Skip to main content
Log in

User-adapted plan recognition and user-adapted shared control: A Bayesian approach to semi-autonomous wheelchair driving

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Many elderly and physically impaired people experience difficulties when maneuvering a powered wheelchair. In order to ease maneuvering, powered wheelchairs have been equipped with sensors, additional computing power and intelligence by various research groups.

This paper presents a Bayesian approach to maneuvering assistance for wheelchair driving, which can be adapted to a specific user. The proposed framework is able to model and estimate even complex user intents, i.e. wheelchair maneuvers that the driver has in mind. Furthermore, it explicitly takes the uncertainty on the user’s intent into account. Besides during intent estimation, user-specific properties and uncertainty on the user’s intent are incorporated when taking assistive actions, such that assistance is tailored to the user’s driving skills. This decision making is modeled as a greedy Partially Observable Markov Decision Process (POMDP).

Benefits of this approach are shown using experimental results in simulation and on our wheelchair platform Sharioto.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner, P., & McCarragher, B. J. (2000). Modeling and constraining human interactions in shared control utilizing a discrete event framework. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30(3), 369–379.

    Article  Google Scholar 

  • Bennewitz, M., Burgard, W., & Thrun, S. (2002). Using EM to learn motion behaviors of persons with mobile robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 502–507). EPFL, Lausanne, Switzerland.

  • Brooks, A., Makarenko, A., Williams, S., & Durrant-Whyte, H. (2006). Parametric POMDPs for planning in continuous state spaces. Robotics and Autonomous Systems, 54(11), 887–897.

    Article  Google Scholar 

  • Carberry, S. (2001). Techniques for plan recognition. User Modeling and User-Adapted Interaction, 11(1–2), 31–48.

    Article  MATH  Google Scholar 

  • Cassandra, A. R. (1998). Exact and approximate algorithms for partially observable Markov decision processes. Ph.D. thesis, Brown University.

  • Cooper, R. A., & Cooper, R. (2003). Trends and issues in wheeled mobility technologies. In E. Steinfeld, V. Paquet (Eds.), International workshop on space requirements for wheeled mobility (pp. 1–26). Buffalo, NY, USA.

  • Cox, I. J. (1989). Blanche: Position estimation for an autonomous robot vehicle. In Proceedings of the IEEE/RSJ international workshop on intelligent robots and systems (pp. 432–439). Tsukuba, Japan.

  • Demeester, E., Nuttin, M., Vanhooydonck, D., & Van Brussel, H. (2003). A model-based, probabilistic framework for plan recognition in shared wheelchair control: Experiments and evaluation. In Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems (pp. 1456–1461). Las Vegas, Nevada, USA.

  • Demeester, E., Nuttin, M., Vanhooydonck, D., Vanacker, G., & Van Brussel, H. (2005). Global dynamic window approach for holonomic and non-holonomic mobile robots with arbitrary cross-section. In Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems (pp. 2694–2699). Edmonton, Alberta, Canada.

  • Doshi, F., & Roy, N. (2007). Efficient model learning for dialog management. In Proceedings of the ACM/IEEE international conference on human-robot interaction (pp. 65–72). Arlington, Virginia, USA.

  • Fehr, L., Langbein, W. E., & Skaar, S. B. (2000). Adequacy of power wheelchair control interfaces for persons with severe disabilities: A clinical survey. Journal of Rehabilitation Research and Development, 37(3), 353–360.

    Google Scholar 

  • Frese, U., Larsson, P., & Duckett, T. (2005). A multilevel relaxation algorithm for simultaneous localization and mapping. IEEE Transactions on Robotics, 21(2), 196–207.

    Article  Google Scholar 

  • Glover, J., Thrun, S., & Matthews, J. T. (2004). Learning user models of mobility-related activities through instrumented walking aids. In Proceedings of the 2004 IEEE international conference on robotics & automation (Vol. 4, pp. 3306–3312). New Orleans, LA.

  • Gutmann, J. S. (2000). Robuste navigation autonomer mobiler systeme. Ph.D. thesis, University of Freiburg.

  • Hauskrecht, M. (2000). Value-function approximations for partially observable Markov decision processes. Journal of Artificial Intelligence Research, 13, 33–94.

    MATH  MathSciNet  Google Scholar 

  • Hüntemann, A., Demeester, E., Vanacker, G., Vanhooydonck, D., Philips, J., Van Brussel, H., & Nuttin, M. (2007). Bayesian plan recognition and shared control under uncertainty: Assisting wheelchair drivers by tracking fine motion paths. In Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems (pp. 3360–3366). San Diego, California, USA.

  • Jaulmes, R., Pineau, J., & Precup, D. (2007). A formal framework for robot learning and control under model uncertainty. In Proceedings of the 2007 IEEE international conference on robotics and automation (pp. 2104–2110). Roma, Italy.

  • Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1–2), 99–134.

    Article  MATH  MathSciNet  Google Scholar 

  • Kleinman, D. L., Baron, S., & Levison, W. H. (1970). An optimal control model of human response—part I: Theory and validation. Automatica, 6, 357–369.

    Article  Google Scholar 

  • Kröse, B. J. A., Porta, J. M., van Breemen, A. J., Crucq, K., Nuttin, M., & Demeester, E. (2003). Lino, the user-interface robot. In Lecture notes in computer science : Vol. 2875. Ambient intelligence (pp. 264–274). New York: Springer. ISBN 3-540-20418-0.

