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Abstract—Autonomous manipulation in unstructured environ-
ments presents roboticists with three fundamental challenges:
object segmentation, action selection, and motion generation.
These challenges become more pronounced when unknown man-
made or natural objects are cluttered together in a pile. We
present an end-to-end approach to the problem of manipulating
unknown objects in a pile, with the objective of removing all
objects from the pile and placing them into a bin. Our robot
perceives the environment with an RGB-D sensor, segments the
pile into objects using non-parametric surface models, computes
the affordances of each object, and selects the best affordance and
its associated action to execute. Then, our robot instantiates the
proper compliant motion primitive to safely execute the desired
action. For efficient and reliable action selection, we developed
a framework for supervised learning of manipulation expertise.
We conducted dozens of trials and report on several hours of
experiments involving more than 1500 interactions. The results
show that our learning-based approach for pile manipulation
outperforms a common sense heuristic as well as a random
strategy, and is on par with human action selection.

I. INTRODUCTION

Simple everyday tasks such as clearing a pile of toys in
the living room, tidying up a messy dinning table, and sorting
a box of unused items in the garage remain challenging for
robots. These pick-and-place tasks of unknown objects in a
pile require careful integration between perception, planning,
and motion generation. Furthermore, the robot must move with
care to avoid damage to itself and the environment, perform
the task quickly, and make as few assumptions as possible.

There are several key prerequisites for manipulating a pile
of unknown objects. First, the robot must acquire pertinent
knowledge for interacting with individual objects in the pile.
This is difficult because object segmentation remains an open
problem, and is particularly challenging for a pile of over-
lapping and unknown objects. Because we cannot rely on
prior object models, as the pile may contain natural objects,
debris, and parts, the robot must hypothesize a segmentation
of the environment into objects and compute for each object
a set of affordances [1I], [2]. We address object segmentation
in a pile by extending prior work on segmenting unknown
objects using geometric properties. A contribution of this work
is the implementation of a GPU-accelerated version of the
segmentation algorithm proposed in [3].

Second, the robot must be able to choose which one of the
affordances to execute next. Uninformed action selection can
lead to slow performance, or worse, may damage the robot or

Figure 1: Perceiving and manipulating unknown objects in a pile:
Each detected object has a set of affordances (pushing, pulling or
grasping). The robot selects the best next interaction for clearing
the pile of unknown objects. The orange boundaries mark reachable
space. The robot cannot grasp an object behind the white boundary,
but may push or pull on it.

objects in the pile. An intuitive heuristic—a set of rules—may
be helpful in determining the next action, but is likely to fail
often as it is difficult to anticipate the behavior of objects in
a pile and the outcome of interaction. We propose a learning
approach to manipulation. Our object representation exposes
the structure of the pile and the affordances of the individual
objects. Using this representation within a supervised learning
framework, our robot is able to learn the necessary manipula-
tion expertise to efficiently and reliably clear a pile of unknown
objects (see Figure [T). This learning-based approach for pile
manipulation is our most important contribution.

And third, the robot must generate motion plans that both
avoid collision with other objects and carefully interact with
the target object. Another contribution of this work is a library
of novel compliant controllers for poking, pulling and grasping
unknown objects. These controllers are executed within a state-
of-the-art motion planing pipeline.

We evaluated our solution by conducting extensive experi-
ments. In our experiments, the robot interacts with a pile of
unknown objects placed on a table. The robot’s task is to
pick up individual objects and place them in a bin. We used
both man-made and natural objects of varying shape, size, and
appearance. We conducted several hours of experiments con-
sisting of over 1500 interactions. Our results demonstrate that
perceiving object affordances and learning to rank these affor-



dances to determine the best next action facilitates a robust,
efficient, and reliable pile clearing behavior. For transparency,
we have uploaded many unedited videos of our experiments
to: | http://www.youtube.com/user/pileRSS2013/videos.

II. RELATED WORK

Our approach for manipulating unknown objects in a pile
has three main components: perception (to segment objects
and compute relevant features), action selection (to determine
object affordances, calculate the corresponding manipulation
actions, and choose the best next action), and motion gen-
eration (to instantiate and execute the appropriate compliant
controllers). We now review the most relevant works in each
area.

