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Abstract Knowledge of altitude, attitude and motion

is essential for an Unmanned Aerial Vehicle during crit-

ical maneuvers such as landing and take-off. In this

paper we present a hybrid stereoscopic rig composed

of a fisheye and a perspective camera for vision-based

navigation. In contrast to classical stereoscopic systems

based on feature matching, we propose methods which

avoid matching between hybrid views. A plane-sweeping

approach is proposed for estimating altitude and de-

tecting the ground plane. Rotation and translation are

then estimated by decoupling: the fisheye camera con-

tributes to evaluating attitude, while the perspective

camera contributes to estimating the scale of the trans-

lation. The motion can be estimated robustly at the

scale, thanks to the knowledge of the altitude.

We propose a robust, real-time, accurate, exclusively

vision-based approach with an embedded C++ imple-
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mentation. Although this approach removes the need

for any non-visual sensors, it can also be coupled with

an Inertial Measurement Unit.

Keywords UAV · hybrid stereovision · motion ·
attitude · altitude

1 Introduction

Unmanned Aerial Vehicles (UAV) have received a lot of

attention over the last decade, in relation to command

and on-board computer vision. Interest in these top-

ics has focused largely on increasing UAV autonomy,

which includes maneuvers such as landing and take-off.

In this context a fast, robust, accurate estimation of

critical parameters such as altitude, attitude, motion

and velocity is clearly crucial for the control loop.

A number of sensors have been used to estimate

these parameters. Altitude can be determined by GPS,

altimeter, radar, or laser. Attitude can be provided by

Inertial Measurement Unit (IMU), and motion by GPS

or radar. Raw Global Positioning Systems (GPS) have

a poor accuracy both vertically (accuracy between 25

and 50 meters) and horizontally (less than 15 meters).

Moreover, GPS is sensitive to interruptions in transmis-

sion in urban environments. Radar can estimate both

altitude and velocity with greater accuracy, but it re-

quires active sensors that consume power. Altimeters

are very widely used, but they depend on pressure vari-

ations, which implies an accuracy error of between 6%

and 7%. Laser altimeters, on the other hand, are highly

accurate, but they have very specific requirements con-

cerning reflecting surfaces. Finally, IMU can provide

indications of velocity, acceleration, attitude and orien-

tation, but it is subject to drift and error accumulation.

As an alternative to these sensors, vision-based sys-

tems, thanks to the growth of computational capacity,

can now rapidly estimate all these parameters, as well

as performing other visual tasks. Furthermore, cameras

remain compact, passive systems with correspondingly

low energy consumption, and can provide information

at high rates (up to 200Hz).

Most of the works using computer vision for UAV

are based on the optical flow analysis obtained with

a single camera Barrows et al. (2001); Beyeler et al.

(2006); Chahl et al. (2004); Green et al. (2003). In-

deed, optical flow can be efficiently computed and con-

sequently embedded for navigation purpose. These sys-

tems were bio-inspired by information processing mech-

anisms that have evolved in bees, and consist in de-

ducing the altitude according to the optical flow, given

knowledge of the camera’s motion. Beyeler et al. (2006)

is alone in proposing an estimation of pitch to cor-
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rect the optical flow, without which an unstable system

might result. An original approach using a single per-

spective camera is to be found in Cheriany et al. (2009).

The authors use a technique based on the learning of

a mapping between texture information contained in a

top-down aerial image and altitude values. This learn-

ing stage is performed over different kinds of terrain,

and a spatio-temporal Markov Random Field is used.

However, optical flow information is clearly not suffi-

cient for a complete control of a UAV.

2 Related Work

As explained before, orientation and position parame-

ters are essential for the control of the UAV and vision

based methods can be very interesting because of the

richness of the provided information. A hierarchy be-

tween these parameters can be established according

to their importance in the control loop. The most im-

portant one deals with the attitude knowledge for the

stabilization followed by the altitude for hovering and

landing maneuvers and finally position and yaw angle

for trajectory. Consequently, this ranking imposes the

refreshing rate requirement for the control. In this work,

even if we do not manage the control of the UAV, our

aim is to propose a complete onboard vision system able

to provide orientation and position parameters at the

required frequency rate for a future loop control. Many

works based on vision solely or vision fused with other

sensors have been already proposed. A complete recent

review is presented in Weiss et al. (2011). These works

can be divided in two categories which are respectively

based on cameras placed in the environment or based

on embedded cameras on the UAV. The former con-

sists generally in a fixed camera network that supervises

completely a 3D scene. The most well known system is

Vicon and has been successfully employed in UAV con-

trol Mellinger et al. (2011). Such systems are particu-

larly efficient with a high measure frequency, very ac-

curate with no drift and also robust. However, the fixed

configuration does not allow any exploration of a new

and unknown environment. The second category deals

with onboard camera and can also be divided according

to two sections. The first one is based on the use of a

known pattern placed in the environment. In Garcia-

pardo et al. (2000); Saripalli et al. (2002); Sharp et al.

(2001), the authors make use of a downward-pointing

perspective camera to estimate altitude according to a

predefined pattern laid out on the ground. Recently, a

circular pattern has been used in order to measure the

pose of a UAV Eberli et al. (2011). This kind of ap-

proach is interesting, since it requires only one camera,

provides a complete pose and can be used in real time.

This solution is the complementary of Vicon approach

since the camera looks an a priori known environment

while with Vicon, cameras of the environment tracks

a known pattern placed on the UAV. The advantages

and drawbacks are then similar. The other solution con-

sists of onboard cameras that capture and treat data

from an unknown and unstructured environment (no

artificial landmark). In this way, it is possible to es-

timate orientation and position according to features

detected in the environment. If some absolute features

such as horizon, vertical direction or ground are used,

it is then possible to perform the estimation in an ab-

solute reference frame and to obtain absolute measures

of attitude and altitude. For example to estimate the

attitude from horizon line, Demonceaux et al. (2006)

propose a method based on an omnidirectional view

while Dusha et al. (2007) use a perspective camera.

