Skip to main content
Log in

Path planning for grasping operations using an adaptive PCA-based sampling method

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The planning of collision-free paths for a hand-arm robotic system is a difficult issue due to the large number of degrees of freedom involved and the cluttered environment usually encountered near grasping configurations. To cope with this problem, this paper presents a novel importance sampling method based on the use of principal component analysis (PCA) to enlarge the probability of finding collision-free samples in these difficult regions of the configuration space with low clearance. By using collision-free samples near the goal, PCA is periodically applied in order to obtain a sampling volume near the goal that better covers the free space, improving the efficiency of sampling-based path planning methods. The approach has been tested with success on a hand-arm robotic system composed of a four-finger anthropomorphic mechanical hand (17 joints with 13 independent degrees of freedom) and an industrial robot (6 independent degrees of freedom).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manipulation planning on constraint manifolds. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 625–632).

  • Biagiotti, L., Lotti, F., Melchiorri, C., & Vassura, G. (2004). How far is the human hand? A review on anthropomorphic robotic end-effectors. Technical Reports: University of Bologna.

  • Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.

    Article  Google Scholar 

  • Blanchette, J., & Summerfield, M. (2006). C++ GUI Programming with Qt 4. Upper Saddle River, NJ, USA: Prentice Hall PTR.

    Google Scholar 

  • Boor, V., Overmars, M. H., & van der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 1018–1023).

  • Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., Thrun, S. (2005) Principles of Robot Motion. Cambridge: The MIT Press.

  • Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.

    Article  Google Scholar 

  • Dalibard, S., & Laumond, J. (2008). Control of probabilistic diffusion in motion planning. In: Proceedings of the Workshop on Algorithmic Foundations of Robotics (pp. 467–481)

  • Dalibard, S., & Laumond, J. (2011). Linear dimensionality reduction in random motion planning. The Intenational Journal of Robotics Research, 30(12), 1461–1476.

    Article  Google Scholar 

  • Denny, J., & Amato, N. (2012). A Coordinated Mapping of C- free and C-obatacle in Arbitrary Dimension. In E. Frazzoli, T. Lozano-Perez, N. Roy, & D. Rus (Eds.), Algorithmic Foundations of Robotics X, Springer Tracts in Advanced Robotics, Vol. 86. Berlin: Springer.

    Google Scholar 

  • Eaton, J. W. (2002). GNU Octave Manual. Bristol: Network Theory Limited.

    Google Scholar 

  • Eddelbuettel, D. (2011). Rcpp: Seamless R and C++ integration. http://dirk.eddelbuettel.com/code/rcpp.html. Accessed 9 April 2013.

  • Foundation R. (2011). The R project for statistical computing. http://www.r-project.org. Accessed 9 April 2013.

  • Gabiccini, M., Bicchi, A., Prattichizzo, D., & Malvezzi, M. (2011). On the role of hand synergies in the optimal choice of grasping forces. Autonomous Robots, 31, 235–252.

    Article  Google Scholar 

  • Geraerts, R., & Overmars, M. H. (2004). Sampling techniques for probabilistic roadmap planners. Intelligent Autonomous Systems, 8, 600–609.

    Google Scholar 

  • Gottschalk, S., Lin, M.C., Manocha, D. (1996). OBBtree: A hierarchical structure for rapid interference detection. In: Proceedings of the 23rd Annual Conference on Computer Graphics and interactive Techniques, ACM, New York, NY, USA, SIGGRAPH 1996 (pp 171180).

  • Hsiao, K., Pack-Kaelbling, L., & Lozano-Perez, T. (2011). Robust grasping under pose uncertainty. Autonomous Robots, 31, 253–268.

    Article  Google Scholar 

  • Hsu, D., Jiang, T., Reif, J., & Sun, Z. (2003). The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 4420–4426).

  • Hsu, D., Sanchez-Ante, G., & Sun, Z. (2005). Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 3874–3880).

  • Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilistic foundations of probabilistic roadmap planning. The Intenational Journal of Robotics Research, 25(7), 627–643.

    Article  Google Scholar 

  • Jolliffe, I. (2002). Principal Component Analysis., Statistics New York: Springer.

  • Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. K. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  • Kongsberg Oil & Gas Technologies. (2010). Coin3D–3D graphics development tools. www.coin3d.org. Accessed 9 April 2013.

  • Kuffner, J. (2004). Effective sampling and distance metrics for 3d rigid body path planning. In: Proceedings of International Conference on Robotics and Automation (pp. 3993–3998).

  • Larsen, E., Gottschalk, S., Lin, M. C., & Manocha, D. (2000). Fast proximity queries with swept sphere volumes. In: Proceedings of International Conference on Robotics and Automation (pp. 3719–3726).

  • Laschi, C., Asuni, G., Guglielmelli, E., Teti, G., Johansson, R., Konodu, H., et al. (2008). A bio-inspired predictive sensory-motor coordination scheme for robot reaching and preshaping. Autonomous Robots, 25, 85–101.

    Article  Google Scholar 

  • Pérez, A., Rosell, J. (2010). The Kautham Project. https://sir.upc.es/kautham/. Accessed 9 April 2013.

  • Pérez, A., Rosell, J. (2009). A Roadmap to Robot Motion Planning Software Development. Computer Applications in Engineering Education.

  • Rosell, J., Suárez, R., Rosales, C., García, J. A., & Pérez, A. (2009). Motion planning for high DOF anthropomorphic hands. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 4025–4030).

  • Rosell, J., Cruz, L., Suárez, R., & Pérez, A. (2011a). Importance sampling based on adaptive principal component analysis. In: Proceedings of the IEEE International Symposium on Assembly and Manufacturing.

  • Rosell, J., Suárez, R., Rosales, C., & Pérez, A. (2011b). Autonomous motion planning of a hand-arm robotic system based on captured human-like hand postures. Autonomous Robots, 31, 87–102.

    Google Scholar 

  • Safonova, A., Hodgins, J. K., & Pollard, N. S. (2004). Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions Graph, 23(3), 514–521.

    Google Scholar 

  • Sanderson, C. (2010). Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments. Technical Report: NICTA

  • Santello, M., Flanders, M., Soechting, J. F. (1998). Postural hand synergies for tool use. Journal of Neuroscience 18(23):10105–10115.

    Google Scholar 

  • Stilman, M. (2010). Global manipulation planning in robot joint space with task constraints. IEEE Transactions on Robotics, 26(3), 576–584.

    Article  Google Scholar 

  • Suárez, R., Rosell, J., Pérez, A., & Rosales, C. (2009). Efficient search of obstacle-free paths for anthropomorphic hands. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1773–1778).

Download references

Acknowledgments

This work was partially supported by the Spanish Government through the projects DPI2010-15446, DPI2011-22471 and PI09/90088.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rosell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Multimedia video extension1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosell, J., Suárez, R. & Pérez, A. Path planning for grasping operations using an adaptive PCA-based sampling method. Auton Robot 35, 27–36 (2013). https://doi.org/10.1007/s10514-013-9332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9332-5

Keywords

Navigation