Skip to main content
Log in

Scanning and tracking with independent cameras—a biologically motivated approach based on model predictive control

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a framework for visual scanning and target tracking with a set of independent pan-tilt cameras. The approach is systematic and based on Model Predictive Control (MPC), and was inspired by our understanding of the chameleon visual system.

We make use of the most advanced results in the MPC theory in order to design the scanning and tracking controllers. The scanning algorithm combines information about the environment and a model for the motion of the target to perform optimal scanning based on stochastic MPC. The target tracking controller is a switched control combining smooth pursuit and saccades. Min-Max and minimum-time MPC theory is used for the design of the tracking control laws.

We make use of the observed chameleon’s behavior to guide the scanning and the tracking controller design procedures, the way they are combined together and their tuning.

Finally, simulative and experimental validation of the approach on a robotic chameleon head composed of two independent Pan-Tilt cameras is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, B., & Moore, J. (1995). Optimal filtering. New York: Dover.

    Google Scholar 

  • Armengol, J. A., Prada, F., Ambrosiani, J., & Genis-Galvez, J. M. (1988). The photoreceptors of the chameleon retina (chamaleo chamaleo). A golgi study. Journal für Hirnforschung, 29(4), 403–409.

    Google Scholar 

  • Asada, M., Tanaka, T., & Hosoda, K. (2000). Adaptive binocular visual serving for independently moving target tracking. In Proceedings of the of IEEE international conference on robotics and automation (ICRA’00) (Vol. 3, pp. 2076–2081).

  • Avni, O., Katzir, G., & Rivlin, E. (2007, in preparation). Eye movements in the chameleon.

  • Bemporad, A., Borrelli, F., & Morari, M. (2003). Min-max control of constrained uncertain discrete-time linear systems. IEEE Transactions on Automatic Control, 48(9), 1600–1606.

    Article  MathSciNet  Google Scholar 

  • Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. (2002). The explicit linear quadratic regulator for constrained systems. Automatica, 38(1), 3–20.

    Article  MATH  MathSciNet  Google Scholar 

  • Bernardino, A., & Santos-Victor, J. (1999). Binocular visual tracking: integration of perception and control. IEEE Transactions on Robotics and Automation, 15(6), 1937–1958.

    Article  Google Scholar 

  • Bertsekas, D. P. (2000). Dynamic programming and optimal control (Vol. I, 2nd ed.). Belmont: Athena Scientific.

    Google Scholar 

  • Borrelli, F. (2003). Constrained optimal control of linear & hybrid systems (Vol. 290). Berlin: Springer.

    MATH  Google Scholar 

  • Borrelli, F., Baotic, M., Bemporad, A., & Morari, M. (2005). Dynamic programming for constrained optimal control of discrete-time hybrid systems. Automatica, 41, 1709–1721.

    Article  MATH  MathSciNet  Google Scholar 

  • Bourgault, F., Furukawa, T., & Durrant-Whyte, H. (2004). Process model, constraints, and the coordinated search strategy. In IEEE/RSJ international conference on robotics and automation (pp. 5256–5261), New Orleans, LA.

  • Bowmaker, J. K., Loew, E. R., & Ott, M. (2005). The cone photoreceptors and visual pigments of chameleons. Journal of Comparative Physiology A, 191(10), 925–932.

    Article  Google Scholar 

  • Brogan, W. (1991). Modern control theory (3rd ed.). Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • de Groot, J. H., & van Leeuwen, J. L. (2004). Evidence for an elastic projection mechanism in the chameleon tongue. Proceedings of the Royal Society of London, 271, 761–770.

    Article  Google Scholar 

  • Eagle, J. N. (1984). An optimal search for a moving target when the search path is constrained. Operations Research, 32(5), 1107–1115.

    Article  MATH  MathSciNet  Google Scholar 

  • Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path, moving target search problem. Operations Research, 38(1), 110–114.

    MATH  MathSciNet  Google Scholar 

  • Enns, D., Bugajski, D., Hendrick, R., & Stein, G. (1994). Dynamic inversion: an evolving methodology for flight control design. International Journal of Control, 59(1), 71–91.

    Article  MATH  Google Scholar 

  • Lewis, F.L. (1986). Optimal estimation. New York: Wiley.

