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Abstract This paper presents the map evaluation method-
ology developed for the Virtual Robots Rescue competition
held as part of RoboCup. The procedure aims to evaluate
the quality of maps produced by multi-robot systems with
respect to a number of factors, including usability, explo-
ration, annotation and other aspects relevant to robots and
first responders. In addition to the design choices, we illus-
trate practical examples of maps and scores coming from the
latest RoboCup contest, outlining strengths and weaknesses
of our modus operandi. We also show how a benchmarking
methodology developed for a simulation testbed effortlessly
and faithfully transfers to maps built by a real robot. A num-
ber of conclusions may be derived from the experience re-
ported in this paper and a thorough discussion is offered.

Keywords Urban search and rescue · Multi-robot
systems · Simultaneous localization and mapping ·
RoboCup · Robot benchmarking

B. Balaguer · S. Carpin (�)
School of Engineering, University of California, Merced,
5200 North Lake Rd., Merced, CA 95343, USA
e-mail: scarpin@ucmerced.edu

B. Balaguer
e-mail: bbalaguer@ucmerced.edu

S. Balakirsky
Intelligent Systems Division, National Institute of Standards and
Technology, 100 Bureau Drive, M/S 8230, Gaithersburg,
MD 20899-8230, USA
e-mail: stephen@nist.gov

A. Visser
Intelligent System Laboratory Amsterdam, Universiteit
van Amsterdam, Kruislaan 403, 1098 SJ Amsterdam,
The Netherlands
e-mail: a.visser@uva.nl

1 Introduction

RoboCup has demonstrated itself to be an inspiring event
capable of accelerating research in a variety of robotic tasks
beyond the original robotic soccer scope. It now reaches out
to other domains such as service robotics and Urban Search
And Rescue (USAR). These additional areas in general, and
USAR in particular, call for the deployment of fieldable
systems capable of mapping unknown environments. This
map is intended to not only be valuable for robot naviga-
tion, but also to provide useful information for first respon-
ders trying to reach victims promptly and without expos-
ing themselves to unnecessary risks. RoboCup USAR com-
petitions are divided into two branches. The Rescue Robot
League aims to deploy physical robots operating in arenas,
the purpose of which is to provide repeatable test methods
including a variety of mobility and sensing challenges (Ja-
coff et al. 2003). To date, arenas are, due to logistical dif-
ficulties, fairly limited indoor environments extending up
to a few hundred square meters. The Rescue Simulation
League has the goal of promoting research in cooperative
problem-solving by utilizing numerous agents operating in
a simulated city-sized scenario. On one hand, the Rescue
Robot League evaluates single robotic platforms, or small
teams, on their low-level capabilities, like mobility, sensing,
mapping, safe navigation and human-robot interfaces. On
the other hand, the Rescue Simulation League focuses on
high-level tasks, like real-time multi-agent planning, agent
heterogeneity, learning and complete autonomy. Due to the
evident discrepancy between the research agendas of these
two research communities that are pursuing the same final
goal (i.e. minimizing casualties in urban disasters), the Vir-
tual Robots Rescue League was introduced to bridge these
two groups and promote a fruitful cross fertilization of ideas
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(Carpin et al. 2006b, 2007a; Balakirsky et al. 2007; Sato
et al. 2008). The Virtual Robot Rescue League is based on
USARSim (Carpin et al. 2007b), a high fidelity multi-robot
simulator that includes models of numerous robots and sen-
sors, the majority of which are used in the Rescue Robot
League (additional applicative scenarios are the ICRA Space
Robotics Challenge (Birk et al. 2009) and the IEEE/NIST
Virtual Manufacturing Automation Competition). Relieving
participants from the requirement of owning expensive ro-
bots, which creates a lower entry barrier, teams participat-
ing in the Virtual Robots Rescue competition routinely de-
ploy groups of robots much larger than those in the Rescue
Robot League. Moreover, thanks to the effortless possibil-
ity of adding virtual sensors or actuators to the simulated
robots, various mapping algorithms have been either devel-
oped from scratch, reused as is, or enhanced and incorpo-
rated into more complex control systems. As a consequence,
while organizing and running this competition, we faced
the challenge of ranking maps produced by various multi-
robot teams using a tremendous variety of heterogeneous
approaches. After the first exploratory stage, where maps
were essentially inspected visually, the necessity to quickly
adopt an accountable and repeatable method to grade maps
according to some criteria became apparent. Effectively, vi-
sual inspection is too subjective of a method to be applied
in a competitive environment where winners have to be se-
lected. Unfortunately, at that time and still nowadays, no so-
lution was available and we therefore developed a method-
ology from scratch. Interestingly, some of the ideas gener-
ated in the Virtual Robots Rescue competition were later ex-
tended to the Rescue Robot League; a testament to the value
of the high fidelity simulation infrastructure sustaining the
simulation competition.

In this paper, we illustrate the principles governing the
scoring methods we developed through the years, and we
display some of the results collected during the last com-
petition held in 2008. In no way do we claim the adopted
methodology is the best possible at the moment. However,
the very nature of the competition has put us in the priv-
ileged and challenging position of comparing and ranking
maps produced by different research groups embracing a va-
riety of heterogeneous software and algorithmic tools. An-
other peculiar aspect of our endeavor resides in the simu-
lated nature of the task. Thanks to it, we have the possi-
bility of easily accessing ground truth data, a difficult asset
to accurately obtain in real world experiments. The neces-
sity to collect and evaluate input from different competitors
has also pushed us to embrace an approach valuing open
tools and easy to adopt standards, rather than picking an
arbitrary one serving our specific research needs. We be-
lieve the contest offered us the opportunity to perform an
analytic comparison exercise that, to the best of our knowl-
edge, has never been matched in terms of size and vari-
ety. The goal of this paper is to detail our lessons learned

and outline some interesting research questions for the fu-
ture.

