Skip to main content
Log in

Extending obstacle avoidance methods through multiple parameter-space transformations

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Obstacle avoidance methods approach the problem of mobile robot autonomous navigation by steering the robot in real-time according to the most recent sensor readings, being suitable to dynamic or unknown environments. However, real-time performance is commonly gained by ignoring the robot shape and some or all of its kinematic restrictions which may lead to poor navigation performance in many practical situations.

In this paper we propose a framework where a kinematically constrained and any-shape robot is transformed in real-time into a free-flying point in a new space where well-known obstacle avoidance methods are applicable. Our contribution with this framework is twofold: the definition of generalized space transformations that cover most of the existing transformational approaches, and a reactive navigation system where multiple transformations can be applied concurrently in order to optimize robot motion decisions. As a result, these transformations allow existing obstacle avoidance methods to perform better detection of the surrounding free-space, through “sampling” the space with paths compatible with the robot kinematics.

We illustrate how to design these space transformations with some examples from our experience with real robots navigating in indoor, cluttered, and dynamic scenarios. Also, we provide experimental results that demonstrate the advantages of our approach over previous methods when facing similar situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arkin, R. C. (1998). Behaviour-based robotics. Cambridge: MIT Press.

    Google Scholar 

  • Arras, K. O., Persson, J., Tomatis, N., & Siegwart, R. (2002). Real-time obstacle avoidance for polygonal robots with a reduced dynamic window. In IEEE international conference on robotics and automation (Vol. 3, pp. 3050–3055).

  • Balch, T., & Arkin, R. (1993). Avoiding the past: a simple but effective strategy for reactive navigation. In IEEE international conference on robotics and automation (Vol. 1, pp. 678–685).

  • Blanco, J. L., Gonzalez, J., & Fernández-Madrigal, J. A. (2005). The TP-Space: Foundations and applications (Technical report). System Engineering and Automation Dept., University of Malaga.

  • Borenstein, J., & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1179–1187.

    Article  Google Scholar 

  • Borenstein, J., & Koren, Y. (1991). The vector field histogram—fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288.

    Article  Google Scholar 

  • Feiten, W., Bauer, R., & Lawitzky, G. (1994). Robust obstacle avoidance in unknown and cramped environments. IEEE international conference on robotics and automation (Vol. 3, pp. 2412–2417).

  • Fernández-Madrigal, J. A., Galindo, C., & González, J. (2004). Assistive navigation of a robotic wheelchair using a multihierarchical model of the environment. Integrated Computer-Aided Engineering, 11(4), 309–322.

    Google Scholar 

  • Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research, 17(7), 760–772.

    Article  Google Scholar 

  • Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 4, 23–33.

    Article  Google Scholar 

  • González, J., Galindo, C., Blanco, J. L., Muñoz, A. J., Arevalo, V., & Fernández-Madrigal, J. A. (2006). The robotic wheelchair SENA project. In DAAAM international scientific book 2006 (Chap. 20). ISSN 1726-9687.

  • Haddad, H., Khatib, M., Lacroix, S., & Chatila, R. (1998). Reactive navigation in outdoor environments using potential fields. In IEEE international conference on robotics and automation (Vol. 2, pp. 1232–1237).

  • Khatib, M., Jaouni, H., Chatila, R., & Laumond, J. P. (1997). Dynamic path modification for car-like nonholonomic mobile robots. In IEEE international conference on robotics and automation (ICRA) (Vol. 4, pp. 2920–2925).

  • Lamiraux, F., Bonnafous, D., & Lefebvre, O. (2004). Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics, 20(6), 967–977.

    Article  Google Scholar 

  • Latombe, C. (1991). Robot motion planning. Dordrech: Kluwer Academic.

    Google Scholar 

  • Laumond, J. P., & Souères, P. (1993). Metric induced by the shortest paths for a car-like mobile robot. In IEEE international conference on intelligent robots and systems (Vol. 2, pp. 1299–1304).

  • Lozano-Pérez, T. (1987). A simple motion-planning algorithm for general robot manipulators. IEEE Journal of Robotics and Automation, 3(3), 224–238.

    Article  Google Scholar 

  • Minguez, J., & Montano, L. (2004). Nearness Diagram (ND) navigation: Collision avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation, 20(1), 45–59.

    Article  Google Scholar 

  • Minguez, J., & Montano, L. (2006). Abstracting vehicle shape and kinematics constraints from obstacle avoidance methods. Autonomous Robots, 20(1), 43–59.

    Article  Google Scholar 

  • Murphy, R. R. (2000). Introduction to AI robotic. Cambridge: MIT Press.

    Google Scholar 

  • Quinlan, S., & Khatib, O. (1993). Elastic bands: connecting path planning and control. In IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 802–807).

  • Pal, P. K., & Kar, A. (1995). Mobile robot navigation using a neural net. In IEEE international conference on robotics and automation (Vol. 2, pp. 1503–1508).

  • Ramirez, G., & Zeghloul, S. (2001). Collision-free path planning for non-holonomic mobile robots using a new obstacle representation in the velocity space. Robotica, 19, 543–555.

    Article  Google Scholar 

  • Reeds, J. A., & Schepp, R. A. (1990). Optimal paths for a cat that goes both forward and backward. Pacific Journal of Mathematics, 145(2), 367–393.

    MathSciNet  Google Scholar 

  • Schlegel, C. (1998). Fast local obstacle avoidance under kinematics and dynamic constraints for a mobile robot. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 594–599).

  • Simmons, R. (1996). The curvature-velocity method for local obstacle avoidance. In IEEE international conference on robotics and automation (ICRA) (Vol. 4, pp. 3375–3382).

  • Souères, P., & Laumond, J. P. (1996). Shortest paths synthesis for a car-like robot. IEEE Transactions on Automation and Control, 41(5), 672–688.

    Article  MATH  Google Scholar 

  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.

    Article  MATH  Google Scholar 

  • Vendittelli, M., Laumond, J. P., & Nissoux, C. (1999). Obstacle distance for car-like robots. IEEE Transactions on Robotics and Automation, 15(4), 678–691.

    Article  Google Scholar 

  • Xu, H., & Yang, S. X. (2002). Real-time collision-free motion planning of non-holonomic robots using a neural dynamics based approach. In IEEE international conference on robotics and automation (ICRA) (Vol. 3, pp. 3087–3092).

  • Zhang, L., Kim, Y. J., Varadhan, G., & Manocha, D. (2006). Fast C-Obstacle query computation for motion planning. In IEEE international conference on robotics and automation (ICRA) (pp. 3035–3040).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Luis Blanco.

Additional information

A shorter version of this article appeared in the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, JL., González, J. & Fernández-Madrigal, JA. Extending obstacle avoidance methods through multiple parameter-space transformations. Auton Robot 24, 29–48 (2008). https://doi.org/10.1007/s10514-007-9062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9062-7

Keywords

Navigation