Thurrowgood et al. (2009) estimates the attitude using

a fast histogram based method which can be adapted

for any type of camera. For a complete absolute six

degrees of freedom estimation, an initial geo-localized

reference is then necessary. If used features have no par-

ticular identity, the orientation and position estimation

is performed relatively to the structure formed by these

features. Such methods (SLAM, SFM, Visual Odome-

try, ego-motion) are now well-known and many different

algorithms have been already proposed successfully in

Davison et al. (2007); Hartley and Zisserman (2004);

Nistér (2004). Then, works of Li et al. (2008); Pless

(2003) can determine the motion from non-overlapping

cameras. Nevertheless they need a least of 14-points or

17-points to retrieve the motion that increases the com-

putation time and noise sensitivity. However, if these

methods are generally well adapted for mobile robots

or vehicles, a direct transfer to micro-aerial vehicles is

not possible and requires specific adaptations and de-

velopments Lee et al. (2010). Since most of the efficient

methods are based on feature points, a possible adap-

tation consists in including some a priori knowledges

or hypotheses in order to reduce the number of nec-

essary points. In Kalantari et al. (2011), Fraundorfer

et al. (2010), Naroditsky et al. (2011), the authors pro-

pose a relative pose estimation between two views by a

three-plus-one algorithm, based on the correspondence

of three points, given a common direction in the two

views. This common direction can then be obtained by

IMU for example. A recent work proposed also to use

only one point for structure from motion Scaramuzza

(2011). However, the used constraint for reducing the

number of points is only valid for mobile robots.

The most recent and successful autonomous micro-

aerial vehicle based on vision with adapted methods is

described in Blösch et al. (2010); Weiss et al. (2011).
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The authors propose a monocular Simultaneous Local-

ization and Mapping (SLAM) framework from which

they extract pose parameters for a complete control of

the six degrees of freedom. The use of a SLAM approach

allows to correct the possible drift by loop closing. Since

their system is based on a single wide field of view cam-

era, the depth information can not be directly recov-

ered. This is why they propose the initialization of the

map scale by hand and maintain the consistency of this

scale by fusing IMU data and camera poses through an

EKF Nützi et al. (2011). The complete pose from the

SLAM is computed at 15-30 Hz and the comparison

of results with a VICON shows the effectiveness of the

approach. In Artieda et al. (2009), a monocular vision

sensor is also proposed in order to perform the visual

SLAM in partially structured environments. Other sen-

sors are just used in order to propose comparisons. In

their work, the authors deal with a deep study of the dif-

ferent steps of the visual SLAM such as the calibration,

the influence of depth and the image processing tech-

niques for feature detection and matching for example.

Their results are also shown to be globally satisfactory

but the treatment is made off-line at an average of 12

FPS. A discussion of the scale estimation is proposed

but no real results on this parameter are shown. Re-

cently, a visual monocular SLAM algorithm has been

proposed especially for MAVs by integrating a plane

constraint Lee et al. (2011). This constraint allows to

obtain an approximately constant time algorithm that

has been tested in indoor environments. A work quite

more closer to ours consists in using horizon and points

of the ground in order to estimate the ego-motion of a

UAV Oreifej et al. (2011). The use of the horizon line

allows to linearize and disambiguate the planar flow,

and consequently to obtain a unique solution for the

UAV motion estimation. However, this work has only

been tested on a balloon-based UAV with motion par-

ticularly different from a quad-rotor.

All these works propose very interesting results but

they are based on a single camera and either are up

to scale or require a manual initialization and the use

of other sensors for maintaining this scale Weiss et al.

(2011). In order to obtain a complete vision approach,

we propose in this paper to use a stereovision sensor

for the estimation of the orientation and position pa-

rameters at scale. Due to the limited field of view of

the perspective cameras, it has been demonstrated that

the use of omnidirectional cameras is more suitable for

motion estimation Lee et al. (2000); Lhuillier (2008).

Indeed, omnidirectional cameras can gather more in-

formation from the environment but are less accurate

owing to their limited resolution. In order to have both

the wide field of view and the accuracy, we then propose

an embedded hybrid stereovision sensor. However, clas-

sical stereovision based methods employ feature point

matching between views, which generally constitutes a

bottleneck in the whole process. In our case, this diffi-

culty is compounded because of the heterogeneous na-

ture of our images that prevents a direct comparison

between points without any adaptation. Thus, in order

to reduce this difficulty, a first solution consists in using

the epipolar geometry between views and to limit the

search area for each point to match. Recently, Puig et

al. proposed an hybrid fundamental matrix and its use

for hybrid matching Puig et al. (2008). However, their

results show that very few points are positively matched

and a complete and accurate pose estimation seems to

be complicated. A second way for improving the results

consists in adapting the point features to the geometry

of the sensor. Many different works have been already

proposed in order to adapt Harris corner detector De-

monceaux et al. (2011) or SIFT descriptors Bastanlar

et al. (2010), Lourenço et al. (2010). However, the prin-

cipal drawback is the expensive computation time that

totally prevents a real time implementation on an UAV.

We then propose in this paper an hybrid stereovision

approach that avoids point feature matching between

hybrid views and which is based on a direct comparison

of images by assuming that the planar ground surface

is visible in both images.