The paper is organized as follows. In Sect. 2 we present
literature related to the task of analytic map comparison, a
topic that deserved little attention to date, but that is gaining
momentum. Section 3 presents the method we used in or-
der to rank maps and accounts for the practical choices we
embraced. Detailed results coming from the RoboCup 2008
event are offered in Sect. 4, where maps produced by the var-
ious teams are contrasted and evaluated. In Sect. 5 we com-
pare our metric with some of the methods cited in Sect. 2,
outlining similarities and differences. One of our main goals
while developing the Virtual Robots Rescue competition and
USARSim has always been to keep the simulation frame-
work coupled with real robotic systems as much as possi-
ble. For this reason, in Sect. 6, we illustrate how the pro-
posed evaluation procedure ranks maps produced by a real
robot and contrast the real results with their simulated coun-
terpart. Finally, in Sect. 7, we outline the lessons learned
and identify some open questions worth additional investi-
gation.

2 Related work

Robot benchmarking and performance evaluation is a recent
research thread and the amount of available scholar work in
this area is in general limited. Localization and mapping is
no exception to this trend and we describe the few attempts
made in establishing both benchmark problems and evalua-
tion metrics.

In a recent paper, the RawSeed project is presented
(Fontana et al. 2008). RawSeed is an initiative aimed at ad-
dressing the very problems dealt with in this special issue,
namely to establish independent representation and bench-
marks for SLAM algorithms. The project is still in its in-
fancy, but the paper outlines some principles that we sub-
scribe to and that we resume in the next section, namely
the importance to tie the evaluation method to the robotics
task under examination. In Abdallah et al. (2007) propose
a benchmarking infrastructure for the special case of vi-
sual SLAM in outdoor environments. The authors also stress
the importance of tailoring the benchmarking process to the
specific robotic task considered, realizing the inherent diffi-
culty in comparing, for example, indoor and outdoor visual
SLAM algorithms. The paper, however, does not provide an
assessment metric. A similar effort targeting vision-based
robotic localization is presented in Frontoni et al. (2008),
where the authors distinguish between topological and met-
ric localization and mainly rely on omnidirectional cameras.
In contrast to the previous contribution, they propose an
evaluation formula taking into account the size of the dataset
used for localization, the resolution of the sensor and the in-
curred errors.
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Major contributions to the map benchmarking research
area, and one of the few efforts to quantitatively estab-
lish the effectiveness of mapping algorithms producing
occupancy grids, came from Collins et al. (2005, 2007),
O’Sullivan (2003, 2004a, 2004b), Collins and O’Sullivan
(2004). The authors establish their benchmarking suite
based on three individual components: (1) a map cross cor-
relation as proposed in image processing literature (Baron
1981); (2) the Map Score measure invented by Martin and
Moravec (1996), along with a slightly modified version;
(3) path generation on the robot-generated map to see if such
paths would be valid on the ground truth map. The map cross
correlation in the benchmark could alternatively be replaced
by the more extensively exploited Pearson’s Correlation co-
efficient (Guyon et al. 2006). Similarly, the Map Score mea-
sure could have equally been substituted by the Overall Er-
ror metric (Carlson et al. 2005), where error is measured
rather than accuracy. Nevertheless, and while we agree with
the usefulness of breaking down a benchmark into multi-
ple categories, we find the image correlation and Map Score
procedures questionable. These two components are likely
to negatively affect maps with a single misalignment that
propagates through the rest of the map. The path generation
component is both creative and useful for robot navigation
but is not necessary for USAR applications, where first re-
sponders might end up using the robot-generated map (as
opposed to another robot). Collins et al. exploit their bench-
marking suite in a series of practical applications (Collins
et al. 2005, 2007; O’Sullivan et al. 2004a, 2004b), ranging
from the assessment of map quality to the comparison of
different mapping algorithms and sensor models. The con-
clusions made in each paper are supplemented by hundreds
of map evaluations thanks to the use of simulation supple-
mented by real experiments, a mindset that we also support
and advocate. Moreover, and in accordance to the spirit em-
braced in the USAR competition, they realize that it is nec-
essary to assess the utility of a map as a tool for robotic
navigation, and that this assessment may substantially dif-
fer from a purely metric analysis. They, however, limit the
discussion to robot navigation that we extend to first respon-
ders where, for example, a robot may produce a bent map
that may be penalized from a metric point of view, but that
may still be highly valuable for a human operator or for
navigational purposes. A very similar contribution was pre-
sented by Varsadan et al. (2008), where an image similarity
metric (Birk 1996) is used to compare robot-produced maps
against their ground truth equivalents. Additionally, the au-
thors show that the image similarity metric provides compa-
rable results to the use of a Least Mean Squared Euclidean
distance metric between map and ground truth points. The
same conclusions can be drawn from this paper as what is
presented, more extensively, by O’Sullivan (2003), Collins
and O’Sullivan (2004).

In Baltes (2000), Baltes offers a general discussion about
robot benchmarks, questioning the uncritical use of robot
competitions in order to assess robot performance and sug-
gesting three numerical metrics for tasks related to motion.
Michel et al., however, claim that “RoboCup is recognized
as a reference benchmark in robotics” (Michel et al. 2008).
We subscribe to Baltes’s statement that competitions do not
provide the ultimate benchmark for robotic performance. In-
deed, the final result of a competition is a ranking that might
wrongfully reward stable control systems to the detriment
of innovative ones. Michel et al. also propose the creation
of a database of source code that could be used to measure
the progress of algorithms over time, a practice that we have
already implemented since the finalists of our competition
are required to publicly share their code. Calisi et al. also
focus on the benchmarking of motion tasks by providing a
set of metrics, while promoting the use of simulation, com-
petitions, and data repositories (Calisi et al. 2008). More
notably, the authors bring in the notion of time as part of
their performance metric. The notion of time, in addition
to power consumption, is also proposed by Basilico et al.
as an efficiency metric (Basilico and Amigoni 2008). Addi-
tional time-related metrics have been proposed in Amigoni
(2008), Stachniss and Burgard (2003), Amigoni and Gallo
(2005), Sim et al. (2004), where the number of sensing op-
erations (i.e. time steps) is used in conjunction with the ro-
bot’s path information to compare the performances of dif-
ferent exploration strategies. Even though time and power
are not factors for our benchmark, because all maps are
generated from a twenty-minute run and fifteen minutes of
map processing time, we recognize the importance of in-
cluding time as part of a map benchmark framework. Evi-
dently, comparing a map created in real-time with one that
was post-processed for hours will yield drastically different
results. More recently, we have looked into the possibility of
having shorter runs for robots with heavy sensor loads that
would require more power. We are still in the early stages of
developing such a metric and do not include it in this paper.
Egerton and Callaghan define the Lost Metric (Egerton and
Callaghan 2004), i.e. a metric aimed to measure the ability
of a robot to re-localize itself in a given map after it lost lo-
calization. This metric is formulated for robots using a per-
ceptive inference map, i.e. a model appropriate for biologi-
cally inspired robots, and does not seem immediately usable
for USAR tasks.