A. Object Segmentation

To determine the affordances of objects in the pile, we must
first segment individual objects. Segmentation algorithms [4],
[S] process an image and divide it into spatially contiguous
regions sharing a particular property. These algorithms assume
that boundaries between objects correspond to discontinuities
in color, texture, or brightness—and that these discontinuities
do not occur anywhere else. These assumptions are easily
violated in a pile because of the significant overlap between
objects. Thus, existing methods become brittle and unreliable.

Segmentation from motion algorithms leverage a different
cue for segmentation: relative motion. This motion is either
assumed to occur [6], [7], [8] or can be induced by the
robot [9]], [10]. Although relative motion is a strong cue for
segmentation, generating this motion in an unknown pile is
oftentimes dangerous and undesirable. Our proposed method
does not generate motion for the purpose of segmentation, but
does utilize relative motion when it occurs.

Segmentation can also be computed by considering 3-D
geometry to determine the boundaries between objects [11],
[12]. Here, a boundary is defined as a depth discontinuity,
and objects are modeled using parametric representations of
predetermined shapes such as spheres, cylinders, and planes.
These methods assume that objects can be described using
a single basic shape. In practice, this is rarely the case. Our
method also relies on geometric segmentation. However, it
uses a non-parametric approach (similar to [3]]), and considers
both depth discontinuities and continuity in surface normals
orientation.

Without prior knowledge, every segmentation algorithm,
including ours, becomes less reliable in clutter. Thus, for
manipulation, any segmentation should be considered with
caution. We complement our segmentation algorithm with
learning, which enables the robot to identify unreliable seg-
ments, effectively increasing the reliability of segmentation.

B. Learning Manipulation Expertise

For every object segmented by perception, our method in-
stantiates a controller (or several controllers) to safely interact
with the object. These potential interactions represent the
object affordances [2], [1]]. Choosing which of the possible

actions to take is important: an action may be more or less
likely to succeed, safe or dangerous, free up space around an
object or condense the pile. The sequence of actions deter-
mines the number of interactions necessary to clear the pile.
Thus, choosing the next best action is crucial for efficiency.
Our method uses supervised learning to score and rank the
objects’ affordances.

Learning manipulation expertise is challenging because of
the large state space associated with perceiving and manipu-
lating objects. It is virtually impossible to encounter the same
state twice. Interesting examples in the literature that apply
learning to manipulation tasks include using relational rein-
forcement learning to learn a policy for modeling articulated
objects [13]] or for manipulating basic objects such as cubes,
cylinders and spheres [14]. Additionally, supervised learning
has been used to find and rank multi-contact grasp locations
on objects in partially cluttered scenes [15]. However, learning
grasping among other manipulation skills in densely cluttered
unstructured environments, such as in piles of objects, remains
largely unsolved.

Recent work on pile manipulation [16], [[17] relies on hard-
coded heuristics for removing objects from a pile. In [16], flat
objects are clustered together and the robot pokes objects until
individual objects are singulated and can be picked up. And
in [17]], Lego blocks are singulated and removed. Here, the
robot is provided with a priori knowledge of the object type (a
Lego block). Our work extends [[16], [17] by considering more
complex objects (unknown, natural, and complex shapes), to
consider more complex clutter (piles), and by introducing
learning to guide the interaction.

C. Motion Generation

To execute a desired action, we first generate and execute
a feasible trajectory to position the hand close to the target
object. Then, we instantiate a compliant controller designed to
achieve the desired manipulation behavior (pushing, pulling or
grasping). We use CHOMP [18] to generate smooth trajecto-
ries and rely on a library of force feedback compliant motion
primitives that are safe and appropriate for manipulation under
uncertainty [19].

III. SYSTEM OVERVIEW

Our proposed system for manipulating unknown objects
in a pile has three main components (Figure [2): perception,
learning-based action selection, and manipulation. Perception
generates a set of object hypotheses (“facets”). Action se-
lection considers the affordances of each object (using SVM
classifiers) and chooses the best next action with the objective
of clearing the pile safely and efficiently. And the manipulation
pipeline computes a motion plan and executes the appropriate
compliant controller.

IV. PERCEIVING OBIJECTS

Our perception pipeline is composed of two parts. The first
computes a segmentation of the scene into facets (hypothesized
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Figure 2: System overview: Perception (red) generates a segmentation of the scene into facets. Information about individual facets is used

by learning (blue) to classify and score the affordances of each facet.

action is executed by instantiating a compliant controller (green).

object surfaces). For every facet, we extract the necessary in-
formation to instantiate our compliant controllers for pushing,
pulling or grasping. The second part of the perception pipeline
computes a set of visual features for each facet that is later
used within a supervised learning framework to classify the
affordances of each object.

