
A Suboptimal and Analytical Solution to Mobile Robot Trajectory
Generation amidst Moving Obstacles

Jun Peng∗, Wenhao Luo∗, Weirong Liu, Wentao Yu, and Jing Wang

Abstract— In this paper, we present a suboptimal and an-
alytical solution to the trajectory generation of mobile robots
operating in a dynamic environment with moving obstacles.
The proposed solution explicitly addresses both the robot
kinodynamic constraints and the geometric constraints due
to obstacles while ensuring the suboptimal performance to
a combined performance metric. In particular, the proposed
design is based on a family of parameterized trajectories,
which provides a unified way to embed the kinodynamic
constraints, geometric constraints, and performance index into
a set of parameterized constraint equations. To that end, the
suboptimal solution to the constrained optimization problem
can be analytically obtained. The solvability conditions to the
constraint equations are explicitly established, and the proposed
solution enhances the methodologies of real-time path planning
for mobile robots with kinodynamic constraints. Both the
simulation and experiment results verify the effectiveness of
the proposed method.

I. INTRODUCTION

During the past decades, trajectory generation for mobile
robots moving in a dynamic environment has received
considerable attention. Two major concerns towards that
topic are problems of feasibility and optimality [1]. The
feasibility is mainly concerned with the kinematic constraints
of robots such as nonholonomic constraints , or kinodynamic
constraints such as velocity and acceleration bounds [2]. It is
desirous for the robot to generate a feasible trajectory on-line
that also satisfies certain optimality requirements.

To consider robot kinematic constraints, some canonical
methods as [3][4] that directly focus on geometric space
have been revised by alternative techniques. One approach is
to mainly study on the path planner towards nonholonomic
constraints and try to obtain the steering method to drive a
robot to a pre-determined configuration. Without obstacles,
discretizing control method is proposed in [5][6] to integrate
the motion equations to obtain a feasible path. A reverse
motion based case has been adapted to obstacle-cluttered
environment to optimize the path length [7]. In [8] Newton
algorithm and Jacobian matrix are used to solve energy opti-
mization without obstacles. Moreover, the planning problem

The final publication is available at
http://link.springer.com/article/10.1007/s10514-015-9424-5

*The two authors contributed equally to this work.
J. Peng, W. Liu and W. Yu are with the School of Information Science and

Engineering, Central South University, and Hunan Engineering Laboratory
for Advanced Control and Intelligent Automation, Changsha, 410083, China
(e-mail: pengj@csu.edu.cn, frat@csu.edu.cn, and wentaoyu@gmail.com).

W. Luo is with the Robotics Institute, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 15213 USA (email:
luo@cmu.edu, whluo12@gmail.com).

J. Wang is with the Department of Electrical and Computer Engineering,
Bradley University, Peoria, IL 61525 USA (e-mail: jingwang@bradley.edu).

can be directly considered as an optimal control problem
using Hamiltonian equations and Pontriagin’s maximum
principle in [9][10]. Input parameterizations are used in
[11][12] to design steering input and represent the trajectories
by sinusoidal, polynomial, or piecewise constant functions to
smooth control inputs. Alternative methods [13][14] generate
smooth trajectories based on differential flatness approach.
However, moving obstacles are seldom considered in those
works, and optimality could be hard to formulate with kine-
matic constraints [1]. Recent work in [15] proposes a graph-
search based method to plan homologous trajectories with
topological constraints in Euclidean configuration spaces.

Approaches that directly plan nonholonomic trajectories
becomes a new topic. This kind of solutions concentrates
on trajectory generation and corresponding steering control
based on the property of nonholonomic systems. Proba-
bilistic Roadmap Methods (PRM) [22]-[24] and Rapidly-
exploring Random Trees (RRTs) methods [25]-[28] are in-
troduced to search for feasible paths and incorporate both
vehicle’s kinematic and dynamic constraints. In these works
obstacle-free space is divided in terms of random samples
and connection of these samples form the corresponding
feasible trajectory. Grid-based discretization method is also
used in [26] to estimate the coverage of the state space
and could help to detect less-explored areas with complex
dynamics. Most of such algorithms mainly discuss about the
robot moving in static environment, and plenty of moving
obstacles could make it hard for random trees to converge
to a certain optimal path.

Recently, another kind of search-based method using ”lat-
tice graphs” has been proven to be efficient and attractive
working in complex dynamic environments. The concept is
first developed in [19], wherein the idea is to divide the
configuration space into a set of cells (reachable states)
and construct a state lattice at first for graph searches
using heuristic search algorithms such as A* and D* Lite
[20], and subsequently search for a specific combination of
actions/edges (control/motion primitives) sequences in the
action space to drive the robot along the feasible path. In
order to address real-time planning for high-speed robot
moving over large distances in dynamic environment, [18]
introduced a novel multi-resolution lattice state/action space
and employ the incremental search algorithms such as Any-
time Dynamic A* (AD*) to more efficiently find global
and feasible suboptimal solutions among obstacles. However,
the resulting purely spatial trajectories by [18] may fail to
deal well when operating in cluttered environments full of
dynamic obstacles, since it does not consider time as a

state variable. Considering such a problem, [17] proposes a
novel data structure, ”a time-bounded lattice”, to merge both
short-term planning with concerns of time and long-term
planning without time. Leveraging the time horizon from the
Time-Bounded Lattice idea [17], [16] proposes an anytime
planners to find an initial solution quickly and then continue
to optimize it as time allows. In those methods, however, as
pointed out in [18][21] no explicit representation of curvature
and the rigidness of the discretized motion-primitives may
result in discontinuous motions at the junctions between
motion primitives and locally less optimal performance for
the rendered paths.

Compared to the search-based methods, the real-time
approaches of analytical motion planning are in a way more
computational simple and efficient for working in local
dynamic environment. A new parametric solution has been
proposed in [29] to analytically consider both kinematic
constraints and moving obstacles with the utilization of the
differential flatness/chained form [40][41], and the velocity
obstacles method in [31][32]. The concept of ’Velocity
Obstacle’ is extended in [30] to incorporate moving obstacles
that have constrained dynamics but move unpredictably.
Based on [29], extended works in [33][34] have introduced
energy-optimal and path length-optimal methods. For those
methods, however, lack of considering robot kinodynamic
constraints and special need for intermediate configuration
to overcome the vertical singularity could weaken both
feasibility and optimal effectiveness of the generated paths.
In [35]-[38] different trajectory models are used to avoid
curvature discontinuities and vertical singularities, while the
optimization is not completely solved in [35]. Parameters of
the robot dynamic model in [36] is often difficult to obtain.
[39] provides a special cost function to present optimal
options whereas it can only deal with statistic obstacles
with prior knowledge of environment. Further research on
higher dimensional states such as velocity and acceleration
(kinodynamic) and complete optimization are needed to
better extend application of analytical solutions.

In this paper, we propose a suboptimal and analytical
solution for mobile robot on-line trajectory generation in
the presence of moving obstacles. First, we parameterize
the family of trajectories by two time-variant polynomials
and based on the flatness differential property as well as
an explicit consideration of robot kinematic constraint, high-
dimensional robot boundary states are substituted to make
trajectories controlled by two freely adjustable parameters.
As a result, importantly, the kinodynamic constraints can be
handled together with geometric constraints due to obstacles,
and the trajectory generation problem can then be recast
as optimizing the two free parameters based on a set of
constraint equations. By defining two optimal indices to
quantify the minimum control energy consumption and the
shortest path length, respectively, the suboptimal solution in
terms of the two parameters can be obtained in closed form,
allowing highly efficient on-line computation. Particularly,
the optimization process is simplified and analytically solved
in the proposed 2D parameter space, leading to improved

suboptimal solutions that render good suboptimal and feasi-
ble trajectories in real-time.

This paper further extends the work in [29][35][37]. Com-
pared with those existing results, the main contributions of
this paper are as follows. 1) Higher-dimensional states such
as velocity and acceleration are considered for the robot,
allowing to explicitly address the kinodynamic constraints,
and to avoid singularity problem as well as discontinuous
or incompatible control at boundary states. 2) Optimization
problem is flexibly and analytically addressed on a 2D pa-
rameter space by considering an adjustable combined metric
consisting of both energy optimality and length optimality,
making the obtained 2D analytical suboptimal solutions in
principle outweigh the 1D solutions in the existing works and
still run in real-time. 3) Solvable conditions are established
with the discussion of remedies for the possible unsolvable
constraint equations.

This paper is organized as follows. Section II formulates
the trajectory generation problem. In Section III, two optimal
performance indices of the trajectories are introduced and
integrated with a combined solution form without addressing
constraints. In Section IV, kinodynamic constraints and the
collision avoidance are taken into account. Framework of
the suboptimal solutions on the parameter space are clearly
illustrated. Simulation and experiment results are included
in Section V to illustrate the effectiveness of the proposed
method. Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider the trajectory generation problem for a car-
like mobile robot. The mobile robot is represented by a
circumcircle and conforms to nonholonomic constraints. The
front wheels of the mobile robot are steering wheels and
the rear wheels are driving wheels with a fixed forward
orientation, and the mathematical model of the robot is
described by

ẋ

ẏ

θ̇

φ̇

 =


cos θ

sin θ

tanφ/l

0

u1 +


0

0

0

1

u2 (1)

where (x, y) represents the Cartesian coordinates of the
middle point of the rear wheel axle, θ is the orientation of
the robot body with respect to the X-axis, φ is the steering
angle, l is the distance between the front and rear wheel-
axle centers, u1 the linear velocity of the driving wheels and
u2 the steering velocity of the guiding wheels. Note that
φ ∈ (−π/2,

π/2) due to the structure constraint of the robot.
Assume that the robot moves in a working region as shown

in Fig. 1, where moving obstacles are represented by simple
circumcircles. In this paper, the objective is to design a
trajectory generation method to steer the robot moving from
the starting point O0(x0, y0) at the initial time t0 to the
final point Of (xf , yf) at the final time tf = t0 + T while
satisfying kinodynamic constraints and certain optimality
requirements, where T is a given constant.

x

y

0O

fO

((), ())x t y t

O

0v

fv

rv

0r

0r

1r

2r

3r

1sr

2sr

1

kv

2

kv

3

kv

1O

2O

3O

1sO

2sO

Fig. 1. The mobile robot moving in the dynamic environment.

III. AN OPTIMAL AND ANALYTICAL SOLUTION
FRAMEWORK

A. Trajectory Paramterization

The proposed trajectory generation solution is based on
the typical trajectory parameterization method, as studied
in [29][37]. Specifically, we parameterize the family of
trajectories of the robot as two polynomials in terms of time
t

x (t) = [c0 c1 c2 . . . cp] f(t)

y (t) = [d0 d1 d2 . . . dp] f(t)
(2)

with f (t) =
[
1 t t2 t3 . . . tp

]T , integer p > 0
and ci, di, i = 0, · · · , p are some constants be determined
to address the system model constraints, collision avoidance
and optimal performance in a unifying way.

The polynomial order p plays an important role in solving
the posed optimal trajectory generation problem. In essence,
p = 5 suffices to determine a unique solution for the
parameterized trajectory defined in (2) based on the available
trajectory boundary conditions at t0 and tf . In this paper p is
specified by 6, which then releases two more free parameters
c6 and d6 so as to deal with additional constraints from
collision avoidance and optimization.