Two initiatives not focused on SLAM benchmarking but
central to our vision of robot performance metrics are the
web projects OpenSLAM (2009) and Radish (2009). The
former, OpenSLAM, is a website providing ready-to-use
implementations of various SLAM algorithms. A compar-
ison among their performances is however not immediate
because they rely on different hypotheses and representa-
tions for input data and they produce maps in a variety of
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formats. The latter, Radish, is a repository of data. As such,
it hosts some recordings of robotic runs that may be con-
sidered shared benchmarks. What is missing, however, is a
consistent data format and a taxonomy of the available data
sets, in terms of the algorithmic challenges they offer.

3 A Scoring methodology for urban search and rescue

3.1 Map format

It is said in Fontana et al. (2008) that any map assessment
method should be intimately tied to the practical task for
which the map will eventually be used. We subscribe to
this statement and add that the task itself also influences
the map format. The goal of every robot team participat-
ing in RoboCup USAR competitions is to produce a sin-
gle map providing information valuable to both robots and
first responders. For robots, the most valuable contribution
is to provide information enabling navigation in the envi-
ronment. It should be noticed that the competition does not
mandate the use of fully autonomous robot teams, therefore
robots may move autonomously or under human control.
First responders, on the other hand, use the maps for dif-
ferent needs, namely to quickly gain access to victims while
minimizing their exposure to risky areas. Even though hu-
mans could certainly move in the environment solely rely-
ing on a robot-generated occupancy grid map, it is clear that
distinctive landmarks (e.g. the victim is near the red car) or
topological information (e.g. there is a victim in the third
room down the corridor) will be more useful than the infor-
mation as to whether a certain part of the environment is not
traversable due to a robot mobility limitation. Landmarks
that are useful for human navigation include environmental
features (e.g. walls, doors, stairs, slopes), topological infor-
mation, hazardous areas, and victims’ locations. The hetero-
geneity of the desired information calls for a map embed-
ding different layers. As such, and as an example, one layer
might represent the occupancy grid map while other layers
might display topological information or victim depiction.
First responders are then able to display the layers they are
only interested in. Teams are therefore required to deliver
their maps in GeoTIFF format (GeoTIFF website 2009) for
raster data and MIF format for vector data. GeoTIFF is cho-
sen for three reasons. Firstly, being built atop the TIFF for-
mat, it allows the inclusion of multiple layers, thus serving
the purpose of conveying different information channels, as
formerly specified. Secondly, GeoTIFF has been designed
with the very goal of embedding georeferences inside the
file itself. An additional benefit stemming from this fact is
the possibility of superimposing map layers to ground truth
maps. These ground truth maps come from the simulated en-
vironment, when using simulation, or can be hand-drawn or

available as blue prints, for real experiments. Finally, Geo-
TIFF is an open standard, and there exists open source pack-
ages and libraries to read, write and visualize this file format.
As in GeoTIFF, the MIF vector format was chosen for sev-
eral reasons. Firstly, it is an ASCII format that is easy to
read and simple to parse. In addition, as in GeoTIFF, the
MIF format embeds the georeference information in the file
and there is a large variety of open source tools and libraries
that are able to read and write the format.

For the mandatory layer displaying information pertain-
ing to robot navigation, we embrace an occupancy grid rep-
resentation since it is the representation mostly used for ro-
bots exploring terrestrial areas (Moravec 1988). Given the
task at hand, teams participating in the competition are re-
quired to categorize grid cells in four different ways. A cell
can be: untraversable, unknown, cleared (i.e. traversable and
known to be victim free), or uncleared (i.e. traversable but
not necessarily victim free). Each cell type is assigned a
precise color specified by its RGB components, so that no
ambiguity arises while generating or inspecting cells. To be
precise, and also to appreciate the results presented in the
following sections, untraversable areas are black, cleared are
green, uncleared are white, and unexplored are blue. Addi-
tionally, locations where victims are present are marked as
red. This information has to be included in the navigation
layer because these cells are obviously non-traversable.

In addition to the occupancy grid color requirements, the
map layer has to be georeferenced, a requisite imposed for
two main reasons. First, from a practical aspect, georefer-
enced maps can be overlaid on a georeferenced ground truth
map. This superimposition not only facilitates benchmark-
ing, but also allows for the deduction of where potential
mapping problems arise (e.g. by observing misalignments)
and, as a consequence, deduce weaknesses in the mapping
algorithm utilized. Second, from a more theoretical stand-
point, robots map spatial areas that have a physical loca-
tion. As such, maps should not be floating in free space,
but should be referenced with respect to a point, whether
it be, in the case of simulation, fictitious, or, in the case of
real robots, measured, extrapolated from software, or given
by a GPS receiver or some other source of information.
All things considered, the method chosen for georeferenc-
ing maps does not matter as long as it is performed con-
sistently across all maps. Georeferencing then becomes a
formidable tool, allowing the juxtaposition of maps of the
same environment gathered using different algorithms, dis-
playing maps produced from different parts of a building, or,
on a larger scale, viewing maps produced by distinctive ro-
bots deployed in different nearby buildings. Evidently, geo-
referencing is only marginally beneficial when dealing with
a single map.

No specifications have been set for other raster layers.
The only requirements are the usage of a color schema not
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interfering with the colors specified for the navigation layer,
and that they should be georeferenced as well. This specifi-
cation, or lack thereof, is intentional. We have found that by
having an open policy for additional layers participants can
freely explore creative ways of representing information. In
fact, after the competition the most innovative layers are pre-
sented to all participants, strongly recommended, and could
become mandatory in subsequent competitions.

