Skip to main content

Advertisement

Log in

An autonomous educational mobile robot mediator

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

So far, most of the applications of robotic technology to education have mainly focused on supporting the teaching of subjects that are closely related to the Robotics field, such as robot programming, robot construction, or mechatronics. Moreover, most of the applications have used the robot as an end or a passive tool of the learning activity, where the robot has been constructed or programmed. In this paper, we present a novel application of robotic technologies to education, where we use the real world situatedness of a robot to teach non-robotic related subjects, such as math and physics. Furthermore, we also provide the robot with a suitable degree of autonomy to actively guide and mediate in the development of the educational activity. We present our approach as an educational framework based on a collaborative and constructivist learning environment, where the robot is able to act as an interaction mediator capable of managing the interactions occurring among the working students. We illustrate the use of this framework by a 4-step methodology that is used to implement two educational activities. These activities were tested at local schools with encouraging results. Accordingly, the main contributions of this work are: i) A novel use of a mobile robot to illustrate and teach relevant concepts and properties of the real world; ii) A novel use of robots as mediators that autonomously guide an educational activity using a collaborative and constructivist learning approach; iii) The implementation and testing of these ideas in a real scenario, working with students at local schools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahlgren, D., & Verner, I. (2002). An international view of robotics as an educational medium. In Int. conf. on engineering education.

  • Arons, A. B. (1990). A guide to introductory physics teaching. New York: Wiley.

    Google Scholar 

  • Avanzato, R. (2002). Mobile robot navigation contest for undergraduate design and k-12 outreach. In Proc. of conf. of American society for engineering education (ASEE).

  • Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American Journal of Physics, 62(8), 750–762.

    Article  Google Scholar 

  • Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., & Thrun, S. (1999). Experiences with an interactive museum tour-guide robot. Artificial Intelligence, 114(1–2), 3–55.

    Article  MATH  Google Scholar 

  • Carbonell, J. R. (1970). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190–202.

    Article  Google Scholar 

  • Clements, D. H. (1999). Teaching length measurement: Research challenges. School Science and Mathematics, 99(1), 5–11.

    Article  MathSciNet  Google Scholar 

  • Dillenbourg, P. (1999). Collaborative learning: cognitive and computational approaches. Oxford: Pergamon.

    Google Scholar 

  • Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42(3), 143–166.

    Article  MATH  Google Scholar 

  • Gockley, R., Bruce, A., Forlizzi, J., Michalowski, M. P., Mundell, A., Rosenthal, S., Sellner, B. P., Simmons, R., Snipes, K., Schultz, A., & Wang, J. (2005). Designing robots for long-term social interaction. In Proc. of IEEE/RSJ int. conf. on intelligent robots and systems (IROS) (pp. 2199–2204).

  • Harakiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M., & Elliot, A. J. (2000). Short-term and long-term consequences of achievement goals in college: Predicting continued interest and performance over time. Journal of Educational Psychology, 92, 316–330.

    Article  Google Scholar 

  • Hartley, J., & Sleeman, D. H. (1973). Towards more intelligent teaching systems. International Journal of Man-Machine Studies, 5, 215–236.

    Article  Google Scholar 

  • Hidi, S. (2000). An interest researcher’s perspective on the effects of extrinsic and intrinsic factors on motivation. In Intrinsic motivation: controversies and new directions (pp. 309–339).

  • Ihlenfeldt, W. D. (1997). Virtual reality in chemistry. Journal of Molecular Modeling, 3(9), 386–402.

    Article  Google Scholar 

  • Jansen, M., Oelinger, M., Hoeksema, K., & Hoppe, U. (2004). An interactive maze scenario with physical robots and other smart devices. In Proc. of 2nd IEEE int. workshop on wireless and mobile technologies in education (WMTE’04).

  • Jermann, P., Soller, A., & Muehlenbrock, M. (2001). From mirroring to guiding: A review of the state of the art technology for supporting collaborative learning. In European perspectives on computer-supported collaborative learning, EuroCSCL (pp. 324–331).

  • Johnson, D. W., & Johnson, R. (1999). Learning together and alone: cooperative, competitive, and individualistic learning (5th ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Klassner, F., & Andreson, S. (2003). Lego mindstorms: not just for k-12 anymore. IEEE Robotics and Automation Magazine, 10(2), 12–18.

    Article  Google Scholar 

  • Lalonde, J., Bartley, C., & Nourbakhsh, I. (2006). Mobile robot programming in education. In IEEE int. conf. on robotics and automation (ICRA).

  • Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Task, learning, and teaching. Review of Educational Research, 60(1), 1–64.

    Google Scholar 

  • Linn, M. C., Layman, J. W., & Nachmias, R. (1987). Cognitive consequences of microcomputer-based laboratories: graphing skills development. Contemporary Educational Psychology, 12(3), 244–253.

    Article  Google Scholar 

  • McDermott, L. C. (1984). Research on conceptual understanding in mechanics. Physics Today, 37(7), 24–32.

