Skip to main content
Log in

Autonomous over-the-horizon navigation using LIDAR data

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we present the approach for autonomous planetary exploration developed at the Canadian Space Agency. The goal of this work is to enable autonomous navigation to remote locations, well beyond the sensing horizon of the rover, with minimal interaction with a human operator. We employ LIDAR range sensors due to their accuracy, long range and robustness in the harsh lighting conditions of space. Irregular Triangular Meshes (ITMs) are used for representing the environment, providing an accurate, yet compact, spatial representation. In this paper a novel path-planning technique through the ITM is introduced, which guides the rover through flat terrain and safely away from obstacles. Experiments performed in CSA’s Mars emulation terrain, validating our approach, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.neptec.com; http://www.optech.ca/; http://sm.mdacorporation.com/.

  2. http://www.optech.ca/.

  3. http://www.sick.com.

  4. http://www.mobilerobots.com.

  5. http://www.xbow.com/.

  6. http://www.pnicorp.com/.

  7. When the local scan spans 360, as with the current sensor, only range is considered. When the scan has a limited field of view, see Rekleitis et al. (2007), then the global path has to be segmented against the field of view of the sensor.

  8. See http://www.mvps.org/directx/articles/catmull/.

References

  • Kitware inc. (2005). Visualization toolkits. http://www.vtk.org, Website (accessed: September 2005).

  • Alami, R., Chatila, R., Fleury, S., Ghallab, M., & Ingrand, F. (1998). An architecture for autonomy. The International Journal of Robotics Research, 17(4), 315–337.

    Article  Google Scholar 

  • Astolfi, A. (1999). Exponential stabilization of wheeled mobile robot via discontinuous control. Journal of Dynamic Systems Measurement and Control, 121–126.

  • Bares, J., Hebert, M., Kanade, T., Krotkov, E., Mitchell, T., Simmons, R., & Whittaker, W. (1989). Ambler: an autonomous rover for planetary exploration. IEEE Computer, 22(6), 18–26.

    Article  Google Scholar 

  • Barfoot, T., Furgale, P., Stenning, B., Carle, P., Thomson, L., Osinski, G., Daly, M., & Ghafoor, N. (2011). Field testing of a rover guidance, navigation, and control architecture to support a ground-ice prospecting mission to Mars. Robotics and Autonomous Systems, 59(6), 472–488. doi:10.1016/j.robot.2011.03.004.

    Article  Google Scholar 

  • Biesiadecki, J., Leger, C., & Maimone, M. (2005). Tradeoffs between directed and autonomous on the mars exploration rovers. In Proc. of int. symposium of robotics research, San Francisco.

    Google Scholar 

  • Carsten, J., Rankin, A., Ferguson, D., & Stentz, A. (2008). Global planning on the mars exploration rovers: software integration and surface testing. Journal of Field Robotics, 26(4), 337–357.

    Article  Google Scholar 

  • Chatila, R., Alami, R., Lacroix, S., Perret, J., & Proust, C. (1993). Planet exploration by robots: from mission planning to autonomous navigation. In 1993 international conference on advanced robotics, Tokyo (Japan).

    Google Scholar 

  • Chatila, R., Lacroix, S., Siméon, T., & Herrb, M. (1995). Planetary exploration by a mobile robot: mission teleprogramming and autonomous navigation. Autonomous Robots Journal, 2(4), 333–344.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Dupuis, E., Langlois, P., Bedwani, J. L., Gingras, D., Salerno, A., Allard, P., Gemme, S., L’Archevêque, R., & Lamarche, T. (2010). The avatar explore experiments: results and lessons learned. In Tenth international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS), Hokkoido, Japan.

    Google Scholar 

  • Fowler, R. J., & Little, J. J. (1979). Automatic extraction of irregular network digital terrain models. In SIGGRAPH’79: proc. of the 6th annual conference on computer graphics & interactive techniques (pp. 199–207).

    Google Scholar 

  • Gat, E., Desai, R., Ivlev, R., Loch, J., & Miller, D. (1994). Behavior control for robotic exploration of planetary surfaces. IEEE Transactions on Robotics and Automation, 10(4), 490–503.

    Article  Google Scholar 

  • Gingras, D., Lamarche, T., Bedwani, J. L., & Dupuis, E. (2010). Rough terrain reconstruction for rover motion planning. In Seventh Canadian conference computer and robot vision, Ottawa, Canada (pp. 191–198).

    Google Scholar 

  • Giralt, G., & Boissier, L. (1992). The French planetary rover VAP: concept and current developments. In Proc. of the 1992 lEEE/RSJ int. conf. on intelligent robots and systems (Vol. 2, pp. 1391–1398).