For vector information, the only required product is a list
of points that represent victims that have been located in the
environment. Extra points are available for additional infor-
mation. Many of the teams include a vector representation
of the path that their robots traversed, some form of skele-
ton representation of the world, and grouped and labeled ob-
jects.

We conclude this section observing that the chosen oc-
cupancy grid representation for the basic map goes hand in
hand with the GeoTIFF format, in the sense that the stan-
dard specifies how to reference raster images. In particular,
the GeoTIFF format enables one to specify the pixel reso-
lution in meters, thus offering a consistent way to overlay
and compare maps produced by different mapping systems
based on potentially different scales.

3.2 Map assessment

Before getting into details about map quality assessment, it
is worth remembering that mapping is only one of the com-
ponents contributing to the final numerical score attributed
to teams taking part into the competition. To be precise,
teams are scored according to the following formula:

S = E · 50 + M · 50 + ∑n
i=1 Vi · 20

O2
(1)

where

– E is a number between 0 and 1 accounting for the cleared
part of the map (i.e. obstacle and victim free).

– M is a number between 0 and 1 accounting for map qual-
ity.

– n is the number of discovered victims.
– Vi is a number between 0 and 1 accounting for the infor-

mation provided about the ith victim.
– O is an integer greater than 0 indicating the number of

human operators supervising the robot team.

It is evident that in the context of a competition where
judges eventually need to univocally identify the top three
performing teams, the combination of performance mea-
sures that are non-commensurable, as evidenced by (1), is
inevitable. The relative weight given to the various compo-
nents is not necessarily the best or the only possibility, and
it grew out of feedback collected from the participants after
every competition. In general, one could envision the use of

multi-criteria evaluation functions, and to identify to Pareto
optimal maps. This option, although valuable, has not been
pursued because of its difficult application in the context of
a competition.

We now discuss in detail the three components relevant
to mapping, i.e. E, M and Vi . We note that the O variable
was included in the formula in a successful attempt to pro-
mote autonomy by penalizing multi-operator systems. For
the purpose of this discussion, and since the number of oper-
ators is irrelevant to our mapping benchmark, one can think
of O as always being set to 1 (i.e. we assume that one oper-
ator is needed to set up the robots and start the control sys-
tem, regardless of whether the robots are fully autonomous,
semi-autonomous, or fully tele-operated).

For the E factor, which stands for exploration, maps are
scored based on the correctly reported cleared surface, mea-
sured in square meters. This evaluation can be done auto-
matically by counting the number of green pixels on the
map under evaluation. Thanks to the provided georeferenc-
ing information, the counted number of pixels immediately
translates to an area measure. For sake of completeness we
mention that the team exploring the largest surface gets an
E value equal to 1 (and thus gets the full 50 points available
for exploration), and lower values linearly decrease to 0. In
order to account for possible errors in the surface classifica-
tion, a 5-point penalty is subtracted for every victim present
in an area declared as cleared.

The M factor accounts for map quality. Keeping in mind
that the map should be equally useful for first responders
and robots, five criteria that are detailed in Sect. 4 are con-
sidered. Each criterion is considered equally important. Util-
ity rewards the presence of information valuable to first re-
sponders, such as the location of hazards. Skeleton quality
aims to reward the ability to reduce a complex map into
a set of connected locations. For example, a corridor with
many doors on the sides may be represented by a skeleton
with a line and various symbols for the doors. In sense, one
may say that the skeleton quality aims to reward the ability
to extract a topological representation (Kuipers 1978) from
the occupancy grid. Metric quality measures the accuracy of
the map when compared with ground truth. Attribution re-
wards the embedding of attributes added to the map, such
as the path followed by robots while exploring the environ-
ment. Finally, grouping rewards the ability of adding an ad-
ditional layer displaying that four connected segments make
up a room, a hallway, a car, an open area, and so on. Ele-
ments pertaining to utility, attribution, skeleton quality and
grouping are delivered as additional layers for the TIFF file.

For what concerns Vi , various information is considered
for scoring purposes. From a mapping point of view the
most important aspect is the location of the victim. Since lo-
cations are marked as red pixels in georeferenced maps and
victims are embedded with unique identifiers, it is elemen-
tary to measure the difference between the reported victim
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location and the true one. The reported victim location is
compared with the ground truth victim location and, if the
error falls below a certain threshold, points are awarded.

4 Examples from competitions

The metric described in Sect. 3.2 is currently in use for judg-
ing the annual RoboCup Rescue Virtual Competition event.
This section and the next one present results from the 2008

competition that took place in Suzhou China in July of 2008.
The maps shown in Figs. 2, 3, 4 show examples of the maps
that were reviewed during the event. These maps were gen-
erated while operating in the environment depicted in Fig. 1
which shows a scene from the simulated world that matches
the generated maps. In Figs. 2, 3, 4, the competitors’ maps
have been overlaid on top of ground truth. The fact that
maps were georeferenced made this task simple to perform.
Judges were then able to easily see small errors in the struc-
ture of the autonomously generated map. For example, in

Fig. 1 A view of the world that
the robots were exploring while
creating their maps. The results
in Figs. 2, 3, 4 and 5 are all
based on this environment

Fig. 2 Examples of basis maps
generated in the environment
shown in Fig. 1. The top image
shows the GeoTIFF submitted
by Team A while the bottom
image shows the GeoTIFF
submitted by Team C during the
finals of the 2008 RoboCup
Virtual Robot Rescue
competition. Behind each basis
map is a layer with a raster and
ground-truth data for this
environment
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Fig. 3 (Color online) Map with
vector overlays and ground truth
of the maps submitted by
Team A and Team C

the second map in Fig. 2 the horizontal corridor in the top of
the image exhibits drift with respect to the ground truth. In
addition to the raster layer that depicts the regions that have
been cleared and explored, vector information on such items
as the robots’ path, a potential path for a first responder to
take to reach a discovered victim, and skeleton information
is provided (see Figs. 3 and 4). Scores for the maps were not
performed on an individual basis. Instead, maps were com-
pared against each other to determine the final scores.