A. Facet Segmentation

To interact with unknown objects in a pile, we must first
identify individual objects. Using 3-D information measured
with an RGB-D camera (Kinect), our algorithm segments
the scene into hypothesized object facets. A facet is an
approximately smooth circumscribed surface. An object facet
is not necessarily a flat surface (plane), but rather a region
maintaining continuity in both depth and the orientation of its
surface normals. Dividing an object into facets is intuitive and
repeatable under changes of perspective, lighting condition,
and partial occlusion.

Facet detection is composed of the following three steps:
computing depth discontinuities, estimating surface normals,
and color-based image segmentation. This process is illustrated
in Figure 3] We compute depth discontinuities by convolving
the depth image with a non-linear filter. This filter computes
the maximal depth change between every pixel and its im-
mediate 8 neighbors. If this distance is larger than 2cm, the
pixel is marked as a depth discontinuity. The 2cm threshold
is due to the resolution of our RGB-D sensor (Kinect). The
surface normal at every point of the 3-D point cloud is
estimated by fitting a local plane to the neighborhood of the
point. We then compute the normal to that plane using least-
square plane fitting. Figure [3] provides a visualization of the
surface normals. The three Euler angles of every normal are
represented using the three color channels (RGB). Finally, we
overlay the depth discontinuities onto the color representation
of the surface normals (to form a color discontinuity where
there is depth discontinuity). Now, extracting facets becomes
a color segmentation problem of extracting contiguous color
regions. Therefore, we extract facets using a standard color
segmentation algorithm (mean-shift segmentation). More de-
tails and an experimental evaluation of facet detection is
available in [3]]. Our contribution compared to that in [3]
is algorithmic. Our version is more efficient and uses GPU
acceleration where possible. This leads to a x10 runtime
speedup, which is essential for real-world manipulation.

Then, actions are ranked according to their scores, and the selected

Figure 3: Facet detection algorithm: The input (top left) is an RGB-D
image. The algorithm extracts geometric discontinuities: depth dis-
continuities (bottom left) and normal discontinuities (bottom right).
Finally, we merge depth and normals into a single RGB image. Object
facets (top right) are extracted by computing color segmentation on
that image.

Every segmented facet represents a hypothesized region
where the robot can interact with the pile. For every facet,
we compute its center of gravity (COG), the principal and
secondary axes, and the length of each axis. We compute the
COG of a facet by averaging the 3-D positions of the asso-
ciated point cloud. We determine the principal and secondary
axes by performing principal components analysis (PCA) on
the 3-D point cloud. The length of each axis is the largest
distance between a pair of points on or very close to each
axis. Figure [ illustrates the output of this process. With this
information we can instantiate any one of our 3 types of
controllers for pushing, pulling or grasping. Our controllers
are compliant and use force control to compensate for partial
and noisy perception.

Facet detection has two main limitations. First, our sensor
(Kinect) cannot perceive reflective materials. And second, our
method is not able to distinguish between two objects that are
touching each other and have similar surface normals. This
could be solved by considering color, texture, and experience.
Because the robot disturbs the pile throughout its interactions,
this case does not persist, and therefore has limited impact on
our performance.



Figure 4: Extracting information for manipulation: our algorithm
computes the COG (pink circle), principal axis (red) and secondary
axis (green) for every facet. This information together with the length
of each axis suffices to instantiate our compliant controllers for
pushing, pulling or grasping.

B. Facet Affordances

With the list of segmented facets and the information
necessary to instantiate any of our controllers for every facet,
we must now decide what is the next best action. Not every
action is desired. For example, grasping a facet may not be
possible because of other objects around the facet, or pulling
an object underneath other objects may fail and disturb the
pile significantly, risking both the robot and the objects. Thus,
we must determine what are the affordances of each facet,
accounting for its surrounding and and create a ranking in
order to determine what action to take next. These affordances
depend not only on the facet itself, but also on its surroundings
and the robot’s capabilities.

Table [I] lists the 41 features we compute to determine the
affordance of each facet. This list can be easily extended to
include additional features. In the next section, we use these
features within a supervised learning framework to determine
the actual affordances of a facet: can it be pushed, pulled,
and/or grasped along its principal or secondary axis.

V. LEARNING OBJECT AFFORDANCES

We developed a supervised learning approach to manip-
ulation for computing facet affordances. This is the most
significant contribution of our work. Learning relies on the
41 features computed by perception (see Table[l). For training
data, we labeled 37 scenes containing a total of 550 facets.
For each scene we used two image frames. We initially setup
the scene (first frame), and in some cases disturbed the scene
(second frame). Labeling was done for the second frame. The
motion caused by disturbing the scene (if any) was used to
compute feature #9 in Table |l We developed a graphical user
interface for displaying the segmented facets; the user assigned
to each facet 5 binary labels: actionable, push, pull, grasp-P
and grasp-S (grasping along the principal or secondary axis).
The labels are not mutually exclusive and do not represent a
preferred action. Instead, they indicate whether a facet can be
interacted with, pushed, pulled, or grasped along either axis.

To classify the affordances of a facet, we use simple linear
support vector machines (SVMs). Each feature is normalized
by its variance and thresholded outside of two standard devi-

# Feature Description

1 cloudSize Number of 3-D points associated with the facet

2 facetArea Projected 2-D area associated with the facet

3 distance Facet’s Euclidean distance from the robot

4 height Facet’s Euclidean distance from the support sur-
face

5 length Distance between the farthest points along the
principal axis

6 width Distance between the farthest points along the
secondary axis

7 LW-ratio Ratio between the length and width of the facet

8 surfaceAngle  Angle between the facet and the support surface.
The facet is represented as the surface defined
by the principal and secondary axes.

9 moveMatch Robot’s confidence in the facet segmentation.
This is computed by considering two consec-
utive frames. If a facet was disturbed and it can
be retrieved in the second frame, the robot’s
confidence in its segmentation increases. For
more details about matching facets across view
see [3].

10-41  freeSpace Density of 3-D points around a facet determines

the amount of free space around it. For effi-
ciency, we only consider the area close to the ex-
treme points of both the primary and secondary
axes. Free space is represented by measuring
the number of 3-D points in 8 small cylinders
for each end of each axis. The cylinders are
of radius 0.5cm, start at 2cm below the facet
and end at Scm above the facet. This feature is
motivated by the notion that an empty or nearly
empty cylinder indicates room for the fingers.

Table I: List of facet features associated with affordances. These
features are used within our supervised learning framework to select
the best next action.

ationsEl

We trained each classifier with 450 randomly selected
instances, and tested on the remaining 100. The resulting
classification rates and the distribution of positive and negative
labels in the training set are summarized in Table [l Grasping
affordances are correctly classified in 80% of the cases and
pushing and pulling are correctly classified in over 90% of
the cases. We are also able to detect when a facet is invalid
(not actionable) in 81% of the cases. This is important for re-
covering from segmentation errors. A more careful analysis of
the results shows that most of our misclassifications (> 90%)
are true negatives, meaning that the learner is conservative in
deciding to act, which results in safer behavior.

Given a new scene, the robot is now ready to compute a seg-
mentation, determine facet affordances, and rank the actions
according to the score computed for every < facet, action >
pair by the classifiers. In our experiments, we create an action
list by first adding the top 3 grasping actions followed by

!We scale each feature f; using its mean E(f;) and variance V(f;).
feeated = (f; — E(f;))/+/Var(f:). If a scaled feature is more than two
standard deviations away from the mean, we cap ffcale‘i at either —2 or 2.
Finally, we divide ffc‘lled by 2 to guarantee that all features are in the range
[-1,1].



Class %Positive  %Negative % Classification
Rate

Actionable 75 25 81.20

Push 43 57 91.75

Pull 59 41 93.45

Grasp-P 26 74 80.34

Grasp-S 37 63 80.10

Table II: Classifying facet affordances: we compare the distribution
of positive and negative instances in the training examples to the
classification rate achieved after training. The results show significant
improvement of 24.8%, 80.8%, 84.0%, 24.4%, and 46.2% in the
misclassification rate respectively for each of the aforementioned
classes compared to the naive approach of selecting the most probable
label for each class.

the top 3 pushing or pulling actions. Finally, we add all
remaining actions (sorted by score). When an action cannot
be performed (either because the planner detects a possible
collision or because a trajectory to the goal configuration is
infeasible), we continue to the next action in the list. In future
work, we intend to replace this action planning logic with
reinforcement learning. This will enable us to develop simple
strategies and learn from experience the appropriate scaling
between the scores of the different classes.

VI. COMPLIANT MOTION PRIMITIVES

To interact with the environment, we propose three types
of parameterized controllers: pushing, pulling and grasping.
Each controller is instantiated by perception based on the
computed COG, principal and secondary axes, and the length
of each axis. These controllers are inspired by and extend on
the compliant grasping primitives developed in [19].

Interacting with unknown objects in a pile is challenging
because the robot has only partial and inaccurate knowledge
of the shape and configuration of objects. Thus, our controllers
must be robust to uncertainty in modeling and localization. Our
system uses CHOMP [20] to plan a collision free trajectory
to an action launch pose (i.e., robot hand pose) based on
the COG and orientation of the facet. Then we execute a
compliant controller which maintains proper contact with the
environment by responding to the detected contact forces. Our
compliant controllers support pushing, pulling and grasping
(either along the principal axis or the secondary axis). They are
velocity-based operational space controllers, relying on force
feedback acquired by a force-torque sensor mounted on the
robot’s wrist. During the interaction, the robot’s fingers are
coordinated and position-controlled.

To grasp an object, we servo the hand along the palm’s
normal, until contact is detected between the fingertips and the
support surface or the object. Then, we close the fingers, while
the hand is simultaneously servo controlled in compliance with
the forces measured at the wrist. This ensures safe and proper
contact between the fingertips and the support surface. Figure ]
illustrates this process for grasping a block. Note that the palm
is aligned with the facet and centered above the facet’s COG.
Also, the hand’s aperture is determined by the length of the
facet along the relevant axis.

Figure 5: The steps of compliant grasping: the Barrett hand assumes
a cup-like pre-shape on top of the facet’s center of gravity and is
parallel to an axis of the facet. It moves towards the object until
contact is detected. The fingers close onto the object while the hand
is servo controlled in compliance with the forces due to contact with
the support surface/object.

Pushing and pulling begin in a similar way: we servo the
hand along the palm’s normal until contact is detected. To
push an object, we continue moving along the normal until
we either completed a trajectory of Scm, or the forces exerted
onto the hand or fingers exceed a safety threshold. To pull
an object, we apply force along the normal (to maintain
contact), while pulling the object. Again, the action ends
after moving for 10cm or if an unsafe amount of force is
detected. We have thoroughly tested the implementation of the
three compliant controllers on a 7-DOF Barrett Whole Arm
Manipulator (WAM) and a 3-fingered Barrett hand.

VII. EXPERIMENTAL EVALUATION

To evaluate our system, we conducted dozens of exper-
iments with a robotic manipulation system [20]. Videos of
all of the experiments conducted for this paper are available
at | http://www.youtube.com/user/pileRSS2013/videos. In our
experiments, a variety of unknown man-made and natural
objects were placed in a pile on a table in front of the robot
(e.g., Figure[I). The objects overlap and occlude each other to
varying degrees. The robot is composed of a 7-DOF Barrett
WAM and a 4-DOF hand equipped with force/torque sensor at
the wrist. It acquires RGB-D measurements of the environment
using a Kinect. The robot is tasked with clearing the table by
removing all objects into a bin.

We conducted three types of experiments. First, we eval-
uated the performance of 5 methods for selecting the next
action: our learning-based approach, 2 random action selec-
tion strategies, a common-sense heuristic, and human-operator
selected actions. Second, we analyze interesting instances
highlighting the benefits of our learning-based approach. And
finally, we compare the affordance classification of our learn-
ing method to action selection by human subjects.

A. Clearing piles of unknown objects

The main contribution of this work is developing a learning-
based approach to manipulation. Our learned classifiers rank
the affordances of segmented facets and generate a sorted list
of actions. We compare the performance of learning to three
other methods for action selection: random, heuristic-based
selection, and a human operator. For random, we consider two
strategies: select a facet at random and then either select one
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of our four action at random (all-random) or select only one
of the two grasping actions at random (grasping-only-random).
Our heuristic-based approach uses the following intuition:

1) Grasping the topmost object is safer and more likely to

succeed

2) Grasping along the secondary (shorter) axis increases

the chance of the object fitting into the robot’s hand.

3) If an object is out of reach for grasping (behind the white

line in Figure [I)), pulling is required.

4) Pushing can disturb/reorganize the pile and is therefore

useful if the above actions cannot be performed.
We call this a common-sense heuristic as it encodes simple
and seemingly obvious rules. It is possible to hard-code a more
complicated heuristic utilizing all of the 41 features from Table
E]; however, this can be difficult, time-consuming and brittle,
in part due to errors such as noise and calibration offsets.

For the ‘Human’ experiments, the human operator selects
the next action for the robot to execute using a graphical user
interface to click on a facet and choose an action.

Table [[TI] and Figures [6] and [7] summarize the results of our
experiments. We conducted extensive experiments consisting
of 10 trials using each of our 5 methods for action selection. In
our experiments, the robot attempted over 1500 actions. In all
experiments we used a randomly shuffled pile of the same 10
objects. When using all-random, the robot was never able to
clear the pile. For example, the robot was able to remove only
2 objects after 50 actions. In Table [III| we present the results
for the other 4 selection methods. We count the number of
actions in every trial. A successful action occurs when the
robot is able to plan a trajectory, executes it, and achieves
the manipulation objective. A failed action occurs when the
planned trajectory cannot be executed because of collision, the
goal configuration cannot be reached by the robot, or the action
itself fails (e.g. object slips out of hand). For each trial, we
report the percentage of failed actions due to planning (%PF)
and failure to achieve the manipulation goal (%EF).

Figure[6|shows the average number of actions and a standard
deviation for each action selection strategy. The performance
achieved by the human operator is not significantly different
than our learning-based approach. Using our heuristic, the
average number of actions is about 50% higher than learning,
and it increases by another 20% when randomly selecting
a grasping action. These results show the strength of our
learning-based approach.

Figure [/| shows for each action selection strategy, the per-
centage of successful grasps out of the total attempted grasps.
As expected, when a human selects a facet with a grasp action,
the probability of success is the highest. Learning performs
about 10% worse. The likelihood of executing a successful
grasp drops dramatically for the heuristic-based approach as
well as for random. We believe that the results indicate that
the human prefers preparatory actions (push/pull) to singulate
objects over attempting difficult grasps. While this results in
a higher grasping success rate, it also leads to more actions.
Learning is more adventurous in choosing grasps. Although
this results in more frequent failures to grasp, this strategy

Actions Failures

Pile # %GP  %GS  %PU  %PL | # %EF  %PF
Random (grasping only)
1 12 50 50 - - 4 50 50
2 31 26 74 - - 22 36 64
3 44 48 52 - - 35 54 46
4 32 44 59 - - 23 65 35
5 35 60 40 - - 24 42 58
6 55 52 47 - - 44 77 23
7 32 57 43 - - 28 67 33
8 23 52 47 - - 15 46 54
9 47 51 49 - - 40 60 40
10 43 48 51 - - 36 83 17
Heuristic
1 35 - 94 3 3 25 100 0
2 10 - 100 0 0 0 0 0
3 22 - 90 5 5 10 80 20
4 63 - 92 5 3 51 16 84
5 33 - 100 0 0 23 43 57
6 4 - 100 0 0 4 100 0
7 65 - 87 5 8 52 13 87
8 19 - 95 0 5 12 34 66
9 17 - 88 0 12 8 37 63
10 23 - 83 4 13 10 50 50
Learning

15 20 66 7 7 6 17 83
2 15 7 87 0 6 4 75 25
3 1225 67 0 11 1 100 0
4 33 12 79 6 3 19 15 85
5 28 11 78 11 0 16 18 82
6 13 8 85 7 0 3 67 33
7 14 28 50 15 7 2 100 0
8 36 14 78 3 5 24 84 16
9 8 12 88 0 0 0 0 0
10 17 18 70 0 12 9 45 55
Human

16 25 50 0 25 3 67 33
2 12 0 83 0 17 1 100 0
3 13 77 0 8 3 3 67 33
4 26 27 46 15 12 13 77 23
5 22 23 32 18 27 8 75 25
6 17 24 41 12 24 5 80 20
7 23 26 57 9 9 12 83 17
8 18 33 39 6 22 5 60 40
9 20 15 50 20 15 7 29 71
10 21 5 67 5 24 7 100 0

Table III: Results for 10 consecutive trials using the same 10
objects in arbitrary piles with our four action selection strategies:
Random-Grasping-only, Heuristic-based, Learning-based, and a
Human Operator-based. The columns are (left to right): trial id,
number of actions to clear the pile, percentage of actions that
were grasping-principal-axis (%GP), grasping-secondary-axis (%GS),
pushing (%PU), and pulling actions (%PL), the total number of
failures and the percentage of failures due to either execution (%EF)
or planning (%PF).

pays off as the overall number of actions needed is similar to
what a person requires.