(a) (b)

(c)

Fig. 1 (a) UAV with hybrid system outdoors. (b) Pelican in
an indoor environment. (c) General method proposed.
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The principal contributions of this paper are four-

fold. The first is the hybrid sensor comprising fisheye

and perspective views. Secondly, we have the use of

correspondence-less methods. This leads to the third

contribution, namely the real-time implementation of

altitude, attitude and motion, adapted for future em-

bedded applications. Finally, we have an estimation

of the motion performed independently in each of the

views, at a metric scale. The estimated motion is then

merged and filtered by a Kalman filter.

The organization of the article is as follows. Part

III deals with the hybrid sensor and its modeling. Part

IV describes the estimation of attitude, altitude and

motion. Part V is devoted to a quantitative evaluation

of data obtained using a small UAV.

3 Hybrid sensor

3.1 Motivation

In this paper, we present a new approach for state

(orientation and position) estimation of a MAV based

on an hybrid stereovision sensor. Contrary to SLAM

frameworks that provide simultaneously all the param-

eters, our method proposes a cascading approach that

allows to obtain attitude, altitude and motion at differ-

ent rates (see Fig.1(c)) . Attitude is then first obtained

from the omnidirectional camera by use of the horizon

or vertical direction but can also be obtained by IMU

if available. This parameter being the most important

for flight stability, our system is able to provide it at

30Hz for the vanishing points method and 100Hz for

the horizon line based method. The use of a stereovi-
sion sensor allows also to directly estimate the altitude

at scale and consequently to avoid any manual initial-

ization or any knowledge about the dimension of the

scene or the use of an additional sensor for maintaining

this information during the flight. We assume a consis-

tent planar ground similarly than in Lee et al. (2011)

which is reasonable in most of the cases. Therefore, we

will show in the results than imperfect grounds have

low impact on the altitude estimation and that little

obstacles can be present in the image. In the same way,

we show experiments in order to show the accuracy of

the system according to the ratio between altitude and

baseline.

Thus, our hybrid sensor thus combines nested meth-

ods.:

– First, we calibrate the hybrid system using Caron

and Eynard (2011).

– Second, attitude is estimated either by vanishing

point detection in urban and indoor environments

Demonceaux et al. (2007), or by the horizon fitting

in other cases Demonceaux et al. (2006);

– Third, as a result of the previous steps, knowing that

a homography exists between the two views, alti-

tude estimation and ground plane segmentation are

performed by plane-sweeping Eynard et al. (2010).

– Finally, motion is decoupled in rotation and trans-

lation. Rotation is known by attitude or IMU, and

translation is estimated by a two-point algorithm in

hybrid views Eynard et al. (2011). By knowing al-

titude previously estimated, the translation is pro-

vided at the metric scale.

By implementing these methods in C++ we show that

our methods are real time and ready to be embedded

in a UAV.

3.2 Modeling

Perspective Model

The perspective projection (Fig. 2(a)) models pin-

hole cameras. Let X =
(
X Y Z

)T
be a 3D point ex-

pressed in the camera frame. It is projected onto the

image plane as x =
(
x y 1

)T
:

x = pr(X) with

{
x = X

Z

y = Y
Z

. (1)

x is the point on the normalized image plane and

u =
(
u v 1

)T
, the pixel point, is obtained by the rela-

tion u = Kx. K is the intrinsic matrix, knowing param-

eters γp = {px, py, u0, v0}:

K =

px 0 u0
0 py v0
0 0 1

 (2)

The full perspective projection of a 3D point to the

pixelic image plane is therefore prγp(X) = Kpr(X).

Spherical Model

Fisheye lenses cannot be classified as single view-

point sensors Baker and Nayar (1999). Nevertheless, we

can show that this modeling is a good approximation

of Ying and Hu (2004). Mei and Rives (2007) have pro-

posed a calibration method based on a unitary sphere.

This model is particularly accurate, and allows the ra-

dial and tangential distortions caused by the fisheye lens

to be modeled. Using the spherical model (Fig. 2(b)),

a 3D point X is first projected onto a unitary sphere,

centered at
(
0 0 0

)T
. The obtained point, xs, is then
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(a) (b)

Fig. 2 (a) Perspective model used for pinhole cameras. (b)
Spherical model used for omnidirectional cameras.

perspectively projected onto the image plane as x, from

the second center of projection
(
0 0 −ξ

)T
(2(b)):

xs = X
ρ , x = prξ(X) with

{
x = X

Z+ξρ

y = Y
Z+ξρ

, (3)

and ρ =
√
X2 + Y 2 + Z2. The image point is obtained

from a 3D point, knowing the intrinsic parameters γs =

{px, py, u0, v0, ξ} and using prγs(X) = Kprξ(X) (eq. 1).

3.3 Calibration

The hybrid calibration is based on Virtual Visual Ser-

voing work, which is in turn based on the calibration of

perspective cameras Marchand and Chaumette. Caron

and Eynard (2011) simultaneously estimate the pro-

jection parameters and relative poses between N cam-

eras of N models composing the stereo rig. They have

demonstrated that calibration results for standard cam-

eras are similar to Bouguet’s toolbox or Mei’s toolbox

using same points in the image. This method is imple-

mented in the Hyscas software Hyscas (2011). We use

this software to calibrate our hybrid model. Then, the

extrinsic parameters obtained from hybrid calibration

are the rotation Rc and the translation tc between the

two cameras.

In the case of attitude estimation using IMU, the

IMU and fisheye calibration is estimated by the InerVis

software Ine. The matrices provided by IMU are di-

rectly corrected in order to be expressed in the fisheye

view.

3.4 Attitude

We can distinguish three main approaches for estimat-

ing attitude using two sensors.