    Article  Google Scholar 

  • McDermott, L. C. (1991). Millikan lecture 1990: What we teach and what is learned—closing the gap. American Journal of Physics, 59(4), 301–315.

    Article  Google Scholar 

  • McDermott, L. C., Rosenquist, M. L., & Van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503–513.

    Article  Google Scholar 

  • Mikropoulos, T., Katsikis, A., Nikolow, E., & Tsakalis, P. (2003). Virtual environments in biology teaching. Journal of Biological Education, 37(4), 176–181.

    Google Scholar 

  • Mitnik, R. (2008). The robot as an autonomous mediator of the learning experience and the social interactions. PhD thesis, Dept. of Computer Science, Pontificia Universidad Catolica de Chile.

  • Mitnik, R., Nussbaum, M., & Soto, A. (2004). Mobile robotic supported collaborative learning (MRSCL). In Lecture Notes in Artificial Intelligence (Vol. 3315, p. 912–921). Berlin: Springer.

    Google Scholar 

  • Murphy, R. (2001). Competing for a robotics education. IEEE Robotics & Automation Society Magazine, June, 44–55.

  • Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal of Artificial Intelligence in Education, 10, 98–129.

    Google Scholar 

  • Nourbakhsh, I., Bobenage, J., Grange, S., Lutz, R., Meyer, R., & Soto, A. (1999). An affective mobile educator with a full-time job. Artificial Intelligence, 114(1–2), 95–124.

    Article  MATH  Google Scholar 

  • Nourbakhsh, I., Kunz, C., & Willeke, T. (2003). The mobot museum robot installations: A five year experiment. In Proc. of IEEE/RSJ int. conf. on intelligent robots and systems (IROS) (pp. 3636–3641).

  • Nourbakhsh, I., Hammer, E., Crowley, K., & Wilkinson, K. (2004). Formal measures of learning in a secondary school mobile robotics contest. In IEEE int. conf. on robotics and automation (ICRA).

  • Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.

    Google Scholar 

  • Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning. Education and Information Technologies, 9(2), 147–158.

    Article  Google Scholar 

  • Piaget, J., Brown, T. A., Kaegi, C. E., & Rosenzweig, M. R. (1981). Intelligence and affectivity. Their relationship during child development (Annual reviews monograph).

  • Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003). Towards robotic assistants in nursing homes: Challenges and results. Robotics and Autonomous Systems, 42(3–4), 271–281.

    Article  MATH  Google Scholar 

  • Rosenblatt, M., & Choset, H. (2000). Designing and implementing hands-on robotics labs. IEEE Intelligent Systems and their Applications, 15(6), 32–39.

    Article  Google Scholar 

  • Rourk, W. (2000). Virtual biochemistry—a case study. Future Generation Computer Systems, 17, 7–14.

    Article  Google Scholar 

  • Schroeder, D. V., & Moore, T. A. (1993). A computer-simulated Stern-Gerlach laboratory. American Journal of Physics, 61, 798–805.

    Article  Google Scholar 

  • Soto, A., Espinace, P., & Mitnik, R. (2006). A mobile robotics course for undergraduate students in computer science. In Proc. of IEEE Latin American robotics symposium (LARS) (pp. 187–192).

  • Stein, C. (2002). Botball—Autonomous students engineering autonomous robots. In Proc. of conf. of American society for engineering education (ASEE).

  • Tao, P. K. (1997). Confronting students alternative conceptions in mechanics with the force and motion microworld. Computers in Physics, 11(2), 199–207.

    Article  Google Scholar 

  • Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., Haehnel, D., Rosenberg, C., Roy, N., Schulte, J., & Schulz, D. (1999). Minerva: A second generation mobile tour-guide robot. In Proc. of the IEEE int. conf. on robotics and automation (ICRA) (pp. 1999–2005).

  • Trowbridge, D. E., & McDermott, L. C. (1980). Investigation of student understanding of the concept of velocity in one dimension. American Journal of Physics, 48(12), 1020–1028.

    Article  Google Scholar 

  • Wang, E., & Wang, R. (2001). Using legos and robolab (LabVIEW) with elementary school children. In 31st conf. on frontiers in education (Vol. 1, pp. T2E–T11).

  • Weinberg, J., Engel, G., Gu, K., Karacal, C., Smith, S., White, W., & Yu, X. (2001). A multidisciplinary model for using robotics in engineering education. In Proc. of conf. of American society for engineering education (ASEE).

  • Zurita, G., & Nussbaum, M. (2004). Computer supported collaborative learning using wirelessly interconnected handheld computers. Computers & Education, 42(3), 289–314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitnik, R., Nussbaum, M. & Soto, A. An autonomous educational mobile robot mediator. Auton Robot 25, 367–382 (2008). https://doi.org/10.1007/s10514-008-9101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-008-9101-z

Keywords

Navigation