Skip to main content
Log in

Representing the robot’s workspace through constrained manipulability analysis

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Quantifying the robot’s performance in terms of dexterity and maneuverability is essential for the analysis and design of novel robot mechanisms and for the selection of appropriate robot configurations in the context of grasping and manipulation. It can also be used for monitoring and evaluating the current robot state and support planning and decision making tasks, such as grasp selection or inverse kinematics (IK) computation. To this end, we propose an extension to the well-known Yoshikawa manipulability ellipsoid measure Yoshikawa (Int J Robotics Res 4(2):3–9, 1985), which incorporates constraining factors, such as joint limits or the self-distance between manipulator and other parts of the robot. Based on this measure we show how an extended capability representation of the robot’s workspace can be built in order to support online queries like grasp selection or inverse kinematics solving. In addition to single handed grasping tasks, we discuss how the approach can be extended to bimanual grasping tasks. The proposed approaches are evaluated in simulation and we show how the extended manipulability measure is used within the grasping and manipulation pipeline of the humanoid robot ARMAR-III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. All performance evaluations have been carried out on a single core 3GHz Linux PC.

  2. The offline step of building the corresponding manipulability data took 6 h on a standard Linux PC.

  3. http://simox.sf.net.

References

  • Abdel-Malek, K., Yu, W., & Yang, J. (2004). Placement of robot manipulators to maximize dexterity. International Journal of Robotics and Automation, 19(1), 6–14.

    Article  Google Scholar 

  • Asfour, T. Regenstein, K. Azad, P. Schröder, J. Bierbaum, A. Vahrenkamp, N. & Dillmann, R. (2006). Armar-III: An integrated humanoid platform for sensory-motor control. In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2006), pp. 169–175.

  • Asfour, T. Schill, J. Peters, H., Klas, C. Bücker, J. Sander, C. Schulz, S. Kargov, A. Werner, T. & Bartenbach, V. (2013). ARMAR-4: A 63 DOF torque controlled humanoid robot. In IEEE/RAS International Conference on Humanoid Robots (Humanoids).

  • Azad, P. Asfour, T. & Dillmann, R. (2009). Accurate shape-based 6-dof pose estimation of single-colored objects. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2690–2695.

  • Azad, P. Asfour, T. & Dillmann, R. (2009). Combining harris interest points and the sift descriptor for fast scale-invariant object recognition. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4275–4280.

  • Bicchi, A. Prattichizzo, D. & Melchiorri, C. (1997). Force and dynamic manipulability for cooperating robot systems. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1479–1484.

  • Chan, T. F., & Dubey, R. (1995). A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Transactions on Robotics and Automation, 11(2), 286–292.

    Article  Google Scholar 

  • Chen, H., Lee, S. I., Do, J. H., & Lee, J. M. (2013). Directional manipulability to improve performance index of dual arm manipulator for object grasping. In S. Lee, H. Cho, K. J. Yoon, & J. Lee (Eds.), intelligent autonomous systems 12, advances in intelligent systems and computing (Vol. 193, pp. 595–602). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chiacchio, P., Chiaverini, S., Sciavicco, L., & Siciliano, B. (1991). Global task space manipulability ellipsoids for multiple-arm systems. IEEE Transactions on Robotics and Automation, 7(5), 678–685.

    Article  Google Scholar 

  • Dariush, B. Bin Hammam, G. & Orin, D. (2010). Constrained resolved acceleration control for humanoids. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2010, pp. 710–717.

  • Diankov, R. (2010). Automated construction of robotic manipulation programs. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

  • Finotello, R. Grasso, T. Rossi, G. & Terribile, A. (1998). Computation of kinetostatic performances of robot manipulators with polytopes. In Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3241–3246.

  • Flacco, F. Luca, A. D. & Khatib, O. (2012). Prioritized multi-task motion control of redundant robots under hard joint constraints. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Algarve, pp. 3970–3977.

  • Jamone, L. Natale, L. Metta, G. Nori, F. & Sandini, G. (2012). Autonomous online learning of reaching behavior in a humanoid robot. International Journal of Humanoid Robotics, 09(03), 1–26.

  • Jamone, L., Brandao, M., Natale, L., Hashimoto, K., Sandini, G., & Takanishi, A. (2014). Autonomous online generation of a motor representation of the workspace for intelligent whole-body reaching. Robotics and Autonomous Systems, 62(04), 556–567.

    Article  Google Scholar 

  • Kokkinis, T. & Paden, B. (1989). Kinetostatic performance limits of cooperating robot manipulators using force-velocity polytopes. In ASME Annual Meeting, Rootics, pp. 151–155.

  • Lee, J. (1997). A study on the manipulability measures for robot manipulators. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS ’97, vol. 3, pp. 1458–1465.

  • Lee, S. (1989). Dual redundant arm configuration optimization with task-oriented dual arm manipulability. IEEE Transactions on Robotics and Automation, 5(1), 78–97.

    Article  Google Scholar 

  • Madhani, A., & Dubowsky, S. (1997). The force workspace: A tool for the design and motion planning of multi-limb robotic systems. ASME Journal of Mechanical Design, 119, 218–224.

