Skip to main content
Log in

Algorithms and complexity results for graph-based pursuit evasion

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We study the classical edge-searching pursuit-evasion problem where a number of pursuers have to clear a given graph of fast-moving evaders despite poor visibility, for example, where robots search a cave system to ensure that no terrorists are hiding in it. We study when polynomial-time algorithms exist to determine how many robots are needed to clear a given graph (minimum robot problem) and how a given number of robots should move on the graph to clear it with either a minimum sum of their travel distances (minimum distance problem) or minimum task-completion time (minimum time problem). The robots cannot clear a graph if the vertex connectivity of some part of the graph exceeds the number of robots. Researchers therefore focus on graphs whose subgraphs can always be cut at a limited number of vertices, that is, graphs of low treewidth, typically trees. We describe an optimal polynomial-time algorithm, called CLEARTHETREE, that is shorter and algorithmically simpler than the state-of-the-art algorithm for the minimum robot problem on unit-width unit-length trees. We then generalize prior research to both unit-width arbitrary-length and unit-length arbitrary-width graphs and derive both algorithms and time complexity results for a variety of graph topologies. Pursuit-evasion problems on the former graphs are generally simpler than pursuit-evasion problems on the latter graphs. For example, the minimum robot and distance problems are solvable in polynomial time on unit-width arbitrary-length trees but NP-hard on unit-length arbitrary-width trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agmon, N., Kraus, S., & Kaminka, G. (2008a). Multi-robot perimeter patrol in adversarial settings. In Proceedings of IEEE international conference on robotics and automation, 2008 (pp. 2339–2345).

    Google Scholar 

  • Agmon, N., Sadov, V., Kraus, S., & Kaminka, G. (2008b). The impact of adversarial knowledge on adversarial planning in perimeter patrol. In Proceedings of the international conference on autonomous agents and multi-agent systems, 2008 (pp. 55–62).

    Google Scholar 

  • Barriere, L., Flocchini, P., Fraigniaud, P., & Santoro, N. (2002). Capture of an intruder by mobile agents. In Proceedings of the 14th annual ACM symposium on parallel algorithms and architectures, 2002 (pp. 200–209).

    Google Scholar 

  • Bienstock, D., & Seymour, P. (1991). Monotonicity in graph searching. Journal of Algorithms, 12(2), 239–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Bodlaender, H., & Kolks, T. (1996). Efficient and constructive algorithms for the pathwidth and treewidth of graphs. Journal of Algorithms, 21, 358–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Bodlaender, H., & Möhring, R. (1993). The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics, 6, 181–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Bodlaender, H., & Thilikos, D. (2004). Computing small search numbers in linear time. In Proceedings of the international workshop on parameterized and exact computation, 2004 (pp. 37–48).

    Chapter  Google Scholar 

  • Bodlaender, H., Kolks, T., & Kratsch, D. (1995). Treewidth and pathwidth of permutation graphs. SIAM Journal on Discrete Mathematics, 8, 606–616.

    Article  MathSciNet  MATH  Google Scholar 

  • Borie, R., Tovey, C., & Koenig, S. (2009). Algorithms and complexity results for pursuit-evasion problems. In Proceedings of the international joint conference on artificial intelligence, 2009 (pp. 59–66).

    Google Scholar 

  • Ellis, J., Sudborough, I., & Turner, J. (1994). The vertex separation and search number of a graph. Information and Computation, 113(1), 50–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis, J., & Warren, R. (2008). Lower bounds on the pathwidth of some grid-like graphs. Discrete Applied Mathematics, 156(5), 545–555.

    Article  MathSciNet  MATH  Google Scholar 

  • Fomin, R., & Thilikos, D. (2008). An annotated bibliography on guaranteed graph searching. Theoretical Computer Science, 399(3), 236–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability. New York: Freeman.

    MATH  Google Scholar 

  • Gerkey, B. (2011). http://ai.stanford.edu/~gerkey/research/pe/. Retrieved in 2011.

  • Gordon, G., Thrun, S., & Gerkey, B. (2004). Visibility-based pursuit-evasion with limited field of view. In Proceedings of the national conference on artificial intelligence, 2004 (pp. 20–27).

    Google Scholar 

  • Gustedt, J. (1993). On the path width of chordal graphs. Discrete Applied Mathematics, 45, 233–248.

    Article  MathSciNet  MATH  Google Scholar 

  • Hollinger, G. (2010). Search in the physical world. Ph.D. dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh PA.