Assume that the initial driving velocity v0
△
= u1(t0), the

initial acceleration a0
△
= u̇1(t0), the final driving velocity

vf
△
= u1(tf), and the final acceleration af

△
= u̇1(tf)

are known. Thus, together with the initial and final s-
tate boundary conditions q0 = [x0, y0, θ0, φ0]

T and qf =
[xf , yf , θf , φf]

T , we can construct a higher-dimensional
boundary conditions such as q∗0 = [x0, y0, θ0, φ0, v0, a0]

T

and q∗f = [xf , yf , θf , φf , vf , af]
T . Considering the kinemat-

ic model of the mobile robot, then we have
dx
dt |t0 = v0 cos θ0,

dy
dt |t0 = v0 sin θ0

d2x
dt2 |t0 = a0 cos θ0 − v2

0 tanφ0

l sin θ0
d2y
dt2 |t0 = a0 sin θ0 +

v2
0 tanφ0

l cos θ0
dx
dt

∣∣
tf = vf cos θf ,

dy
dt

∣∣
tf = vf sin θf

d2x
dt2

∣∣
tf = af cos θf − v2

f tanφf

l sin θf

d2y
dt2

∣∣
tf = af sin θf +

v2
f tanφf

l cos θf

(3)

To further address the dynamically changing environment,
we assume the trajectory (2) is piecewise parameterized and
it is updated at each sampling instant. The entire maneuver
time is T = tf − t0 and sampling time-point (trajectory
refinement time-point) is chosen to be at t0, t0 + Ts, t0 +
2Ts, . . . , t0+kTs, . . . , t0+(k̄−1)Ts, where k = 0, 1, . . . , k̄−
1 and Ts is the sampling interval unit that is chosen based
on the relative speeds of the robot and obstacles. k̄ is the
quotient of T/Ts. At each refinement time-point t = t0+kTs

velocity alteration of each obstacle is detected, and thus
trajectory parameters cki and dki (i = 0, . . . , 6) will be
updated. In other words, the first time the trajectory (the
parameters) is computed for the entire time interval [t0, tf].
But after time t = t0+kTs, new information about obstacles
are obtained, and the parameters are re-computed for a
trajectory between [t0+kTs, tf]. The following theorem cited
from [37] defines the family of parameterized trajectories.

Theorem 1: For t ∈ [tk, tf] , tk = t0 + kTs, the parame-
terized trajectory for the robot can be described as

x (t) = f̄(t)(Gk)−1
(
Ek −Hkck6

)
+ ck6t

6

y (t) = f̄(t)(Gk)−1
(
F k −Hkdk6

)
+ dk6t

6
(4)

where f̄(t) =
[
1 t t2 t3 t4 t5

]
, and

Gk =



1 tk t2k t3k t4k t5k
1 tf t2f t3f t4f t5f
0 1 2tk 3t2k 4t3k 5t4k
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tk 12t2k 20t3k
0 0 2 6tf 12t2f 20t3f


Ek = [xk xf

dx
dt

∣∣
tk

dx
dt

∣∣
tf

d2x
dt2

∣∣∣
tk

d2x
dt2

∣∣∣
tf

]T

F k = [yk yf
dy
dt

∣∣∣
tk

dy
dt

∣∣∣
tf

d2y
dt2

∣∣∣
tk

d2y
dt2

∣∣∣
tf

]T

Hk = [t6k t6f 6t5k 6t5f 30t4k 30t4f]T

(5)

Proof: The proof is straightforward, and directly follows
from (2) and the boundary conditions given in (3) with the
replacement of t0 by tk for the considered time instant tk.
�

It follows from the parameterized trajectory in (4) that
the trajectory generation problem boils down to solve for ck6
and dk6 based on constraints due to system model, collision
avoidance and performance. Moreover, once the specific

trajectory is obtained, steering control of the robot could
always be solvable. Considering robot kinematic constraints,
we can obtain the states and steering inputs at each time
instant as follows.

θ = arctan
dy

dx
, cos θ =

√
1

1 + (dydx)
2

φ = arctan(lcos3θ · d
2y

dx2
), u1 = ±

√
ẋ2(t) + ẏ2(t)

u2 = lu1[
(
...
y (t)ẋ(t)− ...

x(t)ẏ(t))u2
1

u6
1 + l2(ÿ(t)ẋ(t)− ẍ(t)ẏ(t))

2

− 3(ÿ(t)ẋ(t)− ẍ(t)ẏ(t))(ẋ(t)ẍ(t) + ẏ(t)ÿ(t))

u6
1 + l2(ÿ(t)ẋ(t)− ẍ(t)ẏ(t))

2]

(6)

Remark 1: Note that the sign of driving input u1 depends
on the choice of executing the trajectory with forward or
backward car motion, respectively. ♢

Remark 2: Different from [29][35][37], by (3) we further
consider the relation between robot kinematic model and
the higher-dimensional robot states ẋ, ẏ, ẍ and ÿ derived
from the time-parametric trajectory, and hence we are able
to guarantee that the given general robot boundary conditions
including velocity and acceleration are well consistent with
the ones derived directly by the computed trajectory model,
leading to compatible planning at boundary states. The com-
putation for intermediate boundary conditions is as follows.
For t ∈ [tk, tf), the boundary conditions for computing
Ek, F k and Hk are obtained as

dx
dt |tk = vk cos θk,

dy
dt |tk = vk sin θk

d2x
dt2 |tk = ak cos θk − v2

k tanφk

l sin θk
d2y
dt2 |tk = ak sin θk +

v2
0 tanφk

l cos θk

(7)

where vk
△
= u1(tk), ak

△
= u̇1(tk), θk, and φk are calculated

according to (6) by using the parameterized trajectory x(t)
and y(t) in terms of ck−1

6 and dk−1
6 at the previous sampling

instant. ♢

B. An Optimal Solution Framework

The piecewise-constant parameterized trajectory in (4)
defines a family of trajectories given different values of
ck6 and dk6 . By selecting ck6 and dk6 according to certain
criteria, a feasible, collision free and performance-guaranteed
trajectory could be analytically obtained. In this section,
we first present for the optimal and analytical solution to
trajectory generation of robot moving from the initial point
to the final point in a workspace without obstacles. Then,
section 4 will deal with the cases in the presence of robot
kinodynamic constraints and moving obstacles under the
solution framework to be designed in this section.

1) A Combined Performance Index: To generate an opti-
mal trajectory, it is common to introduce some performance
indices related to control energy or the traveled path length.
For instance, minimum energy-related performance index
and shortest path-related performance index can be defined

as follows, respectively,

JE1

k (ck6 , d
k
6) =

∫ tf

tk

((
u1

ρ
)2 + u2

2)dt (8)

JL1

k (ck6 , d
k
6) =

∫ xf

xk

√
1 + (

dy

dx
)
2

dx (9)

where ρ is the radius of rear wheel. It follows from (4)
and (6) that JE1

k and JL1

k are nonlinear functions of ck6 and
dk6 . While standard numerical method may be pursued to
seek the solutions for ck6 and dk6 which minimize JE1

k and
JL1

k , it is usually computationally expensive and may not be
suitable for real time trajectory generation. Instead, we prefer
to have an analytical solution. In this paper, we propose a
new combined performance index which could lead to an
optimal and analytical solution to trajectory generation of
mobile robots.

The proposed combined performance index is defined as

Jk = ω1J
E2

k + ω2J
L2

k , s.t. ω1 + ω2 = 1 (10)

where ω1 and ω2 are the corresponding weights of minimum-
energy index JE2

k and shortest-path index JL2

k ,

JE2

k (ck6 , d
k
6) =

1

ρ2

∫ tf

tk

(ẋ2 + ẏ2)dt (11)

and

JL2

k (ck6 , d
k
6) =

∫ tf

tk

[(x− x′)
2
+ (y − y′)

2
]dt (12)

with

x′ =
xf − xk

tf − tk
(t− tk) + xk, y′ =

yf − xk

tf − tk
(t− tk) + yk

It should be noted that JE2

k and JJ2

k are analogies to JE1

k

and JJ1

k , respectively. In particular, for minimum-energy
related performance index, instead of putting penalty on both
controls u1 and u2, only u1 appears in the definition of
JE2

k . This is reasonable since in most cases, steering control
input u2 is small and driving velocity u1 dominates. More
importantly, JE2

k is quadratic in terms of ck6 and dk6 , and it
can be solved analytically. As well, for shortest-path related
performance index, JL2

k in (12) is applied, which measures
the closeness of the trajectory (x(t), y(t)) to the straight
line connecting points (xk, yk) and (xf , yf). Apparently, by
minimizing JL2

k , we will be able to obtain the near shortest
trajectory through finding the analytical solution for ck6 and
dk6 .

In this paper, we take into account both minimum-energy
related performance index and shortest-path related perfor-
mance index in a unified way by employing Jk in (10).
Weights w1 and w2 are used to more flexibly adjust the
preference for different performance requirements. To this
end, the optimization problem becomes

minJk(c
k
6 , d

k
6) (13)

2) Analytical Solution:
Theorem 2: At each time instant tk, the optimization

problem (13) is solvable, and its solutions are ck∗6 =
ω1n

k
2c

kE∗
6 +ρ2ω2p

k
2c

kL∗
6

ω1nk
2+ρ2ω2pk

2

dk∗6 =
ω1n

k
2d

kE∗
6 +ρ2ω2p

k
2d

kL∗
6

ω1nk
2+ρ2ω2pk

2

(14)

where nk
2 , p

k
2 , c

kE∗
6 , dkE∗

6 , ckL∗
6 , dkL∗

6 are given in equations
(19), (25), (21), and (28), respectively.

Proof: Since the combined performance index Jk in (10)
consists of two independent terms ω1J

E2

k and ω2J
L2

k , we
first consider those two terms separately, then combine their
solutions into (10).