Vision in urban environments: attitude and orien-

tation can be estimated in catadioptric views Bazin

et al. (2008); Demonceaux et al. (2007). These works

are based on vanishing points resulting from the projec-

tion of vertical and horizontal lines in 3D space onto the

unitary sphere. The algorithm consists of first detecting

edges (using Canny for instance) in the omnidirectional

image. Then a step of split and merge keeps long edges

by deleting short lines. Once lines have been extracted,

their normals are computed from the unitary sphere,

which is known by calibration. Finally, using a voting

approach, the three main directions are computed from

both vertical and horizontal lines. Views are modeled

by the proposition of Barreto and H. (2001).

Vision in natural environments: Demonceaux et al.

(2006) also proposes estimating attitude via a projec-

tion of the horizon line onto a catadioptric view. This

method is able to estimate pitch and roll. By using one

of Kalantari et al. (2009); Montiel and A.-J. (2006);

Scaramuzza and Siegwart (2008) methods, it is also pos-

sible to retrieve the heading.

IMU: attitude can be obtained from Euler angles.

In our experiments we estimate attitude using either

a fisheye view or IMU.

3.5 Hardware

The hybrid stereo rig is composed of two IDS uEye cam-

eras with M12 lenses, the first is a perspective lens while

the second is a fisheye. The stereo baseline is 32 cm.

Each camera provides 752× 480 RGB images, and the

two cameras are located at opposite extremities of the

rig, pointing downwards. Frame grabbers are triggered

by hardware, and ring-buffer acquisition allows contin-

uous data transfer and non-stop frame acquisition.

An XSens IMU is attached to the rig to determine

the attitude ground truth. An embedded board with

an Atom CPU receives and records images as well as

IMU data. Images are sent and the UAV acquisition

controlled via a wifi interface. The Atom board, the

cameras and IMU are embedded on an MD4-1000 UAV

(see Fig.1(a)). For processing, we use a Macbook Pro

with Core 2 Duo at 2.4 GHz.

4 Altitude

Plane-sweeping was introduced by Collins (1996), pro-

posed in real time by Gallup et al. (2007) and then

adapted to hybrid views in Eynard et al. (2010). First

a reference view has to be defined. Then, for each nor-

mal n and for each distance to a 3D plane, the different

warped images are compared (Eq. 4) to the reference

image by homography. Let I and Iref be respectively

the current and the reference image, I(x) the intensity
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of the normalized pixel x. Then, I∗ is the homography

of I by the homography matrix H. For a pixel x at the

altitude d we get:

I∗(x, d) = I(Hx,d) = I((Rc − tc
nT

d
)x) (4)

The best estimation of the homography H corre-

sponds to the minimum global error of the difference

between the warped image and the reference view |I∗−
Iref |. In our application we extend this aspect. We take

the perspective view as the reference Iref . Neighbor-

hood manipulations are easier to perform and faster

than on a sphere. Images I obtained via the fisheye

camera are projected onto the sphere and then onto

the reference plane by homography, and are denoted

I∗. Since the cameras are pointing towards the ground,

the centered working surface on the fisheye is subject

to fewer distortions and gives a better resolution than

at the edge of the image. Finally, plane-sweeping can

be performed (see Fig. 3(a)).

(a)

(b)

Fig. 3 (a) Mixed plane-sweeping. (b) Sphere/plane homog-
raphy.

We propose estimating the altitude d and segment-

ing the ground plane by mixed plane-sweeping, with

Rc, tc,n known by calibration and attitude estimation.

We first present the homography used in our hybrid

case, before describing the mixed plane-sweeping algo-

rithm.

4.1 Sphere to plane homography

Given a mixed stereo rig modeled by a plane and a

unitary sphere, we shall now define the homography of

the 3D ground plane that exists between two views (see

Fig.3(b)). In Hartley and Zisserman (2004), a homogra-

phy links two projections of a 3D plane onto two planes.

In Mei et al. (2006), homography relates two projec-

tions of a 3D plane onto two spheres. The homography

is defined by the following equation:

H = Rc − tc
nT

d
(5)

We obtain x∗ ∼ H−1x for a homography between

two planar projections of a 3D plane. These two planar

projections are then replaced by a planar and a spher-

ical projection, giving Eq.6.

x ∼ x∗s = ρ′Hxs (6)

Homography H depends on Rc, tc, the attitude n

and the altitude d. Rc, tc and n being known, the next

step is to obtain the estimation of altitude that min-

imizes the error defined by Eq.7. It will be remarked

that in this step we can extract the ground plane using

the mask G. All the points in the perspective view sat-

isfying H can be considered as belonging to the ground

plane (Eq.8). In the following subsection we present the

algorithm for segmenting the ground plane and estimat-

ing the altitude d.

d̂ = argmind(
∑
x

|Iref (x)− I∗(x, d)|) (7)

G = {x,
∑

x |Iref (x)− I∗(x, d̂)|∑
x(Iref (x))

< thres} (8)

4.2 Algorithm

Altitude is determined by an exhaustive search. Let

[dmin, dmax] be the altitude range in the estimation. For

each iteration, the best altitude d̂ is estimated from this

range, then the mask G is updated (see Algorithm 1).

Pixels corresponding to the ground plane are in white

in figures 8(c) and 10(e). In order to obtain a real-time

method we estimate the altitude at time t using the

altitude at (t− 1).

The estimation is performed in two steps:



Real time UAV Altitude, Attitude and Motion Estimation from Hybrid Stereovision. 7

Algorithm 1 Altitude and ground plane segmentation

algorithm - initialization

Estimation(dmin, dmax, s,∆d)

{Initialization}
a0 = d̂−1 = dmin
b0 = d̂0 = dmax
G = {pεP ixels}
while |d̂k − d̂k−1| > ∆d do
{Estimation of the best altitude}
d̂k+1 = argmin

d∈{ bk−ak
s−1

t+ak;tε[0,s−1]}
∑

xεG |Iref (x)−

I∗(x, dk)|
{Estimation of the mask of inliers/outliers}

G = {x,
∑

x1εWx
|Iref (x1)−I∗(x1,d̂)|∑
x1εWx

Iref (x1)
< thres}

{Estimation of the new range depending on sampling}
ak+1 = d̂k+1 − bk−ak

s−1

bk+1 = d̂k+1 + bk−ak
s−1

k = k + 1
end while
Return d̂

– Initialization: we estimate the best altitude from

within a wide altitude range.

