Skip to main content
Log in

Frequency response method for terrain classification in autonomous ground vehicles

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Many autonomous ground vehicle (AGV) missions, such as those related to agricultural applications, search and rescue, or reconnaissance and surveillance, require the vehicle to operate in difficult outdoor terrains such as sand, mud, or snow. To ensure the safety and performance of AGVs on these terrains, a terrain-dependent driving and control system can be implemented. A key first step in implementing this system is autonomous terrain classification. It has recently been shown that the magnitude of the spatial frequency response of the terrain is an effective terrain signature. Furthermore, since the spatial frequency response is mapped by an AGV’s vibration transfer function to the frequency response of the vibration measurements, the magnitude of the latter frequency responses also serve as a terrain signature. Hence, this paper focuses on terrain classification using vibration measurements. Classification is performed using a probabilistic neural network, which can be implemented online at relatively high computational speeds. The algorithm is applied experimentally to both an ATRV-Jr and an eXperimental Unmanned Vehicle (XUV) at multiple speeds. The experimental results show the efficacy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, J. (2002). Four-wheeler’s bible. St. Paul: MotorBooks.

    Google Scholar 

  • Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Fast terrain classification using variable-length representation for autonomous navigation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–8).

  • Bradley, D., Thayer, S., Stentz, A., & Rander, P. (2004). Vegetation detection for mobile robot navigation (Technical Report CMU-RI-TR-04-12). Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, February 2004.

  • Brooks, C., Iagnemma, K., & Dubowsky, S. (2002). Vibration-based terrain analysis for mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3142–3147), Barcelona, Spain, May 2002.

  • Cacoullous, R. (1966). Estimation of a probability density. Annals of the Institute of Statistical Mathematics (Tokyo), 18(2), 179–189.

    Article  Google Scholar 

  • Collins, E. G., Jr., & Coyle, E. (2008, to appear). Vibration-based terrain classification using surface profile input frequency responses. In International conference on robotics and automation. Available at http://www.eng.fsu.edu/ciscor/publications.htm.

  • Delong, B. (2000). 4-wheel freedom: the art of off-road driving. Boulder: Paladin.

    Google Scholar 

  • DuPont, E. M., Roberts, R. G., Moore, C. A., Selekwa, M. F., & Collins, E. G., Jr. (2005). Online terrain classification for mobile robots. In Proceedings of the ASME international mechanical engineering congress and exposition conference, Orlando, FL, November 2005.

  • DuPont, E. M., Roberts, R. G., & Moore, C. A. (2006). Speed independent terrain classification. In Proceedings of the 38th southeastern symposium on system theory, Cookeville, TN, March 2006.

  • Howard, A., & Seraji, H. (2001). Vision-based terrain characterization and traversability assessment. Journal of Robotic Systems, 18(10), 577–587.

    Article  MATH  Google Scholar 

  • Iagnemma, K., & Dubowsky, S. (2002). Terrain estimation for high speed, rough-terrain autonomous vehicle navigation. In Proceedings of the SPIE conference on unmanned ground vehicle technology (pp. 256–266), Orlando, FL, May 2002.

  • Iagnemma, K., Shibly, H., & Dubowsky, S. (2002). Terrain parameter estimation for planetary rovers. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3142–3147), Washington, DC, May 2002.

  • Iagnemma, K., Kang, S., Shibly, H., & Dubowsky, S. (2004). Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Transactions on Robotics, 20(5), 921–927.

    Article  Google Scholar 

  • Jain, A., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4–36.

    Article  Google Scholar 

  • Lu, L., Ordonez, C., Collins, E. G., Jr., & DuPont, E. M. (2008, submitted for publication). Terrain classification for autonomous ground vehicles using 2-D laser stripe-based structured light sensors. In International conference on robotics and automation. Available at http://www.eng.fsu.edu/ciscor/publications.htm.

  • Masters, T. (1993). Practical neural network recipes in C++. New York: Academic Press.

    Google Scholar 

  • Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and statistical classification. Chichester: Ellis Horwood. ISBN 0-13-106360-X. URL citeseer.nj.nec.com/michie94machine.html.

    MATH  Google Scholar 

  • Murthy, V. K. (1965). Estimation of a probability density. Annals of Mathematical Statistics, 36, 1027–1031.

    Article  MathSciNet  MATH  Google Scholar 

  • Murthy, V. K. (1966). Nonparametric estimation of multivariate densities with applications. In P. R. Krishnaiah (Ed.), Multivariate analysis (pp. 43–56). New York: Academic Press.

    Google Scholar 

  • Ojeda, L., Borenstein, J., Witus, G., & Karlsen, R. (2006). Terrain characterization and classification with a mobile robot. Journal of Field Robotics, 23(2), 103–122.

    Article  MATH  Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33, 1065–1076.

    Article  MathSciNet  MATH  Google Scholar 

  • Sadhukhan, D. (2004). Autonomous ground vehicle terrain classification using internal sensors. Master’s thesis, Departent of Mechanical Engineering, Florida State University, Tallahasee, FL.

  • Sadhukan, D., & Moore, C. (2003). Online terrain estimation using internal sensors. In Proceedings of the Florida conference on recent advances in robotics, Boca Raton, FL, May 2003.

  • Specht, D. F. (1988). Probabilistic neural networks for classification, mapping, or associative memory. In Proceedings IEEE international conference on neural networks (pp. 525–532), San Diego, CA.

  • Specht, D. F. (1990a). Probabilistic neural networks. Neural Networks, 3(1), 109–118.

    Article  Google Scholar 

  • Specht, D. F. (1990b). Probabilistic neural networks and the polynomial adaline as complementary techniques for classification. IEEE Transactions on Neural Networks, 1(1), 111–121.

    Article  Google Scholar 

  • Sukarrieh, S. (2000). Low cost high integrity aided inertial navigation systems for autonomous land vehicles. PhD thesis, University of Sydney, Sydney, Australia.

  • Tsoukalas, L. H., & Uhrig, R. E. (1997). Fuzzy and neural approaches in engineering. New York: Willey. ISBN 0-471-16003-2.

    Google Scholar 

  • Vandapel, N., Huber, D. F., Kapuria, A., & Herbet, M. (2004). Natural terrain classification using 3-d ladar data. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 5117–5122), New Orleans, LA, April 2004.

  • Vanderwerp, D. (2005). What does terrain response do? http://www.caranddriver.com/features/9026/what-does-terrain-response-do.html.

  • von Scheidt, J., Wunderlich, R., & Fellenberg, B. (1999). Random road surfaces and vehicle vibration. In L. Arkeryd, J. Bergh, P. Brenner, & R. Pettersson (Eds.), Progress in industrial mathematics at ECMI 98 (pp. 352–359). Stuttgart: Teubner.

    Google Scholar 

  • Washburne, T. P., Specht, D. F., & Drake, R. M. (1993). Identification of unknown categories with probabilistic neural networks. In Proceedings of the IEEE international conference on neural networks (pp. 434–437).

  • Wong, J. Y. (2001). Theory of ground vehicles (3rd ed.). New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmond M. DuPont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DuPont, E.M., Moore, C.A., Collins, E.G. et al. Frequency response method for terrain classification in autonomous ground vehicles. Auton Robot 24, 337–347 (2008). https://doi.org/10.1007/s10514-007-9077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9077-0

Keywords

Navigation