    Google Scholar 

  • Goldberg, S., Maimone, M., & Matthies, L. (2002). Stereo vision and rover navigation software for planetary exploration. In Proc. of IEEE aerospace conf. (Vol. 5, pp. 2025–2036).

    Google Scholar 

  • Hayati, S., Udomkesmalee, G., & Caffrey, R. (2004). Initiating the 2002 mars science laboratory (MSL) focused technology program. In IEEE aerospace conf., Golden, CO, USA.

    Google Scholar 

  • Hebert, M., et al. (1989). Terrain mapping for a roving planetary explorer. In Proc. of the IEEE int. conf. on robotics and automation (ICRA’89) (Vol. 2, pp. 997–1002).

    Chapter  Google Scholar 

  • Howard, A. M. & Tunstel, E. W. (Eds.) (2006). Intelligence for space robotics. San Antonio: TSI Press. Chapter: MER surface navigation and mobility.

    Google Scholar 

  • Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Nayar, H. D., Aghazarian, H., Ganino, A., Garrett, M., Joshi, S., & Schenker, P. (2003). Campout: a control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 33(5), 550–559.

    Article  Google Scholar 

  • Ishigami, G., Nagatani, K., & Yoshida, K. (2011). Path planning and evaluation for planetary rovers based on dynamic mobility index. In IEEE/RSJ international conference on intelligent robots and systems (pp. 601–606).

    Google Scholar 

  • Johnson, A., Goldberg, S., Yang, C., & Matthies, L. (2008). Robust and efficient stereo feature tracking for visual odometry. In IEEE int. conf. on robotics and automation (pp. 39–46).

    Google Scholar 

  • Kelly, A., et al. (2006). Toward reliable off-road autonomous vehicles operating in challenging environments. The International Journal of Robotics Research, 25(5–6), 449–483.

    Article  Google Scholar 

  • Krotkov, E., & Hoffman, R. (1994). Terrain mapping for a walking planetary rover. IEEE Trans. on Robotics & Automation, 10(6).

  • Kubota, T., Ejiri, R., Kunii, Y., & Nakatani, I. (2006). Autonomous behavior planning scheme for exploration rover. In Second IEEE int. conf. on space mission challenges for information technology (SMC-IT 2006) (p. 7).

    Google Scholar 

  • Kunii, Y., Tsuji, S., & Watari, M. (2003). Accuracy improvement of shadow range finder: SRF for 3D surface measurement. In Proc. of IEEE/RSJ int. conf. on intelligent robots and systems (IROS 2003) (Vol. 3, pp. 3041–3046).

    Chapter  Google Scholar 

  • Lamarche, T. (2009). Conception et prototypage d’un capteur LIDAR 3D pour la robotique mobile. Master’s thesis, Ecole Polytechnique de Montréal.

  • Liegeois, A., & Moignard, C. (1993). Lecture notes in computer science: Vol. 708. Geometric reasoning for perception and action (pp. 51–65). Berlin: Springer. Chapter: Optimal motion planning of a mobile robot on a triangulated terrain model.

    Book  Google Scholar 

  • Maimone, M., Biesiadecki, J., Tunstel, E., Cheng, Y., & Leger, C. (2006). Int. for space robotics (pp. 45–69). San Antonio: TSI Press. Chapter: Surface navigation and mobility intelligence on the Mars exploration rovers.

    Google Scholar 

  • Mandow, A., Cantador, T., Garcia-Cerezo, A., Reina, A., Martinez, J., & Morales, J. (2011). Fuzzy modeling of natural terrain elevation from a 3D scanner point cloud. In IEEE 7th international symposium on intelligent signal processing (pp. 1–5).

    Google Scholar 

  • Martin, E., L’Archevêque, R., Gemme, S., Rekleitis, I., & Dupuis, E. (2008). The avatar project: remote robotic operations conducted from the international space station. IEEE Robotics & Automation Magazine, 14(4), 20–27.

    Article  Google Scholar 

  • Matthies, L., & Shafer, S. (1987). Error modeling in stereo navigation. IEEE Journal of Robotics and Automation, 3(3), 239–250.

    Article  Google Scholar 

  • Montemerlo, M., Thrun, S., Dahlkamp, H., Stavens, D., & Strohband, S. (2006). Winning the DARPA grand challenge with an AI robot. In Proc. of the AAAI nat. conf. on artificial intelligence.

    Google Scholar 

  • Mora, A., Ishigami, G., Nagatani, K., & Yoshida, K. (2008). Sensing position planning for lunar exploration rovers. In IEEE international conference on mechatronics and automation (pp. 732–737).

    Google Scholar 

  • Mora, A., Nagatani, K., Yoshida, K., & Chacin, M. (2009). A path planning system based on 3D occlusion detection for lunar exploration rovers. In Third IEEE international conference on space mission challenges for information technology.

