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Generalized Hierarchical Control

Mingxing Liu, Yang Tan, and Vincent Padois

Abstract Multi-objective control systems for complex

robots usually have to handle multiple prioritized tasks.

Most existing hierarchical control techniques handle ei-
ther strict task priorities by using null-space projec-

tors or a sequence of quadratic programs; or non strict

task priorities by using a weighting strategy. This pa-
per proposes a novel approach to handle both strict and

non-strict priorities of an arbitrary number of tasks. It

can achieve multiple priority rearrangements simulta-

neously. A generalized projector, which makes it pos-
sible to completely project a task into the null-space

of a set of tasks, while partially projecting it into the

null-space of some other tasks, is developed. This pro-
jector can be used to perform priority transitions and

task insertion or deletion. The control input is com-

puted by solving one quadratic programming problem,
where generalized projectors are adopted to maintain

a task hierarchy, and equality or inequality constraints

can be implemented. The effectiveness of this approach

is demonstrated on a simulated robotic manipulator in
a dynamic environment.

Keywords Redundant robots · task hierarchy ·

priority switching · dynamics · torque-based control

1 Introduction

Redundant robots are nowadays expected to perform

complex missions involving the simultaneous performance

of multiple tasks. Even though robot redundancy makes
it possible for these robots to perform multiple tasks
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simultaneously, task conflicts may still occur when all

the task objectives cannot be satisfied at the same time.

In order to handle conflicts, tasks are usually assigned
with different priority levels. Therefore, controllers for

complex robots must be able to handle multiple priori-

tized tasks and respect various constraints imposed by
the robot body and the environment.

A large number of hierarchical control frameworks

are presented in the robotics literature for the man-
agement of multiple operational task objectives. Some

of them deal with strict task hierarchies, which ensure

that critical tasks are fulfilled with higher priorities
and lower-priority tasks are performed only in the null-

space of higher priority tasks. Other approaches handle

non-strict task hierarchies. The solution of these ap-
proaches is a compromise among task objectives of dif-

ferent weights. In a non-strict task hierarchy, a lower

priority task is not restricted in the null-space of higher

priority tasks, thus it may still affect their performances.

In a more general context, the robot may need to

deal with both strict and non-strict hierarchies. More-
over, for robots acting in dynamically changing con-

texts, non-strict priorities between tasks may become

strict ones and task priorities may have to be switched

in order to cope with changing situations.

With the aim of handling both strict and non-strict

hierarchies simultaneously, a novel control framework
called Generalized Hierarchical Control (GHC) is pre-

sented in this paper. The contