Skip to main content
Log in

Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the Khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. D. (1998). Sensor modelling, design and data processing for autonomous navigation. River Edge: World Scientific.

    Google Scholar 

  • Blanchard, M., Verschure, P. F. M. J., & Rind, F. C. (1999). Using a mobile robot to study locust collision avoidance responses. International Journal of Neural Systems, 9, 405–410.

    Article  Google Scholar 

  • Blanchard, M., Rind, F. C., & Verschure, P. F. M. J. (2000). Collision avoidance using a model of the locust LGMD neuron. Robotics and Autonomous Systems, 30, 17–38.

    Article  Google Scholar 

  • Camhi, J. M., Tom, W., & Volman, S. (1978). The escape behaviour of the cockroach Periplaneta Americana II. detection of natural predators by air displacement. Journal of Comparative Physiology A, 128, 203–212.

    Article  Google Scholar 

  • DeSouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237–67.

    Article  Google Scholar 

  • Domenici, P., Booth, D., Blagburn, J. M., & Bacon, J. P. (2008). Cockroaches keep predators guessing by using preferred escape trajectories. Current Biology, 18, 1792–1796.

    Article  Google Scholar 

  • Eaton, R. C., Lavender, W. A., & Wieland, C. M. (1981). Identification of mauthner-initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. Journal of Comparative Physiology, 144, 521–531.

    Article  Google Scholar 

  • Eaton, R. C., DiDomenico, R., & Nissanov, J. (1991). Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Brain Behavior and Evolution, 37, 272–285.

    Article  Google Scholar 

  • Everett, H. R. (1995). Sensors for mobile robots: theory and application. Wellesley: AK Peters.

    Google Scholar 

  • Ezrachi, E. A. (2003). Computational model of the cockroach escape behaviour: winner and losers in a population code. Biological Cybernetics, 88(1), 33–45.

    Article  MATH  Google Scholar 

  • Ezrachi, E. A., Levi, R., Camhi, J. M., & Parnas, H. (1999). Right-left discrimination in a biologically oriented model of the cockroach escape system. Biological Cybernetics, 81(2), 89–99.

    Article  Google Scholar 

  • Fiala, M., & Basu, A. (2004). Robot navigation using panoramic tracking. Pattern Recognition, 37, 2195–2215.

    Article  Google Scholar 

  • Fotowat, H., & Gabbiani, F. (2007). Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. The Journal of Neuroscience, 27, 10047–10059.

    Article  Google Scholar 

  • Gabbiani, F., & Krapp, H. G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96(6), 2951–2962.

    Article  Google Scholar 

  • Gabbiani, F., Krapp, H. G., Hatsopoulos, N., Mo, C.-H., Koch, C., & Laurent, G. (2004). Multiplication and stimulus invariance in a looming-sensitive neuron. Journal of Physiology – Paris, 98, 19–34.

    Article  Google Scholar 

  • Gnatzy, W. (1996). Digger wasp vs. cricket: neuroethology of a predator-prey interaction. Information Processing in Animals, 10, 92.

    Google Scholar 

  • Grandchallenge (2005). http://www.darpa.mil/grandchallenge/index.asp.

  • Harrison, R. R., & Koch, C. (2000). A silicon implementation of the fly’s optomotor control system. Neural Computation, 12, 2291–2304.

    Article  Google Scholar 

  • Hatsopoulos, N., Gabbiani, F., & Laurent, G. (1995). Elementary computation of object approach by a wide-field visual neuron. Science, 270, 1000–1003.

    Article  Google Scholar 

  • Horridge, G. A. (1978). The separation of visual axes in apposition compound eyes. Philosophical Transactions of the Royal Society London B: Biological Science, 285, 1–59.

    Article  Google Scholar 

  • Huber, S. A., Franz, M. O., & Buelthoff, H. H. (1999). On robots flies: modelling the visual orientating behaviour of flies. Robotics and Autonomous Systems, 29, 227–242.

    Article  Google Scholar 

  • Iida, F. (2003). Biologically inspired visual odometer for navigation of a flying robot. Robotics and Autonomous Systems, 44(3–4), 201–208.

    Article  Google Scholar 

  • Indiveri, G., & Douglas, R. (2000). Neuromorphic vision sensors. Science, 288, 1189–1190.

    Article  Google Scholar 

  • Krasne, F. B., & Lee, S. C. (1988). Response-dedicated trigger neurons as control points for behavioral actions: selective inhibition of lateral giant command neurons during feeding in crayfish. The Journal of Neuroscience, 8, 3703–3712.

    Google Scholar 

  • Levi, R., & Camhi, J. M. (2000a). Wind direction coding in the cockroach escape response: winner does not take all. The Journal of Neuroscience, 15:20(10), 3814–3821.

    Google Scholar 

  • Levi, R., & Camhi, J. M. (2000b). Population vector coding by the giant interneurons of the cockroach. The Journal of Neuroscience, 15:20(10), 3822–3829.

    Google Scholar 

  • Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots, 18, 81–102.

    Article  Google Scholar 

  • Nishio, K., Yonezu, H., Kariyawasam, A. B., Yoshikawa, Y., Sawa, S., & Furukawa, Y. (2004). Analogy integrated circuit for motion detection against moving background based on the insect visual system. Optical Review, 11(1), 24–33.

    Article  Google Scholar 

  • O’Shea, M., Rowell, C. H. F., & Williams, J. L. D. (1974). The anatomy of a locust visual interneurone: The descending contralateral movement detector. Journal of Experimental Biology, 60, 1–12.

    Google Scholar 

  • Rind, F. C. (1984). A chemical synapse between two motion detecting neurones in the locust brain. Journal of Experimental Biology, 110, 143–167.

    Google Scholar 

  • Rind, F. C. (1987). Non-Directional, movement sensitive neurones of the locust optic lobe. Journal of Comparative Physiology, 161, 477–494.

    Article  Google Scholar 

  • Rind, F. C. (2002). Motion detectors in the locust visual system: from biology to robot sensors. Microscopy Research and Technique, 56, 256–269.

    Article  Google Scholar 

  • Rind, F. C. (2005). Bioinspired sensors: from insect eyes to robot vision. In T. A. Christensen (Ed.), Frontiers in neuroscience: methods in insect sensory neuroscience. Boca Raton, London, New York: CRC Press.

    Google Scholar 

  • Rind, F. C., & Bramwell, D. I. (1996). Neural network based on the input organization of an identified neuron signaling impending collision. Journal of Neurophysiology, 75, 967–985.

    Google Scholar 

  • Rind, F. C., & Simmons, P. J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. Journal of Neurophysiology, 68, 1654–1666.

    Google Scholar 

  • Rind, F. C., & Simmons, P. J. (1999). Seeing what is coming: Building collision sensitive neurons. Trends in Neurosciences, 22, 215–220.

    Article  Google Scholar 

  • Rind, F. C., Santer, R. D. J., Blanchard, M., & Verschure, P. F. M. J. (2003). Locust’s looming detectors for robot sensors. In F. G. Barth, J. A. C. Humphrey & T. W. Secomb (Eds.), Sensors and sensing in biology and engineering. Wien, New York: Springer.

    Google Scholar 

  • Rind, F. C., Stafford, R., & Yue, S. (2004). Technical Report D11: Biological Model Report, Project IST-2001-38097, LOCUST: Life-like object detection for collision avoidance using spatiotemporal image processing. http://www.imse.cnm.es/locust/main.html.

  • Roberts, A. (1968). Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response. Journal of Experimental Biology, 48, 545–567.

    Google Scholar 

  • Salzman, C. D., & Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264, 231–237.

    Article  Google Scholar 

  • Santer, R. D., Stafford, R., & Rind, F. C. (2004). Retinally-generated saccadic suppression of a locust looming detector neuron: investigations using a robot locust. Journal of Royal Society London: Interface, 1, 61–77.

    Article  Google Scholar 

  • Santer, R. D., Simmons, P. J., & Rind, F. C. (2005a). Gliding behaviour elicited by lateral looming stimuli in flying locusts. Journal of Comparative Physiology, 191, 61–73.

    Article  Google Scholar 

  • Santer, R. D., Yamawaki, Y., Rind, F. C., & Simmons, P. J. (2005b). Motor activity and trajectory control during escape jumping in the locust Locusta migratoria. Journal of Comparative Physiology, 191, 965–975.

    Article  Google Scholar 

  • Santer, R. D., Yamawaki, Y., Rind, F. C., & Simmons, P. J. (2008). Preparing for escape: an examination of the role of the DCMD neuron in locust escape jumps. Journal of Comparative Physiology A, 194(1), 69–77.