(1) The optimal solution to minω1J
E2

k :
Substituting the derivatives ẋ and ẏ of (4) into (11), we

have

ω1J
E2

k (ck6 , d
k
6) =

ω1

ρ2

∫ tf

tk

(ẋ2 + ẏ2)dt

=
ω1

ρ2
[nk

2(c
k
6 +

nk
1

2nk
2

)2 + nk
2(d

k
6 +

nk
3

2nk
2

)2 + (nk
0 + nk

4)

− ((nk
1)

2 + (nk
3)

2)

4nk
2

]

(15)

where

nk
0 =

tf

∫
tk

(f̄ ′(Gk)−1Ek)2dt

nk
1 = 2

tf

∫
tk

(6t5 − f̄ ′(Gk)−1Hk)(f̄ ′(Gk)−1Ek)dt

nk
2 =

tf

∫
tk

(6t5 − f̄ ′(Gk)−1Hk)2dt

nk
3 = 2

tf

∫
tk

(6t5 − f̄ ′(Gk)−1Hk)(f̄ ′(Gk)−1F k)dt

nk
4 =

tf

∫
tk

(f̄ ′(Gk)−1F k)2dt

f̄ ′ = [0 1 2t 3t2 4t3 5t4]

(16)

It follows from the last equation in (15) that ω1J
E2

k is
minimized if

ckE∗
6 = − nk

1

2nk
2

, dkE∗
6 = − nk

3

2nk
2

(17)

On the other hand, direct integration of (16) leads to

nk
1 =

(tk − tf)
7
(d

2x
dt2 |tk + d2x

dt2 |tf)
420

−
2(tk − tf)

6
(dxdt |tk − dx

dt |tf)
105

(18)

nk
2 =

(tf − tk)
11

770
(19)

nk
3 =

(tk − tf)
7
(d

2y
dt2 |tk + d2y

dt2 |tf)
420

−
2(tk − tf)

6
(dydt |tk − dy

dt |tf)
105

(20)

To this end, substituting (18), (19), and (20) into (17) yields
ckE∗
6 =

22(dx
dt |tk−

dx
dt |tf)

3(tf−tk)
5 +

11(d2x
dt2

|
tk

+ d2x
dt2

|
tf

)

12(tf−tk)
4

dkE∗
6 =

22(dy
dt |tk−

dy
dt |tf)

3(tf−tk)
5 +

11(d2y

dt2
|
tk

+ d2y

dt2
|
tf

)

12(tf−tk)
4

(21)

(2) The optimal solution to minω2J
L2

k :
Similarly, by substituting the trajectory polynomials in (4)

into (12), we obtain

ω2J
L2

k (ck6 , d
k
6) = ω2

∫ tf

tk

[(x− x′)
2
+ (y − y′)

2
]dt

=ω2[p
k
2(c

k
6 +

pk1
2pk2

)2 + pk2(d
k
6 +

pk3
2pk2

)2 + (pk0 + pk4)

− ((pk1)
2 + (pk3)

2)

4pk2
]

(22)

where

pk0 =

∫ tf

tk

(f̄(Gk)−1Ek − x′)2dt

pk1 = 2

∫ tf

tk

(t6 − f̄(Gk)−1Hk)(f̄(Gk)−1Ek − x′)dt

pk2 =

∫ tf

tk

(t6 − f̄(Gk)−1Hk)2dt

pk3 = 2

∫ tf

tk

(t6 − f̄(Gk)−1Hk)(f̄(Gk)−1F k − y′)dt

pk4 =

∫ tf

tk

(f̄(Gk)−1F k − y′)2dt

f̄ = [1 t t2 t3 t4 t5]

(23)

Direct integration of (23) leads to

pk1 =
3(tk − tf)

8
(dxdt |tf − dx

dt |tk)
1540

−
(tf − tk)

9
(d

2x
dt2 |tk + d2x

dt2 |tf)
5544

(24)

pk2 =
(tf − tk)

13

12012
(25)

pk3 =
3(tk − tf)

8
(dydt |tf − dy

dt |tk)
1540

−
(tf − tk)

9
(d

2y
dt2 |tk + d2y

dt2 |tf)
5544

(26)

It follows from the last equation in (22) that ω2J
L2

k is
minimized if

ckL∗
6 = − pk1

2pk2
, dkL∗

6 = − pk3
2pk2

(27)

To this end, substituting (24), (25) and (26) into (27), we
have

ckL∗
6 =

22(dx
dt |tk−

dx
dt |tf)

3(tf−tk)
5 +

11(d2x
dt2

|
tk

+ d2x
dt2

|
tf

)

12(tf−tk)
4

dkL∗
6 =

22(dy
dt |tk−

dy
dt |tf)

3(tf−tk)
5 +

11(d2y

dt2
|
tk

+ d2y

dt2
|
tf

)

12(tf−tk)
4

(28)

(3) The optimal solution to min Jk:
It follows from (15) and (22) that

Jk = ω1J
E2

k + ω2J
L2

k

=
ω1n

k
2

ρ2
[(ck6 +

nk
1

2nk
2

)

2

+ (dk6 +
nk
3

2nk
2

)

2

]

+ ω2p
k
2 [(c

k
6 +

pk1
2pk2

)

2

+ (dk6 +
pk3
2pk2

)

2

] + ∆k

(29)

where

∆k =
ω1

ρ2
[(nk

0 + nk
4)−

(nk
1)

2
+ (nk

3)
2

4nk
2

]

+ ω2[(p
k
0 + pk4)−

(pk1)
2
+ (pk3)

2

4pk2
]

It follows that Jk is a second-order polynomial in terms of
ck6 and dk6 , and its minimal value is achieved when

∂Jk
∂ck6

= 0,
∂Jk
∂dk6

= 0

That is,

ck∗6 = −
ω′
1

nk
1

2nk
2
+ ω′

2
pk
1

2pk
2

ω′
1 + ω′

2

, dk∗6 = −
ω′
1

nk
3

2nk
2
+ ω′

2
pk
3

2pk
2

ω′
1 + ω′

2

(30)

where ω1
′ =

ω1n
k
2

ρ2 and ω2
′ = ω2p

k
2 . To this end, noting the

expressions in (17) and (27), equations (30) are equivalent
to (14). This completes the proof. �

Remark 3: Theorem 2 provides an analytical solution to
find the optimal values ck∗6 and dk∗6 under the combined
performance index Jk. The weights ω1 and ω2 are used in
Jk to weigh the relative importance between the minimum-
energy and shortest-path performance. Particularly, Jk be-
comes the minimum-energy related performance index JE2

k

when ω1 = 1, and Jk reduces to the shortest-path related
performance index JL2

k for ω2 = 1. ♢
Remark 4: It is for the purpose of easier computations to

choose ck6 and dk6 as the free parameters. But the values of the
rest parameters such as ck0 , . . . , c

k
5 and dk0 , . . . , d

k
5 are depen-

dent on ck6 and dk6 . Although the dominant optimal solutions
are referred to as the optimal value of ck6 and dk6 , actually the
real optimized parameters that construct the whole trajectory
are the combination of free parameters c∗6 and d∗6, and the
ck∗0 , . . . , ck∗5 , dk∗0 , . . . , dk∗5 that are subsequently derived from
ck∗6 , dk∗6 with the boundary conditions. It is equivalent no
matter which pair of parameters cki and dki is chosen as the
two free parameters. ♢

IV. SUBOPTIMAL SOLUTION UNDER KINODYNAMIC
CONSTRAINTS AND PRESENCE OF MOVING OBSTACLES

The result in section 3 provides a guideline to find the
optimal solution in the free space. Under the same frame-
work, in this section, we address the issue in the presence
of kinodynamic constraints and moving obstacles.

A. Kinodynamic Constraints

Since we mainly consider kinematic issues of mobile
robots, it is reasonable to demonstrate kinodynamic con-
straints by velocity and acceleration bounds. Then it is
straightforward to consider kinodynamic constraints with
the following inequations. We assume that absolute values
of maximum bounds on both directions of velocity and
acceleration (positive or negative) are the same, and they
are denoted by vmax and amax.

v2x(t) + v2y(t) ≤ v2max (31)

a2x(t) + a2y(t) ≤ a2max (32)

To this end, substituting derivations of (4) into (31) and
(32), we could obtain the following Theorem.

Theorem 3: For t ∈ [tk, tf] , tk = t0 + kTs, the kino-
dynamic constraints (31) and (32) can be satisfied with the
following constraints on ck6 and dk6 .

(ck6 +
mk

1(t)

mk
2(t)

)2 + (dk6 +
mk

3(t)

mk
2(t)

)2 ≤ v2
max

(mk
2 (t))

2 (33)

(ck6 +
sk1(t)

sk2(t)
)2 + (dk6 +

sk3(t)

sk2(t)
)2 ≤ a2

max

(sk2 (t))
2 (34)

where

mk
1(t) = f̄ ′(Gk)−1Ek

mk
2(t) = 6t5 − f̄ ′(Gk)−1Hk, mk

2(t) ̸= 0

mk
3(t) = f̄ ′(Gk)−1F k

sk1(t) = f̄ ′′(Gk)−1Ek

sk2(t) = 30t4 − f̄ ′′(Gk)−1Hk, sk2(t) ̸= 0

sk3(t) = f̄ ′′(Gk)−1F k

f̄ ′ = [0 1 2t 3t2 4t3 5t4]

f̄ ′′ = [0 0 2 6t 12t2 20t3]

(35)

Proof: Notice that vx(t) = ẋ(t), vy(t) = ẏ(t), ax(t) = ẍ(t)
and ay(t) = ÿ(t). Then it is straightforward to substitute
the differential form of (4) into (31) and (32), which could
directly yield (33) and (34). This completes the proof. �

Remark 5: It is possible that mk
2(t) or sk2(t) is equal to

zero. Consider expressions of these two in (35). By numerical
analysis, such cases occur when t is close to tf−t0

2 (mk
2(t) =

0), tf−t0
4 and 3

4 (tf − t0) (sk2(t) = 0), denoted by t∗v , t∗a and
t∗a∗ respectively. In this case, three additional inequalities
should be obeyed as follows.

(mk
1(t))

2(t∗v) + (mk
3(t))

2(t∗v) ≤ v2max

(sk1(t))
2(t∗a) + (sk3(t))

2(t∗a) ≤ a2max

(sk1(t))
2(t∗∗a) + (sk3(t))

2(t∗∗a) ≤ a2max

(36)

It is noted that these three equations are irrelevant with
ck6 , d

k
6 , and can be precalculated to decide whether there

exists feasible solutions. ♢

B. Collision-Avoidance Criterion in Dynamic Environment

In Fig.1 during one sampling interval t ∈ [t0 + kTs, t0
+(k + 1)Ts] , (k = 0, 1, . . . k̄.) robot is located at Ok

(x (t) , y(t)) with radius R moving with velocity vr
∆
=[

ẋ(t) ẏ(t)
]T

and the ith obstacle is located at
Ok

i (xi (t) ,
yi (t)) with radius ri. It can be assumed that for the ith
obstacle, the detected velocity vki remains constant during
each sampling interval. The static barriers in Fig.1 can also
be considered as moving obstacles with zero velocities. Then
the relative velocity of robot and the ith obstacle is

vkr,i
∆
= vr − vki =

[
vkr,i,x
vkr,i,y

]
=

[
ẋ− vki,x
ẏ − vki,y

]
(37)

From (37), we can consider moving obstacles as static.
Then with velocity obstacles method [42], during t ∈
[t0 + kTs, tf] the distance between centers of robot and the
ith obstacle must satisfy:

(x′
i(t)− xk

i)
2 + (y′i(t)− yki)

2 ≥ (ri +R)2 (38)

where x′
i (t) = x (t)−vki,xτ , y′i (t) = y (t)−vki,yτ (relative

position of the robot with respect to the static obstacle), τ =
t− (t0 + kTs), for t ∈ [t0 + kTs, tf].

Theorem 4: For t ∈ [tk, tf] , tk = t0 + kTs, the collision
avoidance criterion for the ith obstacle in (38) can be satisfied
with the following constraints on ck6 and dk6 .

(ck6 +
gk1,i(t)

gk2,i(t)
)2 + (dk6 +

gk3,i(t)

gk2,i(t)
)2 ≥ (ri +R)

2(
gk2,i(t)

)2 (39)

where

gk1,i(t) = f̄(Gk)−1Ek − vki,xτ − xk
i

gk2,i(t) = t6 − f̄(Gk)−1Hk, gk2,i(t) ̸= 0

gk3,i(t) = f̄(Gk)−1F k − vki,yτ − yki

f̄ = [1 t t2 t3 t4 t5]

(40)

Proof: The proof is straightforward by directly substituting
x(t) and y(t) from (4) into (38), which thereby results in
(39).