  • Hollinger, G., Kehagias, A., & Singh, S. (2010). Improving the efficiency of clearing with multi-agent teams. The International Journal of Robotics Research, 29(8), 1088–1105.

    Article  Google Scholar 

  • Kehagias, A., Hollinger, G., & Singh, S. (2009). A graph search algorithm for indoor pursuit/evasion. Mathematical and Computer Modeling, 50(9–10), 1305–1317.

    Article  MathSciNet  MATH  Google Scholar 

  • Kinnersley, N. (1992). The vertex separation number of a graph equals its path-width. Information Processing Letters, 42, 345–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirousis, L., & Papadimitriou, C. H. (1985). Interval graphs and searching. Discrete Mathematics, 55, 181–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirousis, M., & Papadimitriou, C. (1986). Searching and pebbling. Theoretical Computer Science, 47(2), 205–218.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolling, A. (2009). Multi-robot pursuit-evasion. Ph.D. dissertation, School of Electrical Engineering and Computer Science, University of California at Merced, Merced CA.

  • Kolling, A., & Carpin, S. (2008a). Extracting surveillance graphs from robot maps. In Proceedings of the IEEE/RSI international conference on intelligent robots and systems (pp. 2323–2328).

    Google Scholar 

  • Kolling, A., & Carpin, S. (2008b). Multi-robot surveillance: an improved algorithm for the GRAPH-CLEAR problem. In Proceedings of the 2008 IEEE international conference on robotics and automation (pp. 2360–2365).

    Google Scholar 

  • Kolling, A., & Carpin, S. (2010). Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics, 26(1), 32–47.

    Article  Google Scholar 

  • Kolling, A., Kleiner, A., Lewis, M., & Sycara, K. (2010). Pursuit-evasion in 2.5d based on team-visibility. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4610–4616).

    Google Scholar 

  • Kolling, A., Kleiner, A., Lewis, M., & Sycara, K. (2011). Computing and executing strategies for moving target search. In Proceedings of the IEEE international conference on robotics and automation (in print).

    Google Scholar 

  • LaPaugh, A. (1993). Recontamination does not help to search a graph. Journal of the ACM, 40(2), 224–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Makedon, F., & Sudborough, I. (1989). On minimizing width in linear layouts. Discrete Applied Mathematics, 23(3), 243–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Megiddo, N., Hakimi, S., Garey, M., Johnson, D., & Papadimitriou, C. (1988). The complexity of searching a graph. Journal of the ACM, 35(1), 18–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Monien, F., & Sudborough, I. (1988). Min cut is NP-complete for edge weighted trees. Theoretical Computer Science, 58, 209–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Parsons, T. (1976). Pursuit-evasion in a graph. In Y. Alavi & D. Lick (Eds.), Theory and applications of graphs. Lecture notes in mathematics (pp. 426–441). Berlin: Springer.

    Google Scholar 

  • Pellier, D., & Fiorino, H. (2005). Coordinated exploration of unknown labyrinthine environments applied to the pursuit evasion problem. In Proceedings of the international joint conference on autonomous agents and multiagent systems (pp. 895–902).

    Chapter  Google Scholar 

  • Pita, J., Jain, M., Marecki, J., Ordonez, F., Portway, C., Tambe, M., Western, C., Paruchuri, P., & Kraus, S. (2008). Deployed armor protection: the application of a game theoretic model for security at the Los Angeles international airport. In Proceedings of the international conference on autonomous agents and multi-agent systems (pp. 125–132).

    Google Scholar 

  • Simov, B., Slutzki, G., & LaValle, S. (2000). Pursuit-evasion using beam detection. In Proceedings of the IEEE international conference on robotics and automation (pp. 1657–1662).

    Google Scholar 

  • Skodinis, K. (2000). Computing optimal linear layouts of trees in linear time. In Proceedings of the annual European symposium on algorithms, 2000 (pp. 403–414).

    Google Scholar 

  • Tardos, E. (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5, 247–255.

    Article  MathSciNet  MATH  Google Scholar 

  • Thilikos, D. (2000). Algorithms and obstructions for linear-width and related search parameters. Discrete Applied Mathematics, 105, 239–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Vidal, R., Shakernia, O., Kim, H., Shim, D., & Sastry, S. (2002). Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Transactions on Robotics and Automation, 18(5), 662–669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Tovey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borie, R., Tovey, C. & Koenig, S. Algorithms and complexity results for graph-based pursuit evasion. Auton Robot 31, 317–332 (2011). https://doi.org/10.1007/s10514-011-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9255-y

Keywords

Navigation