Skip to main content

Advertisement

Log in

Indoor navigation of a non-holonomic mobile robot using a visual memory

Autonomous Robots Aims and scope Submit manuscript

Abstract

When navigating in an unknown environment for the first time, a natural behavior consists on memorizing some key views along the performed path, in order to use these references as checkpoints for a future navigation mission. The navigation framework for wheeled mobile robots presented in this paper is based on this assumption. During a human-guided learning step, the robot performs paths which are sampled and stored as a set of ordered key images, acquired by an embedded camera. The set of these obtained visual paths is topologically organized and provides a visual memory of the environment. Given an image of one of the visual paths as a target, the robot navigation mission is defined as a concatenation of visual path subsets, called visual route. When running autonomously, the robot is controlled by a visual servoing law adapted to its nonholonomic constraint. Based on the regulation of successive homographies, this control guides the robot along the reference visual route without explicitly planning any trajectory. The proposed framework has been designed for the entire class of central catadioptric cameras (including conventional cameras). It has been validated onto two architectures. In the first one, algorithms have been implemented onto a dedicated hardware and the robot is equipped with a standard perspective camera. In the second one, they have been implemented on a standard PC and an omnidirectional camera is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arulampalam, S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50, 174–188.

    Article  Google Scholar 

  • Barreto, J., & Araujo, H. (2002). Geometric properties of central catadioptric line images. In 7th European conference on computer vision, ECCV’02 (pp. 237–251). Copenhagen, Denmark.

  • Bascle, B., Bouthemy, P., Deriche, R., & Meyer, F. (1994). Tracking complex primitives in an image sequence. In 12th international conference on pattern recognition (pp. 426–431).

  • Benosman, R., & Kang, S. (2000). Panoramic vision. New York: Springer. ISBN 0-387-95111-3.

    Google Scholar 

  • Blake, A., Curwen, R., & Zisserman, A. A. (1993). A framework for spatiotemporal control in the tracking of visual contours. International Journal of Computer Vision, 11, 127–145.

    Article  Google Scholar 

  • Chen, J., Dixon, W. E., Dawson, D. M., & McIntire, M. (2003). Homography-based visual servo tracking control of a wheeled mobile robot. In International conference on intelligent robots and systems (pp. 1814–1819). Las Vegas, Nevada.

  • DeSouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237–267.

    Article  Google Scholar 

  • Faugeras, O., & Lustman, F. (1988). Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence, 2(3), 485–508.

    Article  Google Scholar 

  • Geyer, C., & Daniilidis, K. (2000). A unifying theory for central panoramic systems and practical implications. In European conference on computer vision (Vol. 29(3), pp. 159–179). Dublin, Ireland.

  • Geyer, C., & Daniilidis, K. (2003). Mirrors in motion: Epipolar geometry and motion estimation. In International conference on computer vision, ICCV03 (pp. 766–773). Nice, France.

  • Hayet, J. B., Lerasle, F., & Devy, M. (2002). A visual landmark framework for indoor mobile robot navigation. In International conference on robotics and automation (ICRA’02) (pp. 3942–3947). Washington DC, USA.

  • Isard, M., & Blake, A. (1998). Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision, 29, 5–28.

    Article  Google Scholar 

  • Jones, S. D., Andersen, C., & Crowley, J. L. (1997). Appearance based processes for visual navigation. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 2, pp. 551–557). Grenoble, France.

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contours. International Journal of Computer Vision, 1, 321–331.

    Article  Google Scholar 

  • Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135.

    Article  Google Scholar 

  • López-Nicolás, G., Sagüés, C., Guerrero, J. J., Kragic, D., & Jensfelt, P. (2006). Nonholonomic epipolar visual servoing. In International conference on robotics and automation (ICRA’06) (pp. 2378–2384).

  • Luong, Q.-T., & Faugeras, O. (1996). The fundamental matrix: theory, algorithms, and stability analysis. International Journal of Computer Vision, 17(1), 43–76.

    Article  Google Scholar 

  • Ma, Y., Kosecka, J., & Sastry, S. S. (1999). Vision guided navigation for a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 15(3), 521–337.

    Article  Google Scholar 

  • Malis, E., & Chaumette, F. (2000). 2 1/2 d visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision, 37(1), 79–97.

    Article  MATH  Google Scholar 

  • Malis, E., Chaumette, F., & Boudet, S. (1999). 2 1/2 d visual servoing. IEEE Transactions on Robotics and Automation, 15(2), 238–250.

    Article  Google Scholar 

  • Matsumoto, Y., Inaba, M., & Inoue, H. (1996). Visual navigation using view-sequenced route representation. In Proc. of the IEEE international conference on robotics and automation (Vol. 1, pp. 83–88). Minneapolis, Minnesota.

  • Matsumoto, Y., Ikeda, K., Inaba, M., & Inoue, H. (1999). Visual navigation using omnidirectional view sequence. In Int. conf. on intelligent robots and systems (pp. 317–322).

  • Nierobisch, T., Krettek, J., Khan, U., & Hoffmann, F. (2007). Optimal large view visual servoing with sets of SIFT features. In IEEE international conference on robotics and automation, ICRA’07 (pp. 2092–2097).

  • Remazeilles, A., Chaumette, F., & Gros, P. (2004). Robot motion control from a visual memory. In IEEE int. conf. on robotics and automation, ICRA’04 (Vol. 4, pp. 4695–4700). New Orleans.

  • Royer, E., Lhullier, M., Dhome, M., & Chateau, T. (2004). Towards an alternative GPS sensor in dense urban environment from visual memory. In British machine vision conference (Vol. 1, pp. 197–206). Kingston, England.

  • Samson, C. (1995). Control of chained systems. application to path following and time-varying stabilization of mobile robots. IEEE Transactions on Automatic Control, 40(1), 64–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Svoboda, T., Pajdla, T., & Hlavac, V. (1998). Motion estimation using central panoramic cameras. In IEEE conference on intelligent vehicles (pp. 335–340). Stuttgart, Germany.

  • Tsakiris, D., Rives, P., & Samson, C. (1998). Extending visual servoing techniques to nonholonomic mobile robots. In G. Hager, D. Kriegman, & A. Morse (Eds.), LNCIS : Vol. 237. The confluence of vision and control (pp. 106–117). Berlin: Springer.

    Chapter  Google Scholar 

  • Zhong, Y., Jain, A. K., & Dubuisson, M. P. (2000). Object tracking using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 544–549.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcef Mezouar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courbon, J., Mezouar, Y. & Martinet, P. Indoor navigation of a non-holonomic mobile robot using a visual memory. Auton Robot 25, 253–266 (2008). https://doi.org/10.1007/s10514-008-9093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-008-9093-8

Keywords

Navigation