Furthermore, consider the condition of gk2,i(t) = 0 or close
to 0 and its implications. Since gk2,i(t) is the coefficient of
all the terms containing ck6 and dk6 in (39), ck6 and dk6 are
hence removed from the inequality and they no longer affect
the collision avoidance. In this case, the resulting trajectory
in (4) is degenerated into a fixed 5th-order parameterized
polynomials. This is impossible except for the boundary
time-point. In order to avoid this situation, an assumption
is imposed that at boundary positions robot should not be
so close to other obstacles. This assumption can also be
held upon intermediate boundary conditions by expanding
the safety distance in (38) from ri+R (the sum of radius of
robot and obstacle) to a bigger value, so as to keep enough
distance for the robot from the obstacles along the whole
path. This completes the proof. �

Remark 6: When the relative speeds of the robot and
the obstacles change considerably according to the newly

updated obstacles’ information, the current sampling interval
Ts may be so large that it becomes rather ideal to assume
that the motions of obstacles maintain constant within Ts. In
this case the sampling interval Ts could be altered adaptively
on-demand. For example, if the value of Ts appears to be
large and no longer proper at the beginning of sampling
time-point tk = t0 + kTs, then the trick is to consider tk
as the new starting time-point t0, and reorganize the rest
maneuver time T ′ = tf − (t0 + kTs) by dividing it into
more time intervals on-demand than the previous k̄−k time
intervals. As a result, each new sampling interval can be
small enough to approximately capture the motion changing
of dynamic obstacles, and hence the general assumption of
constant obstacles’ motions within each sampling interval
can still hold. ♢

C. The Feasible Value Area on the Parameter Space for
Trajectory Generation

Considering the constraints conditions (33), (34) and (39),
it is interesting to find that they are all second-order poly-
nomials in terms of ck6 and dk6 . For t ∈ [tk, tf] ,
tk = t0 + kTs, if we map those inequations on a parameter
space of ck6 − dk6 , then they can be reformulated by the fol-
lowing specific circular areas respectively, and the candidate
solution of ck6 and dk6 is represented by specific points on
the parameter space. Denoting all these quadratic constraints
for all discrete time-point t ∈ [tk, tf] by a general form of
g(ck6 , d

k
6), we have

g(ck6 , d
k
6) :

Θk
c,t = {(ck6 , dk6)|g1(ck6 , dk6) ≤ 0}

Θk
v,t = {(ck6 , dk6)|g2(ck6 , dk6) ≤ 0}

Θk
a,t = {(ck6 , dk6)|g3(ck6 , dk6) ≤ 0}

(41)

where

g1(c
k
6 , d

k
6) = −(ck6 +

gk1,i
gk2,i

)2 − (dk6 +
gk3,i
gk2,i

)2 +
(ri +R)2

(gk2,i)
2

, i = 1, 2, . . .

g2(c
k
6 , d

k
6) = (ck6 +

mk
1

mk
2

)2 + (dk6 +
mk

3

mk
2

)2 − v2max

(mk
2)

2

g3(c
k
6 , d

k
6) = (ck6 +

sk1
sk2

)2 + (dk6 +
sk3
sk2

)2 − a2max

(sk2)
2

The velocity constrained condition (33) corresponds to Θk
v,t,

which indicates the area inside the “velocity circles“ centered

at (m
k
1 (t)

mk
2 (t)

,−mk
3 (t)

mk
2 (t)

) with radius
√

v2
max

(mk
2 (t))

2 . The acceleration

constrained condition (34) corresponds to Θk
a,t, which indi-

cates the area inside the “acceleration circles“ centered at
(
sk1 (t)

sk2 (t)
,− sk3 (t)

sk2 (t)
) with radius

√
a2
max

(sk2 (t))
2 . For collision avoid-

ance constraint (39), the ith obstacle corresponds to the
“collision circles“ that centered at (− gk

1,i(t)

gk
2,i(t)

,− gk
3,i(t)

gk
2,i(t)

) with

radius
√

(ri+r0)2

(gk
2,i(t))

2 . Thus Θk
c,t denotes the area outside those

“collision circles“ from all the detected obstacles. Then a set
of circular areas corresponding to the rest of maneuver time

should be considered to make the generated trajectory meet
the constraints.

To satisfy all the constrained conditions g(ck6 , d
k
6), the

candidate parameter point (ck6 , d
k
6) should be located at the

intersection of those constrained areas (41) on the parameter
space as follows (For t ∈ [tk, tf] , tk = t0 + kTs).

Θk
f =

∩
t∈[tk,tf]

(Θk
c,t ∩Θk

v,t ∩Θk
a,t), k = 1, 2...k (42)

To better clarify the feasible value area (42) on the parameter
space, an example is given in Fig.2.
In Fig.2(a), the mobile robot should move from initial point

4 6 8 10 12 14 16 18 20
−1

0

1

2

3

4

5

6

7

8

9

x

y

obj 1

obj 2

robot initial point

robot goal point

(a)

−1
−0.5

0
0.5

1

x 10
−6

−1.5
−1

−0.5
0

0.5

x 10
−6

0

8

16

24

32

40

T
im

e(
se

c)

c6d6

obj 2

obj 1

velocity constraint

acceleration constraint

(b)

Fig. 2. An example for constraints areas on parameter space. (a) the robot
boundary positions in the presence of two moving obstacles 1 and 2. (b)
kinodynamic and collision avoidance constraints circles in the parameter
space during the entire maneuver time.

to goal point and avoid collision with those two moving
obstacles. The entire operation time is 40s and obstacles
motion remain constant. Then constraints areas in terms of
ck6 and dk6 at each moment can be plotted in 3-dimensional
Fig.2(b). Kinodynamic constraints areas Θk

v,t and Θk
a,t are

inside red circles and green circles respectively (velocity
and acceleration). Collision avoidance constraints areas Θk

c,t

are outside the blue circles of those two obstacles. Since
obstacles’ motion is constant in this case, ck6 and dk6 will not
be updated and remain constant as c6 and d6. Then for the
entire maneuver time, candidate points (c6, d6, t) should be
inside the red and green columnar areas, while maintaining
outside the two blue columnar areas of two obstacles. Since
that, the feasible value area Θk

f for c6 and d6 in Fig.2(b)

−0.5 0 0.5 1

x 10
−6

−1.5

−1

−0.5

0

0.5

1
x 10

−6

c6

d6

obj 2

obj 1

velocity constraint

acceleration constraint

Feasible value area

Fig. 3. Constraints circle areas projection on c6-d6 plane.

can be found by projection on c6-d6 plane (the parameter
space) and represented by the blank area marked in Fig.3
(the intersections of areas of both kinodynamic constraints
Θk

v,t,Θ
k
a,t and collision avoidance Θk

c,t). To this end, pa-
rameters (ck6 , d

k
6) picked from such area could autonomously

generate family of trajectories by substituting them to (4)
and make them satisfy all the constraints.

Solvable Conditions: The existence of solutions mainly
relies on the existence of intersections of “velocity“ and
“acceleration“ circles during the entire maneuver period. If
kinodynamic constraints are initially violated under the given
maneuver time, robot should know in advance such that
alternative solutions can be applied to continue the trajec-
tory generation. To that end, we investigate intersections of
“velocity circles“ for instance (the process for “acceleration
circles“ is the same). In general, if we continuously lower
vmax, distribution of “velocity circles“ on the parameter
space in the entire time span will change as illustrated in
Fig.4.

Fig.4 plots the “velocity circles“ (red) at all the moments
on the parameter space, and demonstrates typical distribu-
tions of “velocity circles“ under different velocity bound,
where common intersections are formed, if such one exists.
The black marked circles represent converged circles where
more velocity circles are densely distributed. As the velocity
bound decreases, initial solvable intersections will eventually
disappear, which indicates the unsolvable conditions under
highly strict speed bound. Particularly, by numerical analysis,
those converged black circles can be proved to correspond
to around the moment when t =

{
tf−t0

4 , 3
4 (tf − t0)

}
(for

velocity circles Θv,t) and t =
{

tf−t0
8 ,

tf−t0
2 , 7

8 (tf − t0)
}

(for acceleration circles Θa,t) respectively. In order to
simplify computation process, we can simply calculate ve-
locity and acceleration circles around those moments to find
the common intersection areas. After separately considering
feasible intersections of those mapped kinodynamic circles,
we can incorporate intersections of both of them to obtain
the ultimate feasible solution area on the parameter space.

Remark 7: In (42), the set of Θk
f is assumed to be

−1 −0.5 0 0.5 1 1.5

x 10
−6

−5

0

5

10

15

x 10
−7

c6

d6

Solvable With Large Space

(a)

−1 −0.5 0 0.5 1 1.5

x 10
−6

−5

0

5

10

15

x 10
−7

c6

d6

Solvable

Solvable With Smaller Space

(b)

−1 −0.5 0 0.5 1 1.5

x 10
−6

−5

0

5

10

15

x 10
−7

c6

d6

Unsolvable

(c)

Fig. 4. Changing distribution of velocity circles under diversely lowered velocity bound. (a) Solvable under initial velocity bound. (b) Solvable with
narrowed space under lowered velocity bound. (c) Unsolvable with no feasible intersections under largely lowered velocity bound.

nonempty, which may not always be guaranteed during
entire operation time. In fact, if Θk

f is empty, it means that
under given maneuver time, robot could not avoid all the
obstacles while conforming current kinodynamic constraints.
Intuitively, one way is to extend the maneuver time tf such
that robot could operate with lower velocity and longer
detour to avoid moving obstacles. ♢

D. Suboptimal Solution to the Constrained Optimization
Problem on the Parameter Space

Since the kinodynamic constraints and collision avoidance
criterion are recast by corresponding geometric areas on the
parameter space, the optimization problem can be reformu-
lated on the parameter space as follows.

min Jk = ω1J
E2

k + ω2J
L2

k

s.t.(ck6 , d
k
6) ∈ Θk

f (43)

Recalling the last equation in (22) and (15) as well as the
analytical solution (14), it is noticed that the contour of the
performance index (43) is a series of circles centered at the
time-invariant optimal point (14). Hence the candidate point
of (ck6 , d

k
6) should be located inside the feasible value area

Θk
f , while staying as close to the optimal point Ok∗(ck∗6 , dk∗6)

on the parameter space(constrained minimum distance prob-
lem). The suboptimal solution Ok∗∗ to the problem can be
obtained by projecting c∗6 and d∗6 into the set Θk

f in (42)
based on

Ok∗∗ := {(ck6 , dk6)|min||ck6 − ck∗6 ||+ ||dk6 − dk∗6 ||,
∀(ck6 , dk6) ∈ Θk

f}
(44)

Intuitively, such a problem cannot be directly solved in
closed form. Yet recalling the constraints g(ck6 , d

k
6) in (41)

and the problem (44), the suboptimal solution only lies in
1)optimal point Ok∗, iff Ok∗ ∈ Θk

f . 2)boundary of circular
constraints area Θk

f , Otherwise. To that end, in order to avoid
the need for search and maintain the spirit of analytical
solution emphasized in this paper, we could employ a set
of lines passing through Ok∗ to approximate the possible
locations of the solutions in closed form by only considering

Ok∗ and all the intersection points between the lines and the
circular constraints g(ck6 , d

k
6).