    Google Scholar 

  • Latombe, J. C. (1991). Robot motion planning. Dordrecht: Kluwer Academic. ISBN 0-7923-9129-2.

    Google Scholar 

  • Martens, C., Ruchel, N., Lang, O., Ivlev, O., & Gräser, A. (2001). A FRIEND for assisting handicapped people. IEEE Robotics and Automation Magazine, 8(1), 57–65.

    Article  Google Scholar 

  • McRuer, D. (1980). Human dynamics in man-machine systems. Automatica, 16, 237–253.

    Article  MATH  Google Scholar 

  • Mittal, V. O., Yanco, H. A., Aronis, J., & Simpson, R. (Eds.). (1998). Assistive technology and artificial intelligence—applications in robotics, user interfaces and natural language processing. In Lecture notes in computer science : Vol. 4158. Lecture notes in artificial intelligence. New York: Springer.

    Google Scholar 

  • MLR homepage. (2007). Mobile learning robots homepage. www.mech.kuleuven.be/mlr/.

  • Parikh, S. P., Grassi, V., Jr., Kumar, V. (2004). Incorporating user inputs in motion planning for a smart wheelchair. In Proceedings of the 2004 IEEE international conference on robotics & automation (Vol. 2, pp. 2043–2048). New Orleans, LA, USA.

  • Prassler, E., Scholz, J., & Fiorini, P. (1999). Navigating a robotic wheelchair in a railway station during rush hour. The International Journal of Robotics Research, 18(7), 711–727.

    Article  Google Scholar 

  • Röfer, T., & Lankenau, A. (2000). Architecture and applications of the Bremen autonomous wheelchair. Information Sciences, 126(1), 1–20.

    Article  MATH  Google Scholar 

  • Schmidt, C. F., Sridharan, N. S., & Goodson, J. L. (1978). The plan recognition problem: An intersection of psychology and artificial intelligence. Artificial Intelligence, 11(1–2), 45–83.

    Article  Google Scholar 

  • Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. Cambridge: The MIT Press.

    Google Scholar 

  • Sheridan, T. B., & Ferrell, W. R. (1981). Man-machine systems: Information, control, and decision models of human performance. Cambridge: The MIT Press.

    Google Scholar 

  • Simpson, R. C. (2005). Smart wheelchairs: A literature review. Journal of Rehabilitation Research & Development, 42(4), 423–436.

    Article  Google Scholar 

  • Simpson, R. C., Levine, S. P., Bell, D. A., Jaros, L. A., Koren, Y., & Borenstein, J. (1998). Lecture notes in computer science : Vol. 4158. Navchair: An assistive wheelchair navigation system with automatic adaptation (pp. 235–255). New York: Springer.

    Google Scholar 

  • Spaan, M. T. J., & Vlassis, N. (2005). Planning with continuous actions in partially observable environments. In Proceedings of the 2005 IEEE international conference on robotics and automation (pp. 3458–3463). Barcelona, Spain.

  • STWW project homepage. (2007). www.mech.kuleuven.be/stww/results/d1.1+.doc. Deliverable on user requirements and functional specifications.

  • Thrun, S. (1999). Monte Carlo POMDPs. In S., Solla, T., Leen, & K. R., Müller, Advances in neural information processing systems (Vol. 12, pp. 1064–1070). Cambridge: MIT Press.

    Google Scholar 

  • Tsui, K. M., & Yanco, H. A. (2007). Simplifying wheelchair mounted robotic arm control with a visual interface. In Proceedings of the AAAI spring symposium on multidisciplinary collaboration for socially assistive robotics, Palo Alto, California, USA.

  • Tzafestas, S. G. (Ed.), (2001). Reinventing the wheelchair—autonomous robotic wheelchair projects in Europe improve mobility and safety. IEEE Robotics and Automation Magazine, 7(1).

  • Wang, F. Y., Mirchandani, P. B., & Wang, Z. (2002). The VISTA project and its applications. IEEE Intelligent Systems, 17(6), 72–75.

    Article  Google Scholar 

  • Weir, D. H., & McRuer, D. T. (1970). Dynamics of driver vehicle steering control. Automatica, 6, 87–98.

    Article  Google Scholar 

  • Yanco, H. A. (2000). Shared user-computer control of a robotic wheelchair system. Ph.D. thesis, Massachusetts Institute of Technology MIT, Department of Electrical Engineering and Computer Science.

  • Yu, H., Spenko, M., & Dubowsky, S. (2003). An adaptive shared control system for an intelligent mobility aid for the elderly. Autonomous Robots, 15(1), 53–66.

    Article  Google Scholar 

  • Zheng, N. N., Tang, S., Cheng, H., Li, Q., Lai, G., & Wang, F. Y. (2004). Toward intelligent driver-assistance and safety warning systems. IEEE Intelligent Systems, 19(2), 8–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Demeester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demeester, E., Hüntemann, A., Vanhooydonck, D. et al. User-adapted plan recognition and user-adapted shared control: A Bayesian approach to semi-autonomous wheelchair driving. Auton Robot 24, 193–211 (2008). https://doi.org/10.1007/s10514-007-9064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9064-5

Keywords

Navigation