– During flight we use the altitude estimated in the

initialization phase to obtain a narrower range in

Eq.10) with rd in Eq.9. This range depends on the

vertical velocity vv of UAV (about ±5m/s) and the

hardware’s computational power in frames per sec-

ond denoted fps.

rd =
vv
fps

103(mm) (9)

dtε[dt−1 − rd, dt−1 + rd] (10)

We now show how calibration, attitude, estimated

altitude and the ground plane segmentation, once ob-

tained, can be used to estimate autonomously the mo-

tion using the hybrid views, without any feature match-

ing between hybrid views.

5 Motion estimation

To estimate the motion we need the calibration (Rc, tc),

the altitude d at the meter scale, the attitude and the

ground plane segmentation G. The attitude can be de-

termined either by IMU or by vision using vanishing

points in urban environments, or the horizon line in nat-

ural environments. In the case of natural environments

the UAV’s heading has to be computed a posteriori, us-

ing such methods as Kalantari et al. (2009); Montiel and

A.-J. (2006); Scaramuzza and Siegwart (2008). Since

altitude, attitude, ground plane and calibration are de-

termined by vision or IMU, we decouple the rotation

and the translation of the motion. Below we present an

algorithm for estimating the translation from two sets

of points (Fig. 4(b)), that is to say points located on

the ground plane G and points located randomly in the

environment with depth either known or unknown. Our

algorithm is based on the technique of point tracking

in hybrid views for estimating the translation from two

views. The estimated translation t is then filtered and

smoothed by a Kalman filter.

5.1 Motion of the stereo rig

In each image, tracking is performed by the method

given in Bouguet (2000). We define xt a tracked point

in the image acquired at time t. Each point is related

by a rotation Rt relative to the world reference Xw

estimated by the IMU (see Eq.11).

xt = tRwXw ⇐⇒ Xw = tR−1w xt (11)

Then, for a couple of points in the image (xt; xt+1)

that indicate motion between times t and t+ 1, we can

express the point xt from the frame t to the frame t+1

by Eq.12. We thus obtain a rotation corresponding to

motion (eq.13).

xt+1 = t+1Rw
tR−1w xt (12)

Rt+1 = t+1Rw
tR−1w (13)

The points are related by a motion composed of

the rotation Rt+1 previously defined and the transla-

tion tt+1 (Fig.4(a), Eq.14). The distance of the image

point to the 3D point is defined by the altitude d (see

Fig.4(a)) known by plane-sweeping in the case of a point

belonging to the ground plane.

xt+1 = d Rt+1xt + tt+1 (14)

5.2 Motion from ground points

As mentioned previously, plane-sweeping is used to es-

timate both the altitude and the segmentation of the

ground plane G. Knowledge of these parameters entails

knowledge of tracked points in the two views belong-

ing to the ground plane, together with their depth (see

Fig.4(a)). Then, the motion is estimated at the metric
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(a)

(b)

Fig. 4 fig. 4(a) 3D points located on the ground plane and in
the environment. Fig. 4(b) Combining points located in the
environment and the ground plane from hybrid views.

scale and defined as follows, with × the cross product

of two vectors:

(xt+1 × tt+1) = −d(xt+1 ×Rt+1xt) (15)

We now show how motion can be estimated in each

view and then in the mixed view. First, in the spherical

an referential case, we obtain the matrices As Eq.16

and Bs Eq.17. Secondly, in the perspective case, images

are considered to be rectified by the rotation Rc, and

we obtain the matrices Ap Eq.16 and Bp Eq.18. In the

hybrid case As and Ap are concatenated in Ah, and

Bs and Bp are concatenated in Bh. Finally, we obtain

Eq.22.

As/p =

 0 −xt+1 xt+1

zt+1 0 −xt+1

−yt+1 xt+1 0

 (16)

Bs = −ds (xt+1 ×Rt+1xt)
T (17)

Bp = −dp ((xt+1×Rt+1xt) + xt+1× ((Rt+1− Id)tc))
T

(18)

5.3 Motion from environment points

Concerning points located randomly in the environ-

ment, without possessing any knowledge of their depth

we can extend to the mixed view the motion estimation

proposed by Bazin et al. (2010) for the spherical view

(see Fig.4(a)). The translation tt+1 from two points is

defined as in Eq.19 . As mentioned previously, perspec-

tive points and spherical points are concatenated in or-

der to estimate the translation tt+1 for obtaining the

relation in Eq.23.

(Rt+1xt × xt+1)T · tt+1 = 0 (19)

5.4 Combining 3D points from mixed views

Note: In this part, we adapt the generic formulation to

the case of perspective case. xpi,t denotes the ith point

tracked in the perspective view at time t, and xsi,t de-

notes the ith point tracked in the sphere at the time t.

Ch =



Rt+1xs0,t × xs0,t+1

...

Rt+1xsm,t × xsm,t+1

Rt+1xp0,t × xp0,t+1

...

Rt+1xpn,t × xpn,t+1


(20)

Considering perspective images rectified by Rc known

by calibration, we get:

Dh =



0
...

0

(Rt+1xp0,t × xp0,t+1).(Rt+1tc − tc)
...