Figure 2 shows the comparison of a map from Team A to
a map from Team C. The first step in the map comparison
is to automatically determine the area of the regions of the
map that had been explored and cleared. In this case, Team A
cleared 211 m2 and explored 373 m2 while Team C cleared
257 m2 and explored 351 m2. It should be noted that if a
team reports an area as explored that could not have been
seen by the robot, this area would be removed before the
automatic computation was performed.

The next phase of scoring involves determining the map-
ping quality. Recall that the map quality is made up of cri-

teria including metric quality, skeleton quality, attribution,
and utility.

4.1 Metric quality

The metric quality measure is designed to reward teams that
are able to accurately determine the location of walls, obsta-
cles, and free space in the environment. The determination
of a score for this metric is made difficult by the fact that
a mistake in robot localization often causes a large error in
the metric accuracy of the map. If a localization error oc-
curs early in the run, it will affect the entire map; if it occurs
late in the run, it will affect a much smaller percentage of
the overall map. However, it is the opinion of the competi-
tion’s technical committee that both maps may be deserving
of the same metric quality score since they both experienced
one severe localization error. This notion eliminates simple
scoring techniques such as correlation with ground truth (see
also the discussion in the following section).

In order to fairly judge the metric quality, it was decided
that both local quality and global quality should be assessed.
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Fig. 4 (Color online) Example
of map skeleton and ground
truth. The red lines make up the
skeleton

Local map quality is the quality of the map between localiza-
tion errors. Features such as wall consistency (i.e. the pres-
ence of holes or gaps in the walls), double representation
of objects, false positives, and false negatives are taken into
account. The global assessment examines the number and
severity of the localization errors. Several of these classes
of errors may be seen in Fig. 2. Team C’s map shows a sig-
nificant global error that occurred in the exploration of the
upper hallway. There are also several local errors including
missing walls and obstacles in the cubical area of the map
(see Fig. 1 for a visual representation of the world that was
explored). Points were awarded for metric quality by assign-
ing the best map 100% of the available points and decreas-
ing the points awarded by map rank. In this case, Team A
received a 100% score while Team B received 75% of the
available points.

4.2 Skeleton quality

Teams were asked to provide a vector layer that contains a
map skeleton for judging. Figure 4 shows Team A’s skeleton
map overlaid on top of ground truth with the addition of
a suggested path to the victim. The idea behind a skeletal
map is that it is able to provide all of the information that
would be necessary for a human to navigate in the space. For
example, from examining the map in Fig. 4, one could give
instructions to reach the victim as follows. Enter the large
door to the west, followed by a left turn and go straight until
you reach the wall. Make a right turn and enter through the
second door on your right to find the victim. Unfortunately,
there is a wall missing in this map and the responder should
have entered the third doorway to locate the victim. Scoring
for the vector map was also performed by ranking the maps
from best to worst and assigning credit proportional to the
rank. In the judges’ opinions, no team was fully successful
in delivering a skeleton layer.

4.3 Attribution and grouping

One of the reasons to generate a map is to convey informa-
tion to first responders. This information is often represented
as attributes on the map. Teams were required to denote ar-
eas explored (gray color on map examples), areas cleared
of victims (green color on map examples), and victim loca-
tions. The competition’s definition of “cleared” means that
no undetected victims exist in that area. Therefore, teams re-
ceived penalties for any victims that were located in cleared
areas and that were not reported. Other than for these re-
strictions, teams were free to include any additional map
attributes that they found useful and, overall, teams were
very successful in providing a layer that contained the map
attributes and groups. Grouping is a higher order mapping
task used to recognize that discrete elements of a map con-
stitute larger features. For example the fact that a set of walls
makes up a room, or a particular set of obstacles is really a
car. Figure 3 shows Team A’s and C’s fully detailed map.
This map layer was generated by the human operator while
performing the mission. Most teams provided a tool that al-
lowed the operator to sketch bounding areas on the map and
label them as the robots proceeded. Team A added the ad-
ditional innovation of being able to include georeferenced
snapshots of interesting regions that were captured by the
robot. A large number of teams produced equivalent feature
classes for the attribution, such as cubicle, hallway, step field
and open space. Team A was awarded additional points for
being the only team with the innovation of including snap-
shots. It is anticipated that most teams will incorporate this
feature in subsequent competitions.

4.4 Utility

The idea behind judging the utility of the maps was to tie all
of the other metrics together and imagine that a first respon-
der was using the map to find an object of interest in the
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world. The basic question posed was “how useful will the
map be in helping to accomplish the task?”. Figure 3 shows
the combined map constructed from the various data layers
of Team A and Team C. Team A performed an excellent job
of delivering a map that could be used by a first responder
to reach the detected victim. It provides the precise path that
should be taken, and shows landmarks along the way (e.g.
the cubicle) that could be used to track the responders posi-
tion. While Team C also provides numerous landmarks that
would be useful for navigation, it is not clear how a respon-
der would get to the detected victim (the red ‘X’ on the left
of the figure). Would the better path be to take the top hall-
way or go around the cubicles in the center of the map?

5 Comparison with previous metrics

In this section, we quantitatively compare our benchmark
results against a variety of metrics, all of which have been

discussed in Sect. 2. Each metric evaluates occupancy grid
maps, which were created by post-processing the submit-
ted basic maps into binary images where each cell is either
occupied (i.e. a value of 1) or free (i.e. a value of 0). Simi-
larly, the ground truth maps were easily extracted from the
simulation environment, with each cell also having one of
two values: 1 for occupied space and 0 for free space. It is
worthwhile to note that all comments made in this section
regarding the metrics are based on our map representation
and that different observation could be made if cells indi-
cated probabilities (i.e. a value between 0 and 1) rather than
certainties (i.e. either 0 or 1). We name our results Map Set 1
and Map Set 2 and will use these names throughout the rest
of this section. The occupancy grid maps are illustrated in
Figs. 5 and 6 with the metrics comparison being displayed
in Tables 1 and 2 for Map Set 1 and Map Set 2, respectively.

