Germany.

  • Lázaro, J. L. (1998). Modelado de entornos mediante infrarrojos. Aplicación al guiado de robots móviles. Tesis Doctoral. Escuela Politécnica. Universidad de Alcalá.

  • Lee, J., Ando, N., Yakushi, T., & Nakajima, K. (2001).Adaptive guidance for mobile robots in intelligent infrastructure. In Proceedings 2001 IEEE/RSJ interrnational conference on robots and systems (pp. 90–95).

  • Liao, P. S., Chen, T. S., & Chung, P. C. (1999). A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 713–723.

  • Lilienthal, A., & Duckett, T. (2003). An absolute positioning system for 100 euros. In Proceedings of the IEEE international workshop on robotic sensing (ROSE 2003). ISBN: 0-7803-8109-2.

  • López, M. E., Bergasa, L. M., Barea, R., & Escudero, M. S. (2005). A navigation system for assistant robots using visually augmented POMDPs. Autonomous Robots, 19, 67–87.

    Article  Google Scholar 

  • McNamee, L. P. (2003). Photogrametric calibration of mobile robot kinematics. Doctoral dissertation, Ottawa-Carleton Institute for Electrical and Computer Engineering. School of Information Technology and Engineering (Electrical and Computer Engineering).

  • Melen, T. (1994). Geometrical modelling and calibration of video cameras for underwater navigation. Doctoral dissertation, Norwegian University of Science and Technology. Trondhein, Norway.

  • Metronor. (Online). Available: http://www.metronor.com/.

  • Morioka, K., Mao, X., & Hashimoto, H. (2006). Global color model based object matching in the multi-camera environment. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 2644–2649).

  • Naimark, L., & Foxlin, E. (2002). Circular data matrix fiducial system and robust image processing for a wearable vision-interial self-tracker. In ISMAR’02, international symposium on mixed and augmented reality (pp. 27–36).

  • Ocaña, M., Bergasa, L. M., Sotelo, M.Á., Nuevo, J., & Flores, R. (2005). Indoor robot localization system using WIFI signal measure and minimizing calibration effort. In Proceedings of the ISIE 2005 (pp. 1545–1550), Dubrovnik, Croatia.

  • Pizarro, D., Santiso, E., & Mazo, M. (2005). Simultaneous localization and structure reconstruction of mobile robots with external cameras. In ISIE05 (Vol. 3, pp. 1321–1326), Dubrovnik, Croatia.

  • Santiso, E. (2003). Posicionamiento absoluto de un robot móvil a partir del reconocimiento de marcas. Tesis Doctoral. Escuela Politécnica. Universidad de Alcalá.

  • Sogo, T., Ishiguro, H., & Ishida, T. (1999). Acquisition of qualitative spatial representation by visual observation. In Proceedings IJCAI (pp. 1054–1060).

  • Steinhaus, P., Ehrenmann, M., & Dillmann, R. (1999). MEPHISTO: a modular and extensible path planning system using observation. In ICVS’99, international conference on computer vision systems (Vol. 1542, pp. 361–375), Las Palmas, Spain, 13 January 1999. ISBN 3-540-65459.

  • Steinhaus, P., Walther, M., Giesler, B., & Dillmann, R. (2004). 3D global and mobile sensor data fusion for mobile platform navigation. In Proceedings of the IEEE international conference on robotics and automation (ICRA ’04) (Vol. 4, pp. 3325–3330).

  • Takase, K., Hada, Y., & Jia, S. (2003). Autonomous mobile robot platform supported by intelligent information infrastructure. In Proceedings of the 2003 IEEE international conference on robotics, intelligent systems and signal processing (pp. 495–500), Changsha, China, October 2003.

  • Terado, T., & Fujiwara, O. (2004). Measurement of the standing-up motion from a chair using a luminous marker system. In 2004 IEEE international workshop on biomedical circuits and system S2/1-9-12a.

  • ViconPeak. (Online). Available: http://www.vicon.com/.

  • Villadangos, J. M., Ureña, J., Mazo, M., Hernández, A., Martín, M., & Marziani, C. M. (2004). Global positioning of mobile robots by codified ultrasonic beacons. In Conferencia internacional en telecomunicación, electrónica y control (TELEC-04) (pp. 47–53), Santiago de Cuba, Cuba.

  • Welch, G., & Bishop, G. (2001). An introduction to the Kalman filter. In SIGGRAPH 2001. Department of Computer Science, University of North Carolina at Chapel Hill.

  • Yun, J., Park, J., Choi, H., & Lee, J. (2004). Absolute positioning system for mobile robot navigation in an indoor environment. In ICCAS2004 (pp. 1448–1451), Bangkok, Thailand, 25–27 August 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, I., Mazo, M., Lázaro, J.L. et al. Guidance of a mobile robot using an array of static cameras located in the environment. Auton Robot 23, 305–324 (2007). https://doi.org/10.1007/s10514-007-9049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9049-4

Keywords

Navigation