(Rt+1xpn,t × xpn,t+1).(Rt+1tc − tc)


(21)

Ahtt+1 = Bh (22)
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Chtt+1 = Dh (23)

We have already presented a generic formulation

for translation estimation, either from ground points or

from environment points. When translating from pla-

nar points, the translation is estimated at the metric

scale. However, the main drawback in the case of 3D

motion is the pixel projection noise sensitivity. When

translating from environment points, on the other hand,

motion estimation has the advantage of being more ro-

bust to noise than on the plane, but the estimation is

performed up to scale. One of the contributions of this

paper is thus the combination of the two methods to in-

crease both accuracy and robustness. The first method

is defined by Eq. 22, and the second by Eq. 23. Ch is

defined by Eq. 21. Concatenating the matrices Ah and

Ch yields Afus, and concatenating Bh and Dh gives us

Bfus. Finally we obtain the Afustt+1 = Bfus solved by

least squares.

Fig. 5 Comparison of Ground Points, 3D Points and 3D +
Ground Points. Dashed lines represent estimation from 3D of
fused points while plain lines represent estimation from planar
points. A smaller slope corresponds to a low sensitivity of the
corresponding algorithm to the noise.

Figure 5 illustrates the advantages of combining 3D

points and ground points. The introduced error is a ran-

dom angle, applied to view-lines whichever the projec-

tion model used. The angle error is computed between

the real vector of translation and the estimated vector

of translation.

5.5 Kalman filtering

Once the motion has been estimated at the metric scale

we observe certain discontinuities and brutal variations.

In order to reduce bad estimations and to refine the

trajectory, we have chosen to use a linear Kalman fil-

ter Kalman (1960). The considered state is simply the

translation vector of the ego-motion i.e. Xk = tt+1, and

is modeled as a linear Gaussian system given by Eq. 24:

Xk+1 = EXk + Vk
Yk = OXk +Wk

(24)

where E = Id3 is the linear state transition model

and O = Id3 the observation model, assuming con-

stant speed during a sample interval. The vectors Vk
and Wk correspond respectively to the error model and

the observation noise. They are assumed to be addi-

tive and white zero-mean Gaussian, with user-defined

covariance matrices. In order to retain the dynamic na-

ture of the measurement, more uncertainty is given to

the measures, i.e. 106 and 102 for the model. Given the

above considerations, the Kalman filter consists in pre-

dicting the translation vector tt+1 and then obtaining

a refined value using an update step when a new obser-

vation is available. We therefore obtain the translation

vector of the ego-motion and its estimated accuracy,

from all past observations up to the current time.

6 Results

In this section we present the results of the different

methods. First, a ground truth comparison is used to

validate the effectiveness of each method and also its

accuracy, then each method is tested on UAV image

sequences. Finally, we analyze the performance of the

algorithm.

6.1 Attitude

First, attitude can be provided either by vision or by

IMU. For the case of vision, two types of methods are

analyzed: in urban environments and natural environ-

ments. Results are compared to an IMU.

Attitude estimation by vanishing points

We employ the method of Demonceaux et al. (2007)

and Bazin et al. (2008). The error introduced by this

method does not exceed 3◦. Our algorithm is insensitive

to low attitude errors. For example, with real images,

an error of 5◦ for the roll and the pitch will introduce

respectively an error of 0.87% and 0.39% (fig. 6(b))
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(a)

(b)

Fig. 6 (a) Comparison between attitude estimated by IMU
(red) and by vision (blue). (b) Influence of attitude error
(pitch and roll) on the estimation of altitude.

for altitude estimation. This method, which has been

tested on our fisheye lens, is as good as a catadioptric

lens at estimating attitude. In the works presented here,

attitude can be estimated in real time (around 30 Hz).

Indoor experiments were carried out using a Pel-

ican UAV, where vanishing points can be determined.

Fig.6(a) and Table 1 present the results the from vision-

based method (blue line) and IMU (red line). Notice

that the red curve is smoothed by the IMU Kalman fil-

ter. Finally, for the yaw, the absolute offset between

the vision estimation and the IMU is removed by :

yi,vp = yi,vp − ȳvp + ȳimu, with yi,vp the ith value esti-

mated by vanishing points, ȳimu the mean of yaw angles

estimated by IMU.

Type Roll Pitch Yaw
Error max 3.97◦ 2.43◦ 5◦

Mean of absolute error 1.32◦ 1.96◦ 0◦

Std of error 1.65◦ 2.07◦ 0.78◦

Table 1 Attitude Comparison for IMU vs. the Vision
Method

Attitude estimation from the horizon line

We compared the attitude provided by horizon line

detection to IMU. For the image in Fig.7(a) we ob-

tain an error of less than 1◦. Fig.7(b) represents the

ground/sky segmentation after detection of the horizon

line. The C++ real-time algorithm provides an aver-

age of 80 Hz after the first initialization, on offboard

processor.

(a) (b)

Fig. 7 (a) View from the UAV’s fisheye. (b) Segmented
ground/sky.

6.2 Altitude

Once the calibration and attitude have been estimated

we proceed to estimate the altitude. We compare our

algorithm to a laser telemeter, and UAV altitude esti-

mation validates the effectiveness of this approach.

6.2.1 Comparison with the ground truth

We present two cases of experimental results where real

altitude is estimated by a laser telemeter. The error ε

between actual and estimated altitude is expressed as

ε =
(d̂−dgt)
dgt

, with dgt the ground truth of the altitude.

– Case 1: two cameras with a 447mm baseline are

fixed on a pneumatic telescopic mast. Altitude and

ground plane estimation are performed offline on a

GPU.

– Case 2: two micro cameras with a 314mm baseline

are embedded on a compact UAV. Altitude estima-

tion is performed online by CPU processing.