For the purpose of unbiased solutions, we consider 2N
lines that uniformly divide the parameter space originated at
Ok∗ into 4N equivalent angles, yielding to the angle between
the jth line and the c6-axis in the interval [−π

2 ,
π
2] as αj,2N =

−π
2 + jπ

2N , for j = 1, . . . , 2N . Then the expression for the
jth line is written as

lj(c
k
6 , d

k
6) : dk6 =(ck6 − ck∗6)tan(αj,2N) + dk∗6 ,

j = 1, . . . , 2N − 1

dk6 =dk∗6 , j = 2N

(45)

In particular, for j = N, 2N , the corresponding lines are
ck6 = ck∗6 and dk6 = dk∗6 respectively, which are identical to
lines used in [34][35] and there may not be solutions for the
two specific lines. This is why the parameterization method
in (45) is used to find out more potentially feasible solutions
from more directions in the parameter space. In terms of
analytically obtaining possible solutions, the trick is to find
out a set of intersection points on each lj due to constraints
g(ck6 , d

k
6), and pick the desired one as the selected suboptimal

point following the criterion (44).
Firstly, by substituting the line lj in (45) into kinodynamic

equation constraints gi(c
k
6 , d

k
6) = 0, i = 2, 3 in (41), the

upper and lower bounds D
k

j (c
k
6,j , d

k
6,j) and Dk

j (c
k
6,j , d

k
6,j) of

possible solutions (ck6 , d
k
6) on lj can be obtained in closed

form respectively as follows.
ck6,j = min

t∈[tk,tf]
(ckv,j , c

k
a,j)

dk6,j = min
t∈[tk,tf]

(dkv,j , d
k
a,j)


ck6,j = max

t∈[tk,tf]
(ckv,j , c

k
a,j)

dk6,j = max
t∈[tk,tf]

(dkv,j , d
k
a,j)

Γk
j := {(ck6 , dk6)|ck6 ∈ [ck6,j , c

k
6,j], d

k
6 ∈ [dk6,j , d

k
6,j],

∀(ck6 , dk6) ∈ lj}
(46)

where ckv,j , c
k
a,j , d

k
v,j , d

k
a,j are the roots of bigger value in

each pair of solutions. Likewise, ckv,j , c
k
a,j , d

k
v,j , d

k
a,j are the

roots of smaller value(whenever roots exist). It is noted
that all these roots are obtained in analytical forms. If

ck6,j < ck6,j or dk6,j < dk6,j , it is concluded that under current
kinodynamic constraints no solution exists, and the maneuver
time should be extended if the robot still have to plan a
feasible path.

Next, we consider the intersection points of lj and the
collision avoidance constraints Θk

c,t so as to obtain a family
of possible analytical suboptimal solutions along lj . By sub-
stituting lj into the collision avoidance equation constraints
g1(c

k
6 , d

k
6) = 0 in (41) due to the ith obstacle, we have

the subset Sk
i,j = {(ck6,i,j , dk6,i,j), (ck6,i,j , dk6,i,j)} of possible

solutions and the constraints interval Φk
i,j for other possible

solutions as follows.
ck6,i,j = max

t∈[tk,tf]
ckc,i,j

dk6,i,j = max
t∈[tk,tf]

dkc,i,j


ck6,i,j = min

t∈[tk,tf]
ckc,i,j

dk6,i,j = min
t∈[tk,tf]

dkc,i,j

Φk
i,j = {(ck6 , dk6)|ck6 ∈ [ck6,i,j , c

k
6,i,j], d

k
6 ∈ [dk6,i,j , d

k
6,i,j],

∀(ck6 , dk6) ∈ lj}
(47)

where ckc,i,j , d
k
c,i,j are the roots of bigger value in each

pair of solutions. Likewise, ckc,i,j , d
k
c,i,j are the roots of

smaller value(whenever roots exist). They can also be derived
in closed form. Thus, considering the collision avoidance
constraints due to all the obstacles as well as the upper and
lower bounds, we have a finite set of possible suboptimal
solutions Sk

j = Dk
j

∪
Dk

j

∪
Sk
i,j

∪
Ok∗ and the constraints

interval Φk
j =

∪
Φk

i,j on line lj for i = 1, In order to
pick up at most one desired suboptimal point Ok∗∗

j from Sk
j

along line lj , we have

Ok∗∗
j := {(ck6 , dk6)|min||ck6 − ck∗6 ||+ ||dk6 − dk∗6 ||,

(ck6 , d
k
6) ∈ Φk

i,j ∩ Γk
j , ∀(ck6 , dk6) ∈ Sk

j }
(48)

where Φk
i,j is the complement of set Φk

i,j . It is noted that
in order to simplify the computation, dk6,j , d

k
6,j , d

k
6,i,j and

dk6,i,j in (46) and (47) can be directly obtained by substituting

ck6,j , c
k
6,j , c

k
6,i,j and ck6,i,j into (45) respectively. Since the ele-

ments(possible suboptimal solutions) of the finite set Sk
j and

the boundary points of both Φk
i,j and Γk

j are all analytically
obtained, for each line lj the suboptimal solution Ok∗∗

j can
then be derived by linear comparison of the elements in Sk

j

and the boundary points of Φk
i,j and Γk

j , which is efficient
and computationally simple for on-line planning.

Considering all the feasible suboptimal points Ok∗∗
j on all

the lines lj , for j = 1, . . . , 2N , the desired suboptimal point
Ok∗∗ can thus be obtained as follows.

Ok∗∗ := {(ck6 , dk6)|min||ck6 − ck∗6 ||+ ||dk6 − dk∗6 ||,
∀(ck6 , dk6) ∈ Ok∗∗

j , j = 1, . . . , 2N}
(49)

Algorithm Completeness and Stability: As mentioned in
Remark 7, if the problem in (44) is unsolvable(no Ok∗∗

j

can be found for all j = 1, . . . , 2N), the algorithm will
take alternative ways such as extending the maneuver time

and rechecking until the problem becomes solvable prior to
planning the path (4). Nonetheless, due to the complexity
and uncertain future behavior of the dynamic obstacles, the
existance of solutions to the constrained problem (44) cannot
be guaranteed using the current framework. It should also
be noted that since the trajectory is updated recursively
during the entire maneuver time, if the obstacles perform
a periodic motion, the algorithm may recompute a same
set of trajectories at each refinement time-point that render
oscillatory behaviors for the robot to keep flipping among
them instead of converging to the goal state.

Remark 8: It is noted that when computing the upper and
lower bounds in (46) and the boundary points in (47), for
simplification we just assume that the line lj will always
intersect with circular equation constraints of gi(c

k
6 , d

k
6) =

0, i = 1, 2, 3, which may not be guaranteed in all the cases.
If lj have no intersection points with at least one circle of
gi(c

k
6 , d

k
6) = 0, i = 2, 3 for a certain time-point t, it indicates

that on the current line there is no solutions satisfying
all the kinodynamic constraints, and lj should be directly
abandoned without further consideration of (47) and (48) on
it. Since the given set of lines (45) uniformly discretize all
the directions in the parameter space originated from Ok∗,
considering the actual scale of the circles g2 = 0 and g3 = 0,
there will always be at least some intersections between them
and certain lines. For the cases of no intersection points
with the ith obstacle in g1(c

k
6 , d

k
6) = 0 during the entire

time tf−tk, the corresponding collision avoidance constraint
always holds and becomes an inactive constraint, leading to
that Sk

i,j contains only one element as (ck∗6 , dk∗6). ♢
Remark 9: The above framework works well in analyti-

cally solving the constrained optimization problem in (44).
However, as a trade-off, such a method is based on a set
of finite lines that impose an additional constraint as (45)
to the suboptimal solutions, which may ignore solutions that
actually exist while not satisfying the additional constraint.
Here we introduce an alternative technique to numerically
solve the problem (44), which maybe less efficient while
could potentially find more feasible solutions. Rewriting the
problem in the quadratic form and retrieving the condition
of Θk

f by the general expression g(ck6 , d
k
6) ≤ 0, we have the

constrained quadratic optimization problem as follows.

min J ′
k = (ck6 − ck∗6)2 + (dk6 − dk∗6)2

s.t. g(ck6 , d
k
6) ≤ 0 (50)

As mentioned before, such a problem cannot be directly
solved in closed form, yet can also be solved as a nonlinear
programming problem(NLP) by satisfying the inequality
constraints g(ck6 , d

k
6) at a finite number of discrete time-point

within interval [tk, tf]. As illustrated in [44], first we can
obtain the Lagrangian of the problem as

L(ck6 , d
k
6 , λ) = J ′

k − λT g(ck6 , d
k
6) (51)

where λ is the vector of lagrange multipliers for g(ck6 , d
k
6).

Then the Karush Kuhn Tucker (KKT) conditions for the NLP

(50) can be given by

∇J ′
k −G(ck6 , d

k
6)

Tλ = 0

g(ck6 , d
k
6) ≤ 0

λ ≥ 0

λT g(ck6 , d
k
6) = 0

(52)

where G is the Jacobian matrix of g. The solution of the
KKT equations is the basis to many nonlinear program-
ming algorithms. These algorithms attempt to compute the
Lagrange multipliers directly. Here we solve the problem
with the iterative approach Sequential Quadratic Program-
ming algorithm(SQP) from SQP software packages such
as Matlab Optimization Toolbox and SQPlab [43]. Such
an algorithm is one of the most effective methods for
nonlinearly constrained optimization problems. The idea is
that at each iteration, a locally quadratic approximation of the
objective is made using a quasi-Newton updating method and
a quadratic programming(QP) subproblem is generated with
locally linearized constraints whose solution is then used for
a line search procedure [44][45]. Since SQP can deal with
infeasible initializations, we can directly set up the initial
searching point by the optimal solution Ok∗(ck∗6 , dk∗6).

It is worth noting that besides the complexity of the
inequality constraints due to (41), the computational com-
plexity and the quality of solutions also largely depends on
the pre-defined stepsize and tolerance for searching, which
maybe hard to properly determine given the complicated
obstacle information and different task settings. Given the
good analytical property of the results in (49), the method
of SQP could be considered as a complementary technique in
the extreme situation that all the feasible solutions to (44) are
only located in the positions that do not satisfy the additional
constraint (45). ♢

V. SIMULATION AND EXPERIMENT

In this section, we will show both the simulation and
experiment results on a car-like robot to analyze the steering
control and their optimal performance. The proposed sub-
optimal method and other analytical solutions are compared
in scenarios with and without obstacles. To demonstrate the
flexibility of the proposed method to handle a wide variety of
situations, we also extend simulation scenarios to incorporate
highly cluttered environment with both static and moving
obstacles. In particular, results of solutions obtained before
and after remedies to unsolvable situation are presented to
verify the effectiveness of the method with remedies.

A. Optimal Trajectory Generation and Comparison Without
Obstacles

In this part, we consider robots moving in a free environ-
ment without obstacles.

Example 1 (trivial situation): The robot task settings are
the following:

• Robot radius, distance between front and rear wheel
axle, radius of rear wheels: r=1, l=0.8, ρ=0.1.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

x

y

path 1

path 2

path 3

Fig. 5. Energy optimal trajectories under different optimal solutions in
obstacles free environment. Path 1, 2 and 3 are generated by the proposed
optimal method (Energy-Optimal), energy optimal solutions in [34] and
ordinary solutions in [29] respectively.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

x

y path 4

path 5

path 6

Fig. 6. Length optimal trajectories under different optimal solutions in
obstacles free environment. Path 4, 5 and 6 are generated by the proposed
optimal method (Length-Optimal), length optimal solutions in [34] and [35]
respectively.