The Map Score (Martin and Moravec 1996), Over-
all Error (Carlson et al. 2005), Normalized Map Score
(O’Sullivan 2003), and Occupied Map Score (O’Sullivan

Fig. 5 Map Set 1, comprised of
maps on which the metrics
comparison have been made in
Table 1. From left to right, the
maps represent ground truth,
Team A, Team B, Team C, and
Team D. Occupied cells are
displayed in black and free cells
are displayed in white

Fig. 6 Map Set 2, comprised of
maps on which the metrics
comparison have been made in
Table 2. The image in the first
row is the ground truth. For the
second row, from left to right,
the maps represent Team A,
Team B, and Team C. For the
last row, from left to right, the
maps represent Team D,
Team E, and Team F. Occupied
cells are displayed in black and
free cells are displayed in white
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Table 1 Metrics comparison for Map Set 1. The first row indicates
area explored, calculated by our benchmark. The next seven rows are
the different metrics used, taken from different publications. The last
two rows display our metric scores for the Skeleton and Metric Qual-

ities. Bold numbers represent the best result, as per the metric used.
The first column gives the best score possible. The actual maps for this
data set can be seen in Fig. 5

Metric Best Team A Team B Team C Team D

Area Explored (m2) 1000 373 286 351 679

Map Score (Martin and Moravec 1996) 539524 489363 491321 496818 496758

Overall Error (Carlson et al. 2005) 0 50161 48203 42706 42766

Normalized Map Score (O’Sullivan 2003) 0 32513 26148 37384 30971

Occupied Map Score (O’Sullivan 2003) 0 17648 22055 5322 11795

Baron’s Correlation (O’Sullivan 2003) 1 0.2499 0.361 0.2243 0.3337

Pearson’s Correlation (Guyon et al. 2006) 1 0.7247 0.8155 0.0039 0.6422

Picture-Distance-Function (Birk 1996) 0 22.8908 13.0171 25.7268 19.6739

Skeleton Quality 12 12 12 12 12

Metric Quality 12 12 10 9 9

Table 2 Metrics comparison for Map Set 2. The first row indicates
area explored, calculated by our benchmark. The next seven rows are
the different metrics used, taken from different publications. The last
two rows display our metric scores for the Skeleton and Metric Qual-

ities. Bold numbers represent the best result, as per the metric used.
The first column gives the best score possible. The actual maps for this
data set can be seen in Fig. 6

Metric Best Team A Team B Team C Team D Team E Team F

Area Explored (m2) 1000 352 720 488 467 365 488

Map Score (Martin and Moravec 1996) 510952 470275 469373 471312 470619 471864 472174

Overall Error (Carlson et al. 2005) 0 40677 41579 39640 40333 39088 38778

Normalized Map Score (O’Sullivan 2003) 0 34279 33969 36542 35204 38074 36570

Occupied Map Score (O’Sullivan 2003) 0 6398 7610 3098 5129 1014 2208

Baron’s Correlation (O’Sullivan 2003) 1 0.1861 0.1839 0.1305 0.1644 0.0684 0.1468

Pearson’s Correlation (Guyon et al. 2006) 1 0.3247 0.3992 0.4363 0.0593 0.2517 0.3764

Picture-Distance-Function (Birk 1996) 0 48.9046 44.3993 38.4483 36.043 61.9765 58.2449

Skeleton Quality 12 12 12 12 12 8 10

Metric Quality 12 11 9 11 10 12 9

2003) metrics perform pixel-to-pixel comparisons between
the ground truth and robot-generated maps. More specifi-
cally, the Map Score metric starts with a score of 0 and it in-
creases by one for every pixel that is the same in the ground
truth map and the robot-generated map. Consequently, the
best possible score for this metric is the total number of pix-
els in the maps. The Overall Error metric is the opposite
of the Map Score metric since it increases by one for each
pixel that does not match within the two maps. As such, the
best Overall Error is zero, and adding the Map Score and
Overall Error metrics together will yield the total number of
pixels in the maps. One of the problems with the two afore-
mentioned metrics stems from the fact that they are utilized
over all the pixels, regardless of whether or not they repre-
sent occupied or free space. Since maps have a majority of
free space, these two metrics tend to be biased towards cor-
rect free space rather than correct occupied space, a fact that

is exemplified by Map Set 1. The table shows that Team C
gets the best scores for these two metrics and, looking at
the figure, we can clearly understand why. Team C produces
the map with the most unoccupied cells and the thinnest
walls. This problem is seen again in Map Set 2, where the
second-best map as per the metrics, produced by Team E,
is almost unusable. The high score for that map is entirely
attributed to the tremendous amount of free space that it en-
compasses. Alternatively, Team F produces the best map for
this metric, a fair result even though only a small portion
of the ground truth map has been explored. In an attempt to
correct the unoccupied space problem observed in the previ-
ous two metrics, the Normalized Map Score and Occupied
Map Score metrics yield the same results as the Overall Er-
ror metric (i.e. the result increases for each pixel that does
not match between the two maps) but are only run on the
occupied space of the maps. Two metrics are required since
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the metric is performed once using the occupied space of
the ground truth map and a second time using the occu-
pied space of the robot-generated map. The results between
the two are usually quite different since ground truth maps
tend to incorporate more occupied space (e.g. larger maps,
thicker walls) than their robot-generated counterparts. For
Map Set 1, we can clearly see that the Normalized Map
Score metric promotes thick walls and the amount of occu-
pied space discovered as evidenced by the top two teams,
as per this metric, Team B and Team D, respectively. For
Map Set 2, the same behavior can be observed with the top
three teams, Team B, Team A, and Team D, respectively,
having the thickest walls and the largest number of walls
uncovered. Conversely, the Occupied Map Score metric is
the exact opposite measure, by providing better scores for
maps that have less occupied space and smaller walls. This
fact is evidenced by a complete reversal of the best maps:
Team C and Team A for Map Set 1 and Team E, Team F,
and Team C for Map Set 2. All things considered, these four
metrics are very similar. In fact, the addition of the Normal-
ized Map Score and Occupied Map Score metrics will yield
the Overall Error metric.