    Article  Google Scholar 

  • Merlet, J. (2007). Jacobian, manipulability, condition number and accuracy of parallel robots. In S. Thrun, R. Brooks, & H. Durrant-Whyte (Eds.), Robotics Research, Springer Tracts in Advanced Robotics (Vol. 28, pp. 175–184). Berlin /Heidelberg: Springer.

  • Nait-Chabane, K. Hoppenot, P. & Colle, E. (2007). Directional manipulability for motion coordination of an assistive mobile arm. In ICINCO 2007, Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pp. 201–208.

  • Nakamura, Y. Nagai, K. & Yoshikawa, T. (1987). Mechanics of coordinative manipulation by multiple robotic mechanisms. In Proceedings of the IEEE International Conference on Robotics and Automation 1987, vol. 4, pp. 991–998.

  • Prattichizzo, D., & Trinkle, J. C. (2008). Grasping. Handbook of robotics (pp. 671–700). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Przybylski, M. Asfour, T. & Dillmann, R. (2011). Planning grasps for robotic hands using a novel object representation based on the medial axis transform. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1781–1788.

  • Porges, O., Stouraitis, T., Borst, C., & Roa, M. (2014). Reachability and capability analysis for manipulation tasks. Advances in intelligent systems and computing (pp. 703–718). New York: Springer International Publishing.

    Google Scholar 

  • Siciliano, B., & Khatib, O. (Eds.). (2008). Springer handbook of robotic. Heidelberg: Springer.

    Google Scholar 

  • Ting-Yung Wen, J., & Wilfinger, L. (1999). Kinematic manipulability of general constrained rigid multibody systems. IEEE Transactions on Robotics and Automation, 15(3), 558–567.

    Article  Google Scholar 

  • Togai, M. (1986). An application of the singular value decomposition to manipulability and sensitivity of industrial robots. SIAM Journal on Algebraic and Discrete Methods, 7(2), 315–320.

    Article  MATH  MathSciNet  Google Scholar 

  • Tsai, M.J. (1986). Workspace geometric characterization and manipulability of industrial robots. Ph.D. thesis, Ohio State University.

  • Ulbrich, S., Ruiz, V., Asfour, T., Torras, C., & Dillmann, R. (2012). Kinematic bezier maps. IEEE Transactions on Systems, Man, and Cybernetics, 42(4), 1215–1230.

    Article  Google Scholar 

  • Vahrenkamp, N. Asfour, T. & Dillmann, R. (2012). Efficient inverse kinematics computation based on reachability analysis. International Journal of Humanoid Robotics, 9(4).

  • Vahrenkamp, N. Asfour, T. & Dillmann, R. (2013). Robot placement based on reachability inversion. In IEEE International Conference on Robotics and Automation (ICRA), pp. 1970–1975.

  • Vahrenkamp, N. Asfour, T. Metta, G. Sandini, G. & Dillmann, R. (2012). Manipulability analysis. In Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids), Osaka, pp. 568–573.

  • Vahrenkamp, N. Barski, A. Asfour, T. & Dillmann, R. (2009). Planning and execution of grasping motions on a humanoid robot. In 9th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2009, pp. 639–645.

  • Vahrenkamp, N. Berenson, D. Asfour, T. Kuffner, J. & Dillmann, R. (2009). Humanoid motion planning for dual-arm manipulation and re-grasping tasks. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), St. Louis, pp. 2464–2470.

  • Vahrenkamp, N. Kröhnert, M. Ulbrich, S. Asfour, T. Metta, G. Dillmann, R. & Sandini, G. (2012). Simox: A robotics toolbox for simulation, motion and grasp planning. In International Conference on Intelligent Autonomous Systems (IAS), pp. 1–25.

  • Vahrenkamp, N. Wieland, S. Azad, P. Gonzalez, D. Asfour, T. & Dillmann, R. (2008). Visual servoing for humanoid grasping and manipulation tasks. In 8th IEEE-RAS International Conference on Humanoid Robots, 2008, Humanoids, pp. 406–412.

  • Watanabe, T. (2011). Effect of torque-velocity relationship on manipulability for robot manipulators. Journal of Mechanisms and Robotics, 3(4), 041007.

    Article  Google Scholar 

  • Welke, K. Schiebener, D. Asfour, T. & Dillmann, R. (2013). Gaze selection during manipulation. In IEEE International Conference on Robotics and Automation (ICRA), pp. 652–659.

  • Yoshikawa, T. (1985). Manipulability of robotic mechanisms. The International Journal of Robotics Research, 4(2), 3–9.

  • Zacharias, F. Borst, C. & Hirzinger, G. (2007). Capturing robot workspace structure: Representing robot capabilities. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 3229–3236.

  • Zacharias, F. Leidner, D. Schmidt, F. Borst, C. & Hirzinger, G. (2010). Exploiting structure in two-armed manipulation tasks for humanoid robots. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 5446–5452.

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant agreement No 611832 (WALK-MAN) and Grant agreement No 611909 (KoroiBot).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Vahrenkamp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahrenkamp, N., Asfour, T. Representing the robot’s workspace through constrained manipulability analysis. Auton Robot 38, 17–30 (2015). https://doi.org/10.1007/s10514-014-9394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-014-9394-z

Keywords

Navigation