    Google Scholar 

  • Mourikis, A., Trawny, N., Roumeliotis, S., Johnson, A., & Matthies, L. (2007). Vision-aided inertial navigation for precise planetary landing: analysis and experiments. In Proc. robotics: science and systems conf. (RSS’07), Atlanta, GA.

    Google Scholar 

  • Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., & Estlin, T. (2003). Claraty and challenges of developing interoperable robotic software. In Int. conf. on intelligent robots and systems (IROS), Nevada (pp. 2428–2435).

    Google Scholar 

  • Nsasi Bakambu, J., Gemme, S., & Dupuis, E. (2006). Rover localization through 3D terrain registration. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China.

    Google Scholar 

  • Preparata, F. P., & Shamos, M. I. (1985). Computational geometry: an introduction. New York: Springer.

    Book  Google Scholar 

  • Rekleitis, I., Bedwani, J. L., Gemme, S., & Dupuis, E. (2007). Terrain modelling for planetary exploration. In Computer and robot vision (CRV), Montreal, QC, Canada (pp. 243–249).

    Google Scholar 

  • Rekleitis, I., Bedwani, J. L., Dupuis, E., & Allard, P. (2008a). Path planning for planetary exploration. In 5th Canadian conf. on computer and robot vision (CRV) (pp. 61–68).

    Google Scholar 

  • Rekleitis, I., Bedwani, J. L., Gingras, D., & Dupuis, E. (2008b). Experimental results for over-the-horizon planetary exploration using a Lidar sensor. In 11th int. symp. on experimental robotics (ISER’08).

    Google Scholar 

  • Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proc. of the 3rd intl. conf. on 3D digital imaging and modeling (pp. 145–152).

    Chapter  Google Scholar 

  • Rusu, R. B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J. C., & Beetz, M. (2009). Leaving flatland: efficient real-time 3D perception and motion planning. Journal of Field Robotics (Special Issue on 3D Mapping). http://files.rbrusu.com/publications/Rusu09JFR-LFlatland.pdf.

  • Silver, D., Bagnell, J. A. D., & Stentz, A. T. (2010). Learning from demonstration for autonomous navigation in complex unstructured terrain. The International Journal of Robotics Research, 29(12), 1565–1592.

    Article  Google Scholar 

  • Silver, D., Ferguson, D., Morris, A. C., & Thayer, S. (2006). Topological exploration of subterranean environments. Journal of Field Robotics, 23(1), 395–415.

    Article  Google Scholar 

  • Simmons, R., Krotkov, E., Chrisman, L., Cozman, F., Goodwin, R., Hebert, M., Katragadda, L., Koenig, S., Krishnaswamy, G., Shinoda, Y., Whittaker, W., & Klarer, P. (1995). Experience with rover navigation for lunar-like terrains. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 441–446).

    Google Scholar 

  • Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., & Schwehr, K. (2000). Recent progress in local and global traversability for planetary rovers. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 1194–1200).

    Google Scholar 

  • Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (IROS), Beijing, China (pp. 2276–2282).

    Google Scholar 

  • Vago, J. (2004). Overview of exomars mission preparation. In 8th ESA workshop on advanced space technologies for robotics & automation, Noordwijk, The Netherlands.

    Google Scholar 

  • Vasudevan, S., Ramos, F., Nettleton, E., & Durrant-Whyte, H. (2010). A mine on its own: fully autonomous, remotely operated mine. IEEE Robotics and Automation Magazine, 63–73.

  • Volpe, R. (2006). Rover functional autonomy development for the mars mobile science laboratory. In IEEE aerospace conf.

    Google Scholar 

  • Wettergreen, D., et al. (2005). Second experiments in the robotic investigation of life in the Atacama desert of Chile. In 8th int. symp. on artificial intelligence, robotics and automation in space.

    Google Scholar 

  • Wettergreen, D., Jonak, D., Kohanbash, D., Moreland, S. J., Spiker, S., & Teza, J. (2009). Field experiments in mobility and navigation with a lunar rover prototype. In Field and service robotics.

    Google Scholar 

  • Wright, J., Trebi-Ollennu, A., Hartman, F., Cooper, B., Maxwell, S., Yen, J., & Morrison, J. (2005). Terrain modelling for in-situ activity planning and rehearsal for the mars exploration rovers. In IEEE int. conf. on systems, man and cybernetics (Vol. 2, pp. 1372–1377).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Rekleitis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekleitis, I., Bedwani, JL., Dupuis, E. et al. Autonomous over-the-horizon navigation using LIDAR data. Auton Robot 34, 1–18 (2013). https://doi.org/10.1007/s10514-012-9309-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-012-9309-9

Keywords

Navigation