    MATH  Google Scholar 

  • Flanders, M. (1985). Visually guided head movement in the African chameleon. Vision Research, 25(7), 935–942.

    Article  Google Scholar 

  • Grieder, P., Parrilo, P., & Morari, M. (2003). Robust receding horizon control—analysis & synthesis. In IEEE conference on decision and control (pp. 941–946), Maui, HI.

  • Harkness, L. (1977). Chameleons use accommodation cues to judge distance. Nature, 267, 346–349.

    Article  Google Scholar 

  • Herrel, A., Meyers, J. J., Aerts, P., & Nishikawa, K. C. (2000). The mechanics of prey prehension in chameleons. The Journal of Experimental Biology, 21(203), 3255–3263.

    Google Scholar 

  • Kvasnica, M., Grieder, P., & Baotić, M. (2004). Multi-parametric toolbox (MPT). http://control.ee.ethz.ch/mpt/.

  • Land, M. F. (1999). Motion and vision: why animals move their eyes. Journal of Comparative Physiology A, 185(4), 341–352.

    Article  Google Scholar 

  • Lau, H., Huang, S., & Dissanayake, G. (2005). Optimal search for multiple targets in a built environment. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 228–233).

  • Lee, J. H., & Yu, Z. (1997). Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 33(5), 763–781.

    Article  MATH  MathSciNet  Google Scholar 

  • Ljung, L. (1999). System identification—theory for the user. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Mayne, D., Rawlings, J., Rao, C., & Scokaert, P. (2000). Constrained model predictive control: stability and optimality. Automatica, 36(6), 789–814.

    Article  MATH  MathSciNet  Google Scholar 

  • Movie1 Online. http://www.cs.technion.ac.il/~avni/mov1.avi.

  • Movie2 Online. http://www.cs.technion.ac.il/~avni/mov2.avi.

  • Ott, M. (2001). Chameleons have independent eye movements but synchronise both eyes during saccadic prey tracking. Experimental Brain Research, 139(2), 173–179.

    Article  Google Scholar 

  • Ott, M., & Schaeffel, F. (1995). A negatively powered lens in the chameleon. Nature, 373, 692–694.

    Article  Google Scholar 

  • Ott, M., Schaeffel, F., & Kirmse, W. (1998). Binocular vision and accommodation in prey-catching chameleons. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 182(3), 319–330.

    Article  Google Scholar 

  • Pettigrew, J. D., Collin, S. P., & Ott, M. (1999). Convergence of specialised behaviour, eye movements and visual optics in the sandlance (teleostei) and the chameleon (reptilia). Current Biology, 9(8), 421–424.

    Article  Google Scholar 

  • Rivlin, E., & Rotstein, H. (2000). Control of a camera for active vision: foveal vision, smooth tracking and saccade. International Journal of Computer Vision, 39(2), 81–96.

    Article  MATH  Google Scholar 

  • Ross, S. M. (1983). Introduction to stochastic dynamic programming. Orlando: Academic Press.

    MATH  Google Scholar 

  • Scokaert, P., & Mayne, D. (1998). Min-max feedback model predictive control for constrained linear systems. IEEE Transactions on Automatic Control, 43(8), 1136–1142.

    Article  MATH  MathSciNet  Google Scholar 

  • Stengel, R. (1994). Optimal control and estimation. New York: Dover.

    MATH  Google Scholar 

  • Stone, L. D. (1992). Theory of optimal search (2 ed.). Military Applications Se America.

  • Sutherland, O., Truong, H., Rougeaux, S., & Zelinsky, A. (2001). Advancing active vision systems by improved design and control. In ISER ’00: experimental robotics VII (pp. 71–80), London. Berlin: Springer.

    Chapter  Google Scholar 

  • Vijayakumar, S., Conradt, J., Shibata, T., & Schaal, S. (2001). Overt visual attention for a humanoid robot. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (Vol. 4, pp. 2332–2337).

  • Wong, E.-M., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle Bayesian search for multiple lost targets. In Proceedings of IEEE international conference on robotics and automation (ICRA05) (pp. 3169–3174).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofir Avni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avni, O., Borrelli, F., Katzir, G. et al. Scanning and tracking with independent cameras—a biologically motivated approach based on model predictive control. Auton Robot 24, 285–302 (2008). https://doi.org/10.1007/s10514-007-9057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9057-4

Keywords

Navigation