    Article  Google Scholar 

  • Schlotterer, G. R. (1977). Response of the locust descending contralateral movement detector neuron to rapidly approaching and withdrawing visual stimuli. Canadian Journal of Zoology, 55, 1372–1376.

    Article  Google Scholar 

  • Simmons, P. J. (1980). Connexions between a movement-detecting visual interneurone and flight motoneurones of a locust. Journal of Experimental Biology, 86, 87–97.

    Google Scholar 

  • Simmons, P. J., & Rind, F. C. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. Journal of Neurophysiology, 68, 1667–1682.

    Google Scholar 

  • Simmons, P. J., & Rind, F. C. (1997). Responses to object approach by a wide field visual neurone, the LGMD2 of the locust: characterization and image cues. Journal of Comparative Physiology, 180, 203–214.

    Article  Google Scholar 

  • Stafford, R., & Rind, F. C. (2007). Data mining neural spike-trains for the identification of behavioural triggers using evolutionary algorithms. Neurocomputing, 70, 1079–1084.

    Article  Google Scholar 

  • Stafford, R., Santer, R. D., & Rind, F. C. (2007). A bio-inspired visual collision detection mechanism for cars: combining insect inspired neurons to create a robust system. BioSystems, 87, 162–169.

    Article  Google Scholar 

  • Stern, M., & Gewecke, M. (1993). Spatial sensitivity profiles of motion sensitive neurons in the locust brain. In K. Wiese et al. (Eds.), Sensory systems of arthropods (pp. 184–195). Basel: Birkhaeuser.

    Google Scholar 

  • Vahidi, A., & Eskandarian, A. (2003). Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 4(3), 143–153.

    Article  Google Scholar 

  • Webb, B., & Reeve, R. (2003). Reafferent or redundant: integration of phonotaxis and optomotor behaviour in crickets and robots. Adaptive Behaviour, 11(3), 137–158.

    Article  Google Scholar 

  • Wine, J. J., & Krasne, F. B. (1972). The organization of escape behavior in the crayfish. Journal of Experimental Biology, 56, 1–18.

    Google Scholar 

  • Yue, S., & Rind, F. C. (2005). A collision detection system for a mobile robot inspired by locust visual system. In IEEE int. conf. on robotics and automation, Spain, Barcelona, Apr. 18–21, 2005 (pp. 3843–3848).

  • Yue, S., & Rind, F. C. (2006a). Collision detection in complex dynamic scenes using a LGMD based visual neural network with feature enhancement. IEEE Transactions on Neural Networks, 17(3), 705–716.

    Article  Google Scholar 

  • Yue, S., & Rind, F. C. (2006b). Visual motion pattern extraction and fusion for collision detection in complex dynamic scenes. Computer Vision and Image Understanding, 104(1), 48–60.

    Article  Google Scholar 

  • Yue, S., & Rind, F. C. (2007). A synthetic vision system using directionally selective motion detectors to recognize collision. Artificial Life, 13(2), 93–122.

    Article  Google Scholar 

  • Yue, S., & Rind, F. C. (2008a). Exploring postsynaptic organizations of bio-inspired DSNs for car collision detection. IEEE Transactions on Intelligent Transport Systems (under review).

  • Yue, S., & Rind, F. C. (2008b). Competence comparison of collision sensitive visual neural systems during evolution in dynamic environments. Artificial Life (under review).

  • Yue, S., Rind, F. C., Keil, M. S., Cuadri, J., & Stafford, R. (2006a). A bio-inspired visual collision detection mechanism for cars: optimisation of a model of a locust neuron to a novel environment. Neurocomputing, 69(13–15), 1591–1598.

    Article  Google Scholar 

  • Yue, S., Yamawaki, Y., Santer, R., & Rind, F. C. (2006b). Evolutionary search for the visual-motor model determining locusts escaping direction (Technical report).

  • Zhurov, Y., & Brezina, V. (2006). Variability of motor neuron spike timing maintains and shapes contractions of the accessory radula closer muscle of Aplysia. The Journal of Neuroscience, 26(2), 7056–7070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigang Yue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, S., Santer, R.D., Yamawaki, Y. et al. Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated. Auton Robot 28, 151–167 (2010). https://doi.org/10.1007/s10514-009-9157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9157-4

Keywords

Navigation