The next two metrics that we evaluate are correlation co-
efficients. The first, Baron’s Cross Correlation coefficient
(O’Sullivan 2003), comes from the template matching re-
search community and evaluates all the pixels in the map.
A nice feature of this metric is the fact that it is normalized
between 0 and 1, where 1 means perfect correlation. Since
Baron’s Correlation heavily relies on averaging, it recom-
penses equal, or close, number of occupied and free cells
between the two maps, to the detriment of accuracy be-
tween the two maps. This drawback is clearly seen in both
Map Sets. For Map Set 1, the best Baron’s Correlation is
achieved by Team B thanks to its thick walls that nicely
mimic the ground truth map. Map Set 2 shows this draw-
back in even greater detail, where Team A and Team B are
the top two teams using this metric. As can clearly be seen
from Fig. 6, the map generated by Team B is distorted, but
gets the second-best score for its large number of occupied
pixels. The second correlation coefficient, Pearson’s Corre-
lation coefficient (Guyon et al. 2006), comes from statis-
tics and only evaluates the occupied space in the maps. The
Pearson’s Correlation coefficient gives a measure, between
0 and 1, of how likely it is possible to infer a map from an-
other, strictly using linear equations. This correlation coeffi-
cient comes with two important drawbacks since it requires
a similar number of occupied pixels between each map and
is easily perturbed by outliers. The striking number for this
correlation coefficient in Map Set 1 comes from Team C,
with an extremely low Pearson’s coefficient, due to the dif-
ference in the number of occupied pixels between ground
truth and the map. In Map Set 2, another extremely low co-
efficient is observed for Team D, due to the large amount of

noise and outliers in the map. Evidently, neither map is as
bad as the Pearson’s correlation make it seem. The correla-
tion coefficients provide new metrics that do not follow the
overused pixel-to-pixel comparisons, along with normalized
values that are easy to understand, but they can easily give
unpredictable results.

Finally, we explore the Picture-Distance-Function (Birk
1996), as a different approach to what has been presented
so far. For each occupied pixel in the ground truth map,
the closest Manhattan-distance to an occupied pixel in the
robot-generated map is calculated. The process is repeated
for each occupied pixel in the robot-generated map, using
the closest Manhattan-distance to an occupied pixel in the
ground truth map. The metric is then the sum of all the
Manhattan-distances for each pixel, using both the occu-
pied space of the ground truth and robot-generated maps,
divided by the total number of pixels used. Evidently, this
metric is not normalized and a perfect map would receive
a Picture-Distance-Function score of zero. Even though this
metric is a very good attempt at removing the inherent prob-
lems of pixel-to-pixel comparisons, it is biased towards ex-
ploration, an observation that is substantiated by both Map
Sets. Indeed, in Map Set 1, the two best teams as per this
metric, Team B and Team D, respectively, have discovered
the greatest amount of walls through exploration. Similarly,
for Map Set 2, the two worst teams, Team E and Team F,
respectively, have explored the less area or discovered less
occupied space.

6 Closing the loop between simulation and real robot
systems

A common criticism raised towards robotic simulators is
that results obtained in simulation are hard to generalize
because proofs of concepts are deemed to succeed in the
simplified simulated scenario. Indeed we agree that results
obtained in simulation should carefully be considered and
we do not view the simulator as a tool to prove concepts,
but rather as a development and debugging framework to
safely ease the evolution of software that will eventually
run on real robots. For this reason, and since the very in-
ception of the USARSim project, special care has been de-
voted to create experiments aiming at assessing the accu-
racy of results obtained in simulation (Carpin et al. 2006a;
Balaguer et al. 2008b; Schmits and Visser 2008).

In order to verify that the presented map evaluation
schema extends to real systems, we contrast two maps as
shown in Figs. 7 and 8 with their respective assessments per-
formed according to the presented methodology. The first
map (left hand side of Figs. 7 and 8) has been created with
a robotic system, while the second one (right hand side of
Figs. 7 and 8) is obtained with the USARSim simulator op-
erating in a corresponding environment. We stress that the
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Fig. 7 This figure shows the
composite map generated by the
real platform (left) and the
simulated platform (right). The
attribute overlay is not displayed

Fig. 8 (Color online) This figure shows the raster map generated by
the real platform (left) and the simulated platform (right), each of
which is superimposed by the ground truth map (blue). These layers
are used to compare the metric quality of the solutions

two experimental scenarios are aligned. With this expression
we indicate that we use exactly the same control software,
the same robot, and we take care that the simulated environ-
ment faithfully reproduces the real one. Even though only
one example is presented for the sake of space and clarity,
many experiments have been run under similar conditions
and have shown to be consistent. Figure 9 presents pictures
contrasting the real and simulated robots in their respective
environments.

6.1 Robot

The robot platform is a P3AT1 equipped with a SICK
LMS200 proximity range finder and a webcam. The con-
trol software (Balaguer and Carpin 2008a) is a two-layer
application where the user interface is implemented with
Microsoft Robotics Studio and the lower layer is imple-
mented using the Mobility Open Architecture Simulation
and Tools (MOAST) developed at NIST (MOAST project
2009). For mapping purposes the control application ex-
ploits the GMapping algorithm (Grisetti et al. 2007), an open
source package that produces a probabilistic occupancy grid
map using range finder and odometry data. A human su-
pervisor detects and localizes victims based on the webcam

1Certain commercial software and tools are identified in this paper in
order to explain our research. Such identification does not imply rec-
ommendation or endorsement by the authors, nor does it imply that
the software tools identified are necessarily the best available for the
purpose.
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Fig. 9 The real robot operating
in the environment (left), along
with its simulated counterpart
(right). The figure shows the
fidelity of the robot,
environment and victim models
inside the simulation

feedback, and places them manually on the map provided
by GMapping. Finally, the human supervisor manually pro-
duces an additional layer containing grouping information,
either during or at the end of the run.

In the testbed presented in this section two experiments
are performed in sequence, one with the real robot and one
in simulation. Even though it would be possible to drive the
two robots in parallel with the same joystick,2 as was done
in Balaguer et al. (2007, 2008b), we do not follow this ap-
proach because the single operator would then be subject to
a too demanding scenario (i.e. managing two Graphical User
Interfaces at the same time). Instead, care has been taken by
the operator to ensure the two robots follow the same topo-
logical path. This choice is evidenced by the paths displayed
in Fig. 7.