• Redefined Robot Boundary conditions: q∗0 = (0, 0,
π/4, 0, 0.4, 0) and q∗f = (17, 10,−π/4, 0, 0.2, 0).

• Starting time and ending time: t0=0, tf=40s
It should be noted that all scales and quantities used conform
to a uniform unit system.

In the case that no obstacles are around, we present robot
trajectories under different optimal solutions, including the
proposed optimal method and other analytical solutions. In
Fig.5 and Fig.6, the comparison trajectories are divided into
two groups of energy-optimal and length-optimal respective-
ly, so that their performance can be better observed. For
the purpose of comparison, weights of energy consumption
and path length indices in (14) are set to be (1,0) and
(0,1), i.e. single optimal solutions of the proposed method
are demonstrated. In [34], different optimal indexes for
parametric method have been discussed and two relatively
more effective solutions are proposed, which have been used
to generate Path 2 and 5. Path 3 is based on basic geometric
analytic solution of trajectory generation in [29], and Path
6 is for [35] that uses time-parametric trajectory models
and optimal solution. Corresponding energy consumption
and path length data of the six trajectories in Fig.5 and
Fig.6 are recorded in Table 1. It should be noted that all

these trajectories share the same boundary condition q =
[x, y, θ, φ]T except boundary velocities and accelerations (for
path 2, 3 and 5 these boundary conditions cannot be flexibly
controlled).

Among the three trajectories of energy-optimal compar-

TABLE I
PATH COMPARISON WITHOUT OBSTACLES IN FIG.5 AND FIG.6.

Energy Optimal Length Optimal
path path path path path path
1 2 3 4 5 6

Energy 1147.6 1276.4 1477.8 1167.4 1348.0 1348.2

Length 20.27 22.49 24.08 20.20 22.79 22.11

ison group in Fig.5, it is obvious that the blue solid path 1
generated by proposed optimal method is the shortest one
with no unnecessary swings. Consider the data in Table
1, it is straightforward that when tracking optimal path 1,
both energy consumption and path length are much less
than those of optimal path 2 (energy consumption saved by
10.1%, length decreased by 9.9%) and original path 3 (saved
by 22.3%, length decreased by 15.8%). For the other three
trajectories of length-optimal comparison group in Fig.6, the
red solid optimal path 4 generated by the proposed method
also outweighes path 5 and path 6 that planned by other
analytic solutions. Likewise, compared with path 5 and 6, the
energy consumption and path length of optimal path 4 are
largely saved by 13.4% and 11.0% (to path 5), and 13.4% and
8.3% (to path 6). These advantages results from facts that the
chosen path parameters in path 1 and 4 are closer to optimal
points than other four paths, thus obtain better performance.
Due to the absence of any constraints in such case, these
optimal results prove that the proposed optimal method is in
principle more effective to find best optimal solutions than
other analytic solutions. Moreover, in parametric methods
such as [29][34] the optimality may be further weakened by
inducing intermediate waypoints in order to avoid singularity
situation that the initial position and ending position for the
robot are aligned vertically.

B. Suboptimal Trajectory Generation and Comparison
Amidst Moving Obstacles

This subsection deals with dynamic and cluttered environ-
ments. Robots’ kinodynamic constraints and obstacles are
considered to better demonstrate the validity of proposed
method in practical situation and verify the effectiveness of
steering control selection on single or combined optimization
problem.

1) Example 2 (optimization in dynamic environments):
This example contains simulations of planning process of the
proposed suboptimal method in Fig.7, and comparisons with
other optimal analytic solutions in Fig.8 and Fig.9. Dynamic
environments in these three figures are the same. Default
settings are the following (robot structure parameters are the
same with those in 5.1):

• Robot kinodynamic constraints: vmax=1.5, amax=0.5.
Initial coordinates of the three obstacles: O1 (t0) =
[5, 0]

T
, O2 (t0) = [9, 4]

T
, O3 (t0) = [19, 10]

T .
• Radius of obstacles: ri=0.5(i=1,2,3).
• Redefined Boundary conditions: q∗0 =

(0, 0, π/4, 0, 0.6, 0) and q∗f = (17, 10,−π/4, 0, 0.4, 0).
• Starting time and ending time: t0=0, tf=40s.
• Velocities of mobile obstacles:

v01 = [0, 0.4]
T
, v11 = [0.5, 0.2]

T
, v21 = v31 = [0.2, 0.2]

T

v02 = [−0.5, 0]
T
, v12 = [0.6, 0.1]

T
, v22 = v32 =

[0.6, 0.1]
T

v03 = [−0.2,−0.1]
T
, v13 = [−0.2, 0.1]

T
, v23 = v33 =

[−0.1, 0.1]
T

Consider a complete planning process of the proposed
suboptimal method in Fig.7. The entire maneuver time is
40s and sampling time-point is chosen to be 0s, 10s and
20s. At each sampling time-point, velocity alteration of each
obstacle will be detected, thus trajectory parameters would
be updated three times in this specific simulation, which
shows the on-line planning property of our algorithm under
dynamic environment. During each sampling interval, mag-
nitude and orientation of velocity vector of obstacles remain
constant. Simulation results under our suboptimal solutions
(take energy-optimal solution for example) are shown in
Fig.7(a)-(f). In Fig.7(a)-(c), trajectories of robot (blue circles)
and moving obstacles 1-3 (red, green and orange circles)
are represented by the solid line, the dotted line, the dash-
dotted line, and the dashed line, respectively. Note that in
order to clearly illustrates the dynamical trajectory of robot
and moving obstacles, their locations have been printed
once every 4 seconds during operation time T=40s, namely
different circles with the same color indicates footprints of
those obstacles or robot. Their initial positions are marked
with deeper color.
Fig.7 (a) gives a trajectory result (path 1) with (c16, d

1
6)

based on obstacles information sensed at 0s. In this case
robot could only be guaranteed collision free for time period
t ∈ [0, 10] since further velocity alteration of obstacles hasn’t
been taken into consideration. As between 20s and 25s, robot
will collide with obstacle 1.

Fig.7 (b) provides a trajectory result (path 2) with two
piecewise constant parameters (c16, d

1
6) and (c26, d

2
6) based on

obstacles information sensed at 0s and 10s. Also, as the
lack of enough information updating, collision will happen
during 24s to 28s between robot and obstacle 1. At last,
Fig.7 (c) displays an final trajectory result path 3 with
three piecewise constant parameters (c16, d

1
6), (c26, d

2
6) and

(c36, d
3
6), which means at each sampling time-point trajectory

parameters would be updated based on the new obstacles
moving information. In such case robot could be ensured
safe during the entire maneuver time.

Fig.7 (d)-(f) shows the corresponding trajectories of robot
orientation, steering control inputs as velocity, acceleration,
and steering rate of path 3. It should be noted that in Fig.7 (f)
the velocity and acceleration are both below their respective
limitations as vmax and amax, which means kinodynamic

TABLE II
PATH COMPARISON WITH OBSTACLES IN FIG.8 AND FIG.9

Energy Length [0,10] [10,20] [20,40]

c16 × 10−8 d16 × 10−8 c26 × 10−8 d26 × 10−8 c36 × 10−7 d36 × 10−7

Path 1 1125.6 20.72 1.5 8 3.8 9.65 3 27
Near Minimum Energy Path 2 1431.2 22.68

Path 3 3710.7 32.54
Path 4 1178.2 20.84 1.62 8.1 5.59 15.6 5.4 29.6

Near Shortest Path Path 5 1453.8 23.10
Path 6 2146.7 24.28 5 8 8 16 10 70

(a) (b)

(c)

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

th
et

a
an

d
its

 c
ha

ng
in

g
ra

te

theta
changing rate of theta

(d)

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

Time (sec)

ph
i a

nd
 u

2(
st

ee
rin

g
an

gl
e

an
d

st
ee

rin
g

ra
te

)

phi
u2

(e)

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

ve
lo

ci
ty

 a
nd

 a
cc

el
er

at
io

n

linear velocity
linear acceleration

(f)

Fig. 7. Simulation results under energy-optimal solution. (a) Paths of robot and obstacles. (b) Paths of robot and obstacles. (c) Paths of robot and obstacles.
(d) Trajectories of robot driving wheels orientation angle and its changing rate. (e) Trajectories of steering angle and steering rate of robot rear wheels. (f)
Trajectories of robot driving velocity and acceleration.

Fig. 8. Energy optimal trajectories under different optimal solutions
amidst mobile obstacles. Path 1, 2 and 3 are generated by the proposed
suboptimal method (near minimum energy), energy optimal solutions in
[34] and ordinary solutions in [29] respectively.

Fig. 9. Length optimal trajectories under different optimal solutions amidst
mobile obstacles. Path 4, 5 and 6 are generated by the proposed suboptimal
method (near shortest path), length optimal solutions in [34] and [29]
respectively.

constraints are strictly obeyed. The corresponding parameters
of optimal points (ck∗6 , dk∗6) and chosen suboptimal points
(ck6 , d

k
6) are as follows (obtained at each sampling time-

point):
c1∗6 = 1× 10−8, d1∗6 = 5.1× 10−8

c2∗6 = 3.81× 10−8, d2∗6 = 9.6× 10−8

c3∗6 = 4.74× 10−7, d3∗6 = 1.84× 10−6

(53)


c16 = 1.5× 10−8, d16 = 8× 10−8

c26 = 3.8× 10−8, d26 = 9.65× 10−8

c36 = 3× 10−7, d36 = 2.7× 10−6

(54)

Next, we discuss optimal performance of trajectories under
different solutions in the same dynamic environment as the
previous one. Also, such comparison is divided into two
groups of energy-optimal and length-optimal in Fig.8 and
Fig.9 respectively. In Table 2, corresponding comparative
data of energy consumption and path length are provided.
It is quite clear that towards mobile obstacles, path 1 and 4
generated by proposed suboptimal method are much shorter
(shortened by 9.8% at least) and more efficient in energy
consumption (saving 21.4% at least) than other solutions,

Fig. 10. Experiment scenario.

with less unnecessary swings. In those two figures, all the
six trajectories can avoid mobile obstacles, while the other
four trajectories are more conservative. Path 2, 3 and 5
are based on the geometry-parameterized trajectory model,
and the robot’s velocity on the x-axis is fixed. Due to that
limitation, the robot may have to take bigger swing to avoid
obstacles when the robot is very close to them. As what
has been analyzed in 5.1, the incompleteness on optimal
parameters selection could make path 6 take long detours.
It is noted that the length-optimal path 4 seems even longer
than energy-optimal path 1 according to the data. Due to the
existence of collision constrained areas, in some cases the
suboptimal parameters chosen by length optimal solutions
could be closer to energy-optimal points than length-optimal
points on the parameter space. Therefore, it is reasonable to
find path 4 is a little longer than path 1. Nevertheless, validity
of our optimal principles has been proved in example 1.

2) Example 3 (Experiment): In order to better compare the
method in this paper with other existing results in [29][33],
we have to maintain the same simulation settings in the
Example 2, which results in the small numerical range of
c6 and d6 (in the magnitude of 107). In practice, however,
those values may be scaled up according to the given unit
system as well as the setting range of robot’s driving velocity
and angular velocity. A new experiment is provided in this
part to show that in real-world settings the algorithm is still
effective and efficient to compute.