B. Doing the right thing

Our second set of experiments analyzes interesting instances
that demonstrate the behavior that was learned from the
training data. In Figure [§| (left), we presented the robot with a
single large object (the detected facet marked in red). Learning
classified this facet as negative for the “actionable” category,
and did not attempt to interact with it. The other approaches
(heuristic and random) kept interacting with the object without
success.

The middle image in Figure [§] contains three facets (red
and green for the box that is out of the reachable area for
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Figure 6: The average number of actions required to remove all
objects from the pile of 10 objects for all 4 action selection strategies.
The results show that learning and human-operator action selection
have similar performance, and are significantly better than the simpler
methods (random and heuristic-based).
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Figure 7: The average fraction of successful grasps out of the total
number of attempted grasps. The human action selection is more
conservative, leading to higher success rate. Learning attempts more
difficult grasps, which leads to more failures. However, note that both
strategies require a similar number of action on average (Figure [6).
Heuristic-based and random action selection fail to execute a grasp
in more than 60% and 70% of the cases respectively.

grasping and blue for the ball). The top three actions ranked
by learning are: pushing the orange ball (blue facet) into the
reachable area, pulling the green facet and grasping the red
facet along the longer axis. The heuristic would try to grasp
the ball (difficult configuration, likely to fail) or pull the green
facet (good). The red facet cannot be grasped (planning failure
because grasping along the short axis would result in collision
with the table), and since it cannot be grasped but yet is not
outside the graspable zone, the heuristic will not try to pull
it closer. Instead, it will keep pushing it towards the non-
graspable zone. The right image in Figure 8| shows cases where
learning prefers pushing vs. pulling. As expected, learning
classifies the green and red facets as positive for pushing and
negative for pulling. The blue facet is classified as positive for
pulling and negative for pushing.

In Figure 0 we observe a frequent failure mode of our
heuristic-based approach. Since it always grasps along the
shorter axis and does not consider whether there is free space
along this axis, it would randomly choose to grasp either the
red or blue facets. The result strongly depends on the structure
of the scene (left: success, right: failure).

In Figure we demonstrate that learning oftentimes gen-
erates sequences of interaction that benefit the robot. In this
example, learning classifies both types of grasping as negative
(the objects are too long for principal axis grasp and too close

to each other to grasp along the shorter axis). Learning ranks
pulling the red facet as the best next action, and after executing
it (right image), grasping both facets becomes possible.

C. Action Selection: Human vs. Learning

Figure |11] visualizes the ranking computed by our learning-
based approach. For each affordance, the detected facets are
color coded according to the output of the classifier: positive
(green) and negative (red). For each affordance, the best facet
is marked in bright green and the worst in bright red.

Interestingly, we informally asked 10 people to classify the
facets into the 4 type of affordances. Qualitatively, we found
that the classification suggested by the human subjects was
similar to that computed by our learning framework.

VIII. CONCLUSION

We developed a learning-based approach for manipulating
piles of unknown objects. We provided extensive experimental
data demonstrating the merits of our approach. With our
learned classifiers, the robot interacts with the environment
more efficiently than what was achieved with random interac-
tion or by the common-sense heuristic. In comparison with a
human-operator selecting the next best action, our learning-
based approach achieves, on average, the same number of
actions necessary to clear the pile of objects.

Learning and generalizing manipulation knowledge enables
the robot to autonomously interact with dense clutter. Learning
becomes possible due to our novel algorithm for segmenting
an unknown scene into hypothesized object facets, allowing
extraction of a rich set of features. Finally, our compliant
controllers overcome inevitable inaccuracies in perception and
maintain safe interactions with the environment.

An immediate extension to our supervised learning ap-
proach is to use on-line self-supervised learning to adjust the
learned weights of the classifiers based on the actual outcome
of the robot’s actions. We believe that this approach is es-
sential for enabling autonomous manipulation in unstructured
environments.
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