In the first experiment we observe an accurate es-

timation of altitude on a free ground plane (tab. 2),

with an error between 0.18% and 3.14%. When there

are obstacles on the ground plane, we observe a higher

error, between 7.52% and 8.82%. The higher the alti-

tude, the less accurate the estimation because of the

decrease in resolution as altitude increases. Moreover,

the accuracy depends on the size of the baseline. This

fact does not impact our application negatively, given

that accuracy is most critical during the two phases of
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landing and take-off, i.e. where the UAV is close to the

ground plane.

Type Grnd truth Estim. altitude Error
Free Ground 2187mm 2200mm 0.59%
Free Ground 3244mm 3250mm 0.18%

Gnd + obstacles
(low contrast) 3244mm 3488mm 7.52%
Free Ground 4072mm 4200mm 3.14%
Free Ground 5076mm 5202mm 2.48%

Gnd + obstacles 4080mm 4440mm 8.82%

Table 2 Altitude ground plane estimation with and without
obstacles - Algorithm parameters for this test: s = 6, thres =
25

The second aspect of our algorithm is the segmen-

tation of the ground plane, which is well estimated for

contrasted areas. In case of a plane without obstacles,

the pneumatic telescopic mast, where cameras are fixed,

is well represented by outliers (dark on the image) (Fig.

8(c)). For an image composed of a dominant ground

plane and walls, the ground plane is segmented as in-

liers, while walls are segmented as outliers. Our algo-

rithm allows inliers/outliers to be segmented globally

when estimating the dominant ground plane for our

application.

The aspect of our algorithm in greatest need of im-

provement is where there are poorly textured planes

and reflections which depend on camera orientation.

When the ground plane or outliers (walls, objects) are

homogeneous or poorly textured, the segmentation of

outliers/inliers becomes difficult.

6.2.2 UAV Altitude Estimation

Fig. 9 Altitudes (cross) are estimated by plane-sweeping and
the line represents measurements from the laser range finder
based on himself, thus ideal measures.

For the second experiment we implemented our sys-

tem on a small quadrotor UAV. Micro cameras embed-

ded on the UAV are linked to an external laptop to per-

form online altitude estimation. We tested the accuracy

by comparing altitudes estimated by plane-sweeping to

altitudes estimated by laser telemeter. Fig.9 shows that

altitude is well estimated for the range of altitudes cor-

responding to the landing and take-off phases of a UAV.

The mean error is 2.41%.

6.2.3 UAV Ground Plane Segmentation

By estimating the altitude from the two views (Fig.

10(a),10(b) and the homography (Fig. 10(c)), the ground

plane (Fig. 10(e)) is segmented using the error (Fig.

10(d)) and becomes the mask G. Figure 10(e) shows

the good segmentation of planar (white pattern) and

non-planar objects (cables in black) after the thresh-

old.

6.2.4 Performances

First we developed the algorithm on GPU with brook+

for ATI that gives a real-time (30 Hz) frame rate in

order to estimate altitude and to segment the ground

plane. The algorithm was tested on ATI 4850 with an

E8400 3Ghz CPU.

We then implemented the algorithm on a CPU with

a good deal of optimizing and without segmenting the

ground plane. With this implementation we obtained

min : 80 Hz,mean : 180 Hz,max : 250 Hz, that is to say

values higher than the video frame rate, which meant

that we could use our algorithm for online processing.

The platform for our tests is a Macbook Pro with a C2D

P8400 2.26Ghz CPU. A demonstration can be seen at

Eynard (2010). We use a stereo rig with uEye cameras

and get the normal of the ground plane with an IMU.

During this demonstration, the system is able to esti-

mate altitude in real time with robustness and accuracy.

An embedded version of our algorithm was exported

to the ARM of a Gumstix Overo Fire with OMAP3530

ARM @600Mhz based processor. With this implemen-

tation we get a frame rate of around 5 Hz, which is not

enough for real-time applications, but relatively inter-

esting given the power/size ratio.

By developing these algorithms on GPU, CPU and

an embedded board we obtained interesting results. For

simultaneous ground plane segmentation and altitude

estimation, results are real time and can be implemented

on a UAV with GPU. For altitude estimation only, com-

putation is faster and can be implemented on smaller

quadrotor UAV.
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(a) (b) (c) (d) (e)

Fig. 8 Altitude and ground plane segmentation - 4.8% of inliers - Fisheye view (a), perspective view (b), ground plane
segmentation (c), sphere to plane homography (d), reference and homography comparison (e)

(a) (b) (c) (d) (e) (f)

Fig. 10 (a) embedded view of the Pelican UAV (from left to right: fisheye and perspective views) - Est. altitude 1912mm.
(b) Homography of fisheye view to the reference (c) Error (d) Ground plane segmentation G (e) Altitude of the trajectory
estimated by plane-sweeping.

6.3 Motion

We propose estimating motion using a linear method,

namely least squares (LS). This method is robust to

Gaussian noise, but sensitive to outliers Malis and Marc-

hand (2005). For this reason, outliers are rejected by the

RANSAC method Hartley and Zisserman (2004). This

method was first validated on robot arm performing a

loop, as we now describe.

6.3.1 Comparison with the ground truth

The system is presented in Fig.11(b), and images are

processed offline. In each view the number of tracked

points is between 50 and 200. In 11(c), we compare our

algorithm with the ground truth, up to the micrometer,

obtained by the robot arm. The trajectory is a square

of side 330 mm, with a total motion of 1320 mm. All

trajectories are expressed within the same coordinate

system of the robot arm. First we estimate the altitude

by plane-sweeping (Fig. 10(f)). Then the motion is es-

timated using the derotation obtained from IMU (blue

line) or from the ground truth (green line). In the blue

case, the error is 19.084 mm in XYZ, or 1.45%. In the

green case, the error is 15.865 mm in XYZ, or 1.20%.