Compared to the simulation in Example 2, the experiment
settings in this part are more practical in the real-world
implementation, which are as follows.

• Robot kinodynamic constraints: vmax = 1.5, amax =
0.5.

• Initial coordinates of the three dynamic obstacles:
O1(t0) = [750, 2000]T , O2(t0) = [1000, 4000]T ,
O3(t0) = [2000, 500]T .

• Initial coordinates of the three static obstacles:
O4 = [1500, 300]T , O5 = [2000, 3500]T , O6 =
[5000, 3800]T .

• Radius of dynamic obstacles: ri = 250 (i = 1, 2, 3).
Radius of static obstacles: ri = 100 (i = 4, 5, 6).

• Redefined Robot Boundary conditions: q∗0 = (500,
500, π/16, 0, 0, 0) and q∗f = (4500, 4500,−π/4, 0, 600,

(a) (b) (c)

Fig. 11. Robot in experiment. (a) 3 second. (b) 6 second. (c) 9 second.

0).
• Starting time and ending time: t0 = 0, tf = 9s.
• Velocities of mobile obstacles at 0s, 3s and 6s (within

each sampling interval they remain constant):
v01 = [125,−150]T , v11 = [780, 850]T , v21 = [0, 0]T

v02 = [250, 0]T , v12 = [250, 0]T , v22 = [600,−500]T

v03 = [125, 125]T , v13 = [125, 125]T , v23 = [125, 125]T

• Sampling time-point: t0 = 0s, t1 = 3s, t2 = 6s.
• Control loop: 10Hz

The time unit is second and the length unit is micrometer.
As shown in Fig. 10, in the experiment the robot labeled

as R is desired to plan a length-optimal path that navigates
through three dynamic obstacles and three static obstacles
within the given maneuver time T = 9s. The straight lines on
the floor denote the X and Y-coordinate axes, and the moving
tendency of the robot and the three dynamic obstacles are
also given in the figure. When any robot obstacles are
detected at sampling time-point, the newest information is
sent to robot R so as to update its path. Fig. 11 illustrates
the mobile robot moving in the experiment.

At the beginning, the robot computed an optimal solution
such as c1∗6 = −0.05 and d1∗6 = 0.05 in order to render a
shortest path to the goal position. However, on this condition
the robot could collide with obstacle O1 at around 3s accord-
ing to the current sensed information, and hence it adjusted
the solution to an alternative suboptimal one, c16 = −0.08
and d16 = 0.08, while keeping away from O1 and the static
obstacle O4 sensed at 0s. When it came to 3s, the robot
sensed the environment again and detected the motion change
of obstacle O1 as well as the appearance of static obstacle O5

and dynamic obstacle O3. According to the updated motion
information of O1 and estimation, the robot would run into
O1 at around 4.5s, making the robot change the parameters
again from the inherited ones c26 = −0.08 and d26 = 0.08
to c26 = 0.3 and d26 = 1.2. Likewise, at the final sampling
time-point 6s when dynamic obstacle O1 stopped suddenly
and a new dynamic obstacle O2 rushed to the robot, it had to
replan the parameters from the ones reset at the last sampling
moment to the new ones, c36 = 0.4 and d36 = 67 for the rest
of the path, thus making the robot take a relative sharp turn
to avoid O2 and subsequently run a bigger detour to get
away from O1, while keeping a long distance from another
newly detected static obstacle O6 and reaching the goal state
successfully and safely.

500 1000 1500 2000 2500 3000 3500 4000 4500
500

1000

1500

2000

2500

3000

3500

4000

4500

x(mm)
y(

m
m

)

Init. Pos.

Final Pos.

Actual Path
Suboptimal Path
Designed Path

Fig. 12. Robot actual moving path, designed path, and suboptimal path
without consideration of obstacles.

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

Time (sec)

V
el

oc
ity

 (
m

m
/s

ec
)

Actual Velocity
Desired Velocity

Fig. 13. Velocity profiles of the robot in experiment and in simulation.

In order to compare the experiment performance with
the desired ones obtained from simulation, Fig. 12 plotted
three trajectories that are rendered by the corresponding
simulation and the experiment. The lengths of the three paths
are 6567mm (suboptimal), 6678mm (designed) and approx-
imately 6700mm (experiment). The desired velocity profile
and the sampled velocity for the robot in simulation and
the experiment are shown in Fig. 13, both of which satisfy
the kinodynamic constraints (velocity/acceleration bounds).
Furthermore, in this real-world experiment of our method,
the maximum running time for trajectory updating at each
sampling time-point is about 0.2s, including the computation
time for solving the constrained optimization problem (50)

Fig. 14. Robot trajectories in highly cluttered environment. Path 1 and
2 are generated by length optimal solution and ’weighed optimization’ in
our method respectively. Path 3 are generated by length optimal solutions in
[34]. Path 4 is the adjusted trajectory by our method under new kinodynamic
constraints vmax=1.4, amax=0.3.

using SQP or analytical solutions online. It is seen from the
figures and data that the proposed method can work well in
real-world implementation while maintaining good efficiency
for on-line computation.

3) Example 4 (suboptimal solutions in highly cluttered
environments): This part of example addresses the trajectory
generation with guaranteed combined performance under
strict kinodynamic constraints in cluttered environments con-
taining both static and dynamic obstacles. Redefined bound-
ary conditions of the robot are q∗0 = (0, 0, 0.53, 0, 0.6, 0) and
q∗f = (21.5, 21.5, −1.04, 0, 0.4, 0) respectively. As shown
in Fig.14, there are seven static disc obstacles of radius
0.5 (denoted by cyan circles with black edge). Obj1, obj2
and obj3 are three moving obstacles of radius 0.5, and they
are denoted by red, green and orange circles respectively.
The initial kinodynamic constraints are vmax=2.5, amax=0.3.
In Fig.14 the maneuver time is 40s, and each circles of
moving obstacles represent their temporal positions of every
4 seconds, with arrow at initial positions indicating their
respective moving direction.

As shown in Fig.14, compared to path 3, path 1 and 2
that generated under our method are more aggressive but
still safe in the highly cluttered environment, with obvious
improvement on path length. Next, we consider combined
optimization problem with weights ω1 = 0.5, ω2 = 0.5.
Path 1 is the initial trajectory created according to length-
optimal objective in (12), of which the energy consumption
and length are 3583.0 and 33.51. By specifying ω1 =
0.5, ω2 = 0.5 into the combined performance index (14),
path 2 is rendered with updated optimal performance of
3397.7/33.87 in energy consumption and path length. Since
the performance evaluation on energy and length are more
balanced, compared to path 1, the length of path 2 is
sacrificed a bit for the improvement on energy consumption.

Besides, to highlight flexibility of our method, new
kinodynamic constraints are employed in this example(taking
new velocity limitation for instance). With the same envi-
ronment in Fig.14, velocity constraint of robot is changed
from vmax=2.5 to vmax=1.4, making it impossible for robot

0 5 10 15 20 25 30 35 40
0

0.5

1

1.4

2

2.5

Time (sec)

V
el

oc
ity

Velocity Trajectory of Path 4
Velocity Trajectory of Path 3
Velocity Trajectory of path 1

Fig. 15. Robot velocity trajectories of the paths in Fig.14. Blue dashed
curve and magenta dash-dotted curve represent trajectories under original
velocity limitation of 2.5. Red solid curve represents trajectory under new
velocity limitation of 1.4.

−1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−7

−5

0

5

10

15

20

25
x 10

−8

c6

d6

Primitive Length−optimal point for
Path 1 and 4

Sub−Length−optimal
point for Path 1

Fig. 16. Solution space in the parameter space under initial velocity
limitation of 2.5. Red circle sets represent corresponding feasible areas
mapped from analytic inequations (4). Blue circle sets represent collision
areas with static and dynamic obstacles, which is mapped from (39).
Magenta point is the chosen suboptimal solution of trajectory parameters
c6 and d6.

to easily outrun the moving obstacles. The initial velocity
trajectory of path 1 and 3 in Fig.14 are shown in Fig.15.
Although robot motions on both of the two trajectories satisfy
the original limitation of 2.5, they violate the new one. In
order to replan a feasible path under such updated constraints
using our method, we investigate the selection of new pa-
rameter points on parameter space in Fig.16 and Fig.17. It is
noted that the chosen suboptimal point in Fig.16 is no longer
covered by the solution area(restrained area) in Fig.17, which
means the previous trajectory will not satisfy the present
limitation. So, we choose an alternative suboptimal point in
Fig.17 such that the solution space wholly cover the selected
point. The updated velocity trajectory of such path is shown
by red solid curve in Fig.15, and updated path is given by
red solid curve in Fig.14. These results show that feasible
solutions can also be found by our method to plan a qualified
path in front of updated kinodynamic constraints.

Remark 10: It should be noted that although data of the
energy consumption and path length in Table 1 and 2 don’t
seem to diverge much in absolute value, the percentage of

−5 0 5 10 15

x 10
−8

−5

0

5

10

x 10
−8

c6

d6

Primitive Length−optimal point for
Path 1 and 4

Sub−Length−optimal point for
Path 4

Fig. 17. Solution space in the parameter space under updated velocity
limitation of 1.4. Red circle sets represent corresponding feasible areas
mapped from analytic inequations (4). Blue circle sets represent collision
areas with static and dynamic obstacles, which is mapped from (39).
Magenta point is the re-chosen suboptimal solution of trajectory parameters
c6 and d6.

those difference could still reveal the effects. In real world
applications, the unit used could always be much larger
as kilometer of length, rather than standard meter in this
simulation section, which can better prove the excellence of
the proposed method. ♢

C. Adjustment Towards Non-Solution Situation

This section considers trajectory re-generation towards
non-solution situation to improve the completeness of our
method. Since solution space in parameter space such as
those in Fig.16 and Fig.17 may not always exist, what
happens when the robot cannot physically find a feasible
solution? As we have discussed in previous part, proper
adjustment of terminal time can be employed in our method
to find feasible solutions unless all possible passages are
blocked by obstacles. This case is investigated by further
limiting the velocity constraint in Example 4 from 1.4 to
1.2, with the same settings of other environment parameters
in Fig.14. Due to such strictly imposed constraint, the initial
solution space in Fig.17 cease to exist, as shown in Fig.18.

Since the non-solution situation in this case is caused only

−5 0 5 10 15

x 10
−8

−8

−6

−4

−2

0

2

4

6

8

10

12
x 10

−8

c6

d6

Primitive Length−optimal point

No solutions available under given terminal time t
f
=40s

Fig. 18. Solution space in the parameter space becomes null under strict
velocity limitation of 1.2 with original terminal time tf=40s.

by strict velocity constraint, we prolong the terminal time tf

−3 −2 −1 0 1 2 3 4 5 6 7

x 10
−8

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−8

c6

d6

 Length−optimal point

 Chosen sub−optimal point

Feasible Solutions Areas under modified terminal time t
f
=50s

Fig. 19. Solution space in the parameter space reappears after prolonging
the terminal time tf from 40s to 50s.

to 50s. It is reasonable in real-world to extend maneuver
time for low speed navigation of mobile robots. Then, it
is noted that the feasible solution space empty in Fig.18
reappears in Fig.19. The following selection of parameter
points is simple as ordinary suboptimal process of our
method. As the magenta point chosen in Fig.19, a feasible
suboptimal point is found to generate new trajectories. The
comparison of paths and velocity trajectories before and
after such adjustment are shown in Fig.20 and Fig.21. After
adjustment, robot can still generate a feasible collision-free
path to achieve the original goal, while well satisfying the
given strict kinodynamic constraints. This is an example
where non-solution situation appears, our approach could
still try to find an alternative way to complete the tasks.
It should be noted that the solvable or unsolvable situations
in Fig.19 and Fig.18 are found before executing, and robot
can determine whether to adjust terminal time in advance to
guarantee the feasibility of trajectories once generated, which
is good for on-line planning. Nonetheless, as discussed in the
part of Algorithm Completeness and Stability, it cannot be
ensured that the solutions will always be found under all
circumstances.