6.2 Map evaluation

If judged in the RoboCup Rescue Virtual Robot Competi-
tion, the two maps displayed in Fig. 7 would receive re-
markably similar scores. The real robot explored and cleared
an area of 185 m2 while the simulated robot explored and
cleared an area of 195 m2. In terms of metric quality, Fig. 8
show a comparison of the two maps. This figure illustrates
the difficulty in judging metric quality. Both maps appear to
have similar local accuracy as evident from the bottom cor-
ridor where the robots began their missions. However, the
simulated robot appears to have had a localization error be-
fore reaching the second room on the right (thus affecting
global accuracy), while the real robot did not experience a
localization error until the third room on the right. In ad-
dition, both robots appear to have experienced a consistent
drift in their solution, and have a similar error where non-
existent portions of the corridor near the top of the map are
marked as cleared. Due to the similar nature of the mapping
errors, the two maps would have received identical metric
scores.

2Experiments like these have been successfully performed in the
past. The reader is referred to the videos available on https://robotics.
ucmerced.edu/Robotics/multimedia for some examples.

The remainder of the map score is based on skeleton
quality (no skeleton was provided), attribution, and utility.
In this case the attribution of both maps was identical. Thus
the maps would have received identical scores. In addition,
the utility of both maps for reaching the located victims is
excellent in both cases. This experiment has shown that this
mapping algorithm produces almost identical results in both
the USARSim simulator and on a real robotic platform.

7 Open problems, future work and conclusions

A few conclusions can be drawn from the presented results,
and we can also identify a set of limitations that may serve
as stimulus for future research work.

Throughout our experience, we committed to the use of
planar occupancy grid maps in order to model spatial infor-
mation acquired by exploring robots. This choice proves to
be appropriate for the scenario at hand (i.e. USAR applica-
tions) but starts to show its limitations due to the increasing
popularity of heterogeneous teams of robots capable of over-
coming three-dimensional obstacles, or even flying. In con-
trast to the two-dimensional case, for which occupancy grid
maps are well accepted by the research community, notably
less agreement exists for an appropriate representation of
three-dimensional scenarios, also because the natural exten-
sion of grids to three dimensions carries a certain space com-
plexity overhead. In order to promote research towards this
very promising area, convergence towards an agreed repre-
sentation can only be beneficial to compare results and pro-
mote reuse of third party code. We conclude this discussion
about representation issues by mentioning that, for certain
classes of robots, an occupancy grid may not be appropriate
at all. For example feature-based maps embedding sparsely
detected features may be more useful for aquatic robots.

We believe that one success story of our experience is
the commitment to open standards, like GeoTIFF, and we
are pleased to see that having enforced participating teams
to release their code under open source terms is leading to
a rewarding exchange of algorithms and software compo-
nents among participants. We are convinced advocates that

https://robotics.ucmerced.edu/Robotics/multimedia
https://robotics.ucmerced.edu/Robotics/multimedia
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in order to converge to community-accepted benchmarking
tests for mapping, but also for other robotic tasks, it is nec-
essary that researchers make their algorithms and data pub-
licly available to the research community for, if nothing else,
evaluation purposes. While this requirement may face some
resistance in the beginning, this effort will yield big divi-
dends in the long run. Repeatability of experiments is one
of the cornerstones of scientific investigation and the re-
search robotics community now has its chance to embrace
this much belated change.

The quest for a mapping benchmark is far from being
close to an end, but increased awareness of this problem’s
importance leads to some optimism. A set of benchmarking
algorithms with no or few parameters to set is still miss-
ing. While running the RoboCup competition, where teams
eventually are rewarded with prizes for their efforts, we saw
that the evaluation of the E and Vi components of (1) are
well received by participants because no subjective human
judgment is involved. On the contrary, and understandably,
the M value is still evaluated according to some subjective
deliberation, and does not lead to the repeatability we strive
for. The definition of a community-accepted formula for
contrasting the metric quality of two occupancy grid maps,
or of a map against ground truth is in our opinion the most
challenging issue.

As a first attempt of objective evaluation, in 2009 the oc-
cupancy grid maps will be automatically judged on useful-
ness. This approach is inspired by Collins et al. (2007). The
usefulness of the map for robot navigation will be tested by
planning a number of paths to predefined reachable loca-
tions. The fraction of correct paths as a function of the pos-
sible path will be used as measure. Path planning can fail
due to the following map characteristics:

– no occupancy information is available for the target point
(i.e. map is too small).

– every possible path is blocked by occupied space, due
to observed obstacles that are actually not present in the
world.

– a path is found to the target point, but the path is dan-
gerously long due to obstacles observed or gateways that
are missed (a detour). This classification will be based
on a relative threshold (e.g. 20% longer than the optimal
path).

– a path is found to the target point, but the path is danger-
ously short due to missed obstacles or observed gateways
which are not present in the world (a shortcut). Execut-
ing this path would crash a robot. This classification will
be based on a relative threshold (e.g. 5% shorter than the
optimal path).

Even with this objective criterion, the problem is not
solved. In this approach, maps are treated as images and ana-
lyzed with machinery coming from computer vision. As ev-
idenced in Sect. 5, treating occupancy grid maps as pictures

has a number of drawbacks. Yet, the navigational skills of
the robot team are still an important aspect since they de-
termine the size and accuracy of the map. The robot team
has full control over its input data, engaged in active percep-
tion of its surroundings. There is no way to directly assess
the real power of a mapping algorithm that, in real-time, ad-
justs to the availability, accuracy and power of its sensing
devices. A comparison with algorithm complexity may be
helpful to get our point. One of the reasons for the success
of the famous big-O notation is its relationship to a well
accepted computational, i.e. the Von Neumann model. We
believe a similar approach is needed in order to establish ac-
cepted benchmarks, i.e. it is necessary to ground these tests
on sound abstractions of the robot components sustaining
the algorithms under evaluation.

Finally, we would like to stress that carefully engineered
simulation environments can be instrumental in perfecting
evaluation methodologies and to perform preliminary trials
aimed to select the most appropriate mapping solution for
the task at hand.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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