6.3.2 UAV motion estimation

Once it had been validated, we tested our algorithm

on a quadrotor with two uEye cameras with images

processed offline. This validation was performed both

indoors and outdoors. A Xsens IMU provides the at-

titude and the rotation of the motion while altitude is

estimated via plane-sweeping. In each view, the number

of tracked points is between 50 and 200. We assume that

the perspective camera is pointing at the ground and

looking at planar points, while the fisheye observes en-

vironment points. In an indoor environment, Fig.12(a)

presents the final 3D trajectory of the motion estima-

tion. Raw data sensitive to noise and bad estimations

are shown in red, while data filtered and smoothed by

Kalman filter are shown in blue. In other experiment,

Fig.13(a) presents the final trajectory in green, super-

imposed to an external view.

In the outdoor environment the ground texture, mainly

grass, means that the plane-sweeping algorithm can-

not give accurate results, because of ambiguities in the

search range. The poorly textured ground, the high al-

titude (15 m), and the short baseline make altitude es-

timation difficult. In this case we hand altitude esti-

mation over to a pressure altimeter, embedded on the

UAV. Fig.14(a) shows the motion estimated by GPS fil-

tered by the altitude provided by the pressure altimeter.

We then estimate the motion using embedded IMU to

estimate the attitude and the rotation of the motion.

6.3.3 Performances

The algorithm was implemented in C++ and tested

on a Macbook Pro. Estimating rotation by IMU and

with tracking points on two images of 752 × 480, we

could estimate the translation up to 24 Hz. The Lucas

Kanade tracker has been adapted Sanahuja (2010) for

the OMAP 3530 DSP, that allows real-time tracking for

one image per Gumstix.
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(a)

(b)

(c)

Fig. 11 Loop of a robot 11(c) with hybrid and merged views,
Fig.11(a) fisheye and perspective views of the mobile robot.

7 Conclusions and future works

This paper presents a hybrid stereo system composed

of fisheye and perspective views, modeled respectively

by a sphere and a plane, which is able to estimate nav-

igation parameters for a UAV without the use of any

other sensor. Navigation parameters are attitude, alti-

tude, ground plane segmentation and motion, assuming

calibrated cameras.

Projecting the horizon line can determine the atti-

tude, as well as vanishing points obtained from lines in

(a)

Fig. 12 3D trajectory of the UAV.

(a)

Fig. 13 Motion in indoor environment with Pelican.

an urban environment. The projections of the ground

plane onto the sphere and the plane are related by a ho-

mography which allows both altitude and ground plane

to estimated using plane-sweeping. Once the altitude

has been estimated and the ground plane segmented,

tracked points on the ground provide the information

for metric translation, while environment points give an

accurate estimation of translation up to scale. By com-

bining points from mixed views, and by merging two

sets of points, translation is estimated accurately using

the metric information, and smoothed by Kalman filter.

The methods we propose are real-time methods that

do not require matching between hybrid views. We show

in this article that our sensor is able to solve the main

drawbacks of conventional sensors by using a compact,

low power-consumption, passive, accurate, robust vi-

sion sensor. Furthermore, once navigation parameters

have been estimated, this system is available to perform
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(a)

Fig. 14 Taking-off in natural environment with MD4-1000.
The red line represents GPS ground truth. The purple line
is the estimated motion and green line the estimated motion
filtered by Kalman filter (for more details, please refer to
corresponding video).

other visual tasks such as surveillance and environment

discovery.

Perspectives of this work will be the development of

a new hardware architecture able to grab stereo images

and provide all the parameters in parallel, as well as

integrating the estimated parameters into the control

loop.
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Européen de Développement Régional) and Région Pi-

cardie Project ALTO (Automatic Landing and Take-

Off).

References

J. Artieda, J. M. Sebastián, P. Campoy, J. F. Correa,

I. F. Mondragón, C. Mart́ınez, and M. Olivares. Vi-

sual 3-d slam from uavs. Journal of Intelligent and

Robotic Systems, 55(4-5):299–321, 2009.

S. Baker and S. K. Nayar. A theory of single-viewpoint

catadioptric image formation. International Jour-

nal of Computer Vision, 35:175–196, 1999. ISSN

0920-5691. URL http://dx.doi.org/10.1023/A:

1008128724364. 10.1023/A:1008128724364.

J. Barreto and A. H. Issues on the geometry of central

catadioptric image formation. International Confer-

ence On Pattern Recognition, 2001.

G. Barrows, C. Neely, and K. Miller. Optic flow sensors

for mav navigation. 195:557–574, 2001.

Y. Bastanlar, A. Temizel, Y. Yardimci, and P. F. Sturm.

Effective structure-from-motion for hybrid camera

systems. In ICPR’10, pages 1654–1657, 2010.

J. Bazin, I. Kweon, C. Demonceaux, and P. Vasseur.

Uav attitude estimation by vanishing points in cata-

dioptric image. In IEEE International Conference

on Robotics and Automation 2008 (ICRA’08), pages

2743–2749, Pasadena, CA, May 2008. IEEE.

J. Bazin, C. Demonceaux, P. Vasseur, and I. Kweon.

Motion estimation by decoupling rotation and trans-

lation in catadioptric vision. Computer Vision and

Image Understanding, Volume 114, Issue 2(0):254–

273, February 2010.

A. Beyeler, C. Mattiussi, J. christophe Zufferey, and

D. Floreano. Visionbased altitude and pitch estima-

tion for ultra-light indoor aircraft. In in IEEE In-

ternational Conference on Robotics and Automation

ICRA’06, pages 2836–2841, 2006.
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