Fig. 20. Path comparison in cluttered environment. Blue dashed path 1 is
generated under original terminal time tf=40s. Red solid path 2 is generated
under adjusted terminal time tf=50s.

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (sec)

V
el

oc
ity

Velocity Trajectory of Path 2
Velocity Trajectory of Path 1

Fig. 21. Velocity trajectories comparison of paths in Fig.20. Blue dashed
curve corresponds to path 1 under original terminal time. Red solid curve
corresponds to path 2 under adjusted terminal time.

VI. CONCLUSION

This paper presents a novel analytical method to solve
combined optimization trajectory generation problem for
mobile robots with kinodynamic constraints in the presence
of moving obstacles. Analytical suboptimal solutions that
integrate two different weighed optimal performance indices
can flexibly satisfy various optimal requirements. By ex-
plicitly considering redefined higher dimensional boundary
conditions as well as robot kinodynamic constraints and col-
lision avoidance criteria, the constrained optimal trajectory
generation problem was recast as a constrained minimum dis-
tance problem on a 2D parameter space with straightforward
geometric implications that can be well handled by simple
on-line computation with analytical results or SQP method.
The analytical suboptimal solutions could automatically de-
tect unsolvable situations and make remedies to make the
problem solvable. Simulation and experiment results have
verified the efficiency and effectiveness of the proposed
method in dealing with local dynamic environments. Further
works include an extension of the proposed approach to
other global search-based algorithm in order to deal with
highly dense 2D/3D environment and solve the issues as
lack of completeness and stability. Another issue is to further
improve the rigorousness of the method by quantify the exact
amount of time to be extended in order for the robot to retain
feasible paths.

VII. ACKNOWLEDGMENT

The authors would like to acknowledge that this work
was partially supported by the National Natural Science
Foundation of China (Grant No. 61379111, 61402538 and
61202342) and Specialized Research Fund for the Doctoral
Program of Higher Education (20110162110042).

REFERENCES

[1] S. M. LaValle, ”Planning Algorithms,” Cambridge University Press,
2006.

[2] Z.X.Li and J. Canny, ”Nonholonomic Motion Planning,” Dordrecht, The
Netherlands: Kluwer, 1992.

[3] J. O. Kim and P. K. Khosla, ”Real-time obstacle avoidance using
harmonic potential functions,” IEEE Transactions on Robotics and Au-
tomation, vol. 8, pp. 338-349, 1992.

[4] J. Borenstein and Y. Koren, ”The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Transactions on Robotics and
Automation, vol. 7, pp. 278-288, 1991.

[5] J. Barraquand and J. C. Latombe, ”Nonholonomic multibody mobile
robots: controllability and motion planning in the presence of obstacles,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol.3, pp. 2328-2335, 1991.

[6] A. W. Divelbiss and J. T. Wen, ”A path space approach to nonholonomic
motion planning in the presence of obstacles,” IEEE Transactions on
Robotics and Automation, vol. 13, pp. 443-451, 1997.

[7] A. Bicchi, G. Casalino, and C. Santilli, ”Planning shortest bounded-
curvature paths for a class of nonholonomic vehicles among obstacles,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol.2, pp. 1349-1354, 1995.

[8] I. Duleba and J. Z. Sasiadek, ”Nonholonomic motion planning based
on Newton algorithm with energy optimization,” IEEE Transactions on
Control Systems Technology, vol. 11, pp. 355-363, 2003.

[9] D. B. Reister and F. G. Pin, ”Time-Optimal Trajectories for Mobile
Robots With Two Independently Driven Wheels,” The International
Journal of Robotics Research (IJRR), vol. 13, pp. 38-54, 1994.

[10] D. J. Balkcom and M. T. Mason, ”Time Optimal Trajectories for
Bounded Velocity Differential Drive Vehicles,” The International Journal
of Robotics Research (IJRR), vol. 21, pp. 199-217, 2002.

[11] R. M. Murray and S. S. Sastry, ”Nonholonomic motion planning:
steering using sinusoids,” IEEE Transactions on Automatic Control, vol.
38, pp. 700-716, 1993.

[12] D. Tilbury, R. M. Murray, and S. Shankar Sastry, ”Trajectory gen-
eration for the N-trailer problem using Goursat normal form,” IEEE
Transactions on Automatic Control, vol. 40, pp. 802-819, 1995.

[13] W. Dong and Y. Guo, ”New trajectory generation methods for non-
holonomic mobile robots,” Proceedings of the International Symposium
on Collaborative Technologies and Systems, pp. 353-358, 2005.

[14] M. Fliess, J. LeVine, P. Martin, and P. Rouchon, ”Flatness and defect
of non-linear systems: introductory theory and examples,” International
Journal of Control, vol. 61, pp. 1327-1361, 1995.

[15] S. Bhattacharya, M. Likhachev and V. Kumar. ”Topological constraints
in search-based robot path planning.” Autonomous Robots 33(3), pp.
273-290, 2012.

[16] Venkatraman Narayanan, Mike Phillips and Maxim Likhachev, ”Any-
time Safe Interval Path Planning for Dynamic Environments,” Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4708-4715, 2012.

[17] Aleksandr Kushleyev and Maxim Likhachev, ”Time-bounded Lattice
for Efficient Planning in Dynamic Environments,” Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1662-1668, 2009.

[18] Maxim Likhachev and Dave Ferguson, ”Planning Long Dynamically-
Feasible Maneuvers for Autonomous Vehicles,” International Journal of
Robotics Research (IJRR), 28(8): 933-945, 2009.

[19] M Pivtoraiko, RA Knepper, A Kelly, ”Differentially constrained mo-
bile robot motion planning in state lattices,” Journal of Field Robotics
(JFR), 26 (3): 308-333, 2009.

[20] Sven Koenig and Maxim Likhachev, ”D* Lite,” Proceedings of the
Eighteenth National Conference on Artificial Intelligence (AAAI), pp.
476-483, 2002.

[21] T.M. Howard, A Kelly, ”Optimal rough terrain trajectory generation
for wheeled mobile robots,” International Journal of Robotics Research
(IJRR), 26(2): 141-166, 2007.

[22] R. Kindel, D. Hsu, J. C. Latombe, and S. Rock, ”Kinodynamic
motion planning amidst moving obstacles,” Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), vol.1,
pp. 537-543, 2000.

[23] A. M. Ladd and L. E. Kavraki, ”Measure theoretic analysis of proba-
bilistic path planning,” IEEE Transactions on Robotics and Automation,
vol.20, pp. 229-242, 2004.

[24] J. van den Berg and M. Overmars, ”Kinodynamic motion planning
on roadmaps in dynamic environments,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
4253-4258, 2007.

[25] P. Cheng, E. Frazzoli, and S. LaValle, ”Improving the Performance of
Sampling-Based Motion Planning With Symmetry-Based Gap Reduc-
tion,” IEEE Transactions on Robotics, vol. 24, pp. 488-494, 2008.

[26] X. I. ucan, and L. E. Kavraki, ”A Sampling-Based Tree Planner for
Systems With Complex Dynamics,” IEEE Transactions on Robotics,
vol.28, pp. 116-131, 2012.

[27] S. Karaman and E. Frazzoli, ”Optimal kinodynamic motion planning
using incremental sampling-based methods,” 49th IEEE Conference on
Decision and Control (CDC), pp. 7681-7687, 2010.

[28] S. M. LaValle and J. J. Kuffner, Jr., ”Randomized kinodynamic
planning,” Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), vol.1, pp. 473-479, 1999.

[29] Z. Qu, J. Wang, and C. E. Plaisted, ”A new analytical solution to
mobile robot trajectory generation in the presence of moving obstacles,”
IEEE Transactions on Robotics, vol. 20, pp. 978-993, 2004.

[30] A. Wu, and J. P. How. ”Guaranteed infinite horizon avoidance of
unpredictable, dynamically constrained obstacles.” Autonomous Robots,
32(3), pp. 227-242, 2012.

[31] P. Fiorini and Z. Shiller, ”Motion planning in dynamic environments
using the relative velocity paradigm,” Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), vol.1, pp. 560-
565, 1993.

[32] Z. Shiller, F. Large, and S. Sekhavat, ”Motion planning in dynamic
environments: obstacles moving along arbitrary trajectories,” Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), vol.4, pp. 3716-3721, 2001.

[33] J. Yang, A. Daoui, Z. Qu, J. Wang, and R. A. Hull, ”An Optimal and
Real-Time Solution to Parameterized Mobile Robot Trajectories in the
Presence of Moving Obstacles,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 4412-4417, 2005.

[34] J. Yang, Z. Qu, J. Wang, and K. Conrad, ”Comparison of Optimal
Solutions to Real-Time Path Planning for a Mobile Vehicle,” IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, ,vol. 40, pp. 721-731, 2010.

[35] Y. Guo and T. Tang, ”Optimal trajectory generation for nonholonomic
robots in dynamic environments,” Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 2552-2557, 2008.

[36] H. Yuan and T. Shim, ”Model based real-time collision-free motion
planning for mobile robots in unknown dynamic environments,” 14th
International IEEE Conference on Intelligent Transportation Systems
(ITSC), pp. 416-421, 2011.

[37] Y. Guo, Y. Li, and W. Sheng, ”Global Trajectory Generation for
Nonholonomic Robots in Dynamic Environments,” Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1324-1329, 2007.

[38] S. Hashim and L. Tien-Fu, ”A new strategy in dynamic time-dependent
motion planning for nonholonomic mobile robots,” IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 1692-1697, ,
2009.

[39] S. Liu and D. Sun, ”Optimal motion planning of a mobile robot with
minimum energy consumption,” IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), pp. 43-48, 2011.

[40] J. Lvine, ”Analysis and control of nonlinear systems: A flatness-based
approach,” Springer Berlin Heidelberg, 2009.

[41] A. De Luca, G. Oriolo and C. Samson, ”Feedback control of a
nonholonomic car-like robot,” Robot Motion Planning and Control, vol.
229, pp. 171-253, 1998.

[42] Z. Shiller, O. Gal, and A. Raz, ”Adaptive time horizon for on-
line avoidance in dynamic environments,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
3539-3544, 2011.

[43] Bonnans, Joseph-Frdric, et al. Numerical optimization: theoretical and
practical aspects. Springer, 2006.

[44] Morales J L, Nocedal J, Wu Y. A sequential quadratic programming
algorithm with an additional equality constrained phase. IMA Journal of
Numerical Analysis, 2011: drq037.

[45] Schulman, John, et al. ”Motion planning with sequential convex
optimization and convex collision checking.” The International Journal
of Robotics Research 33.9 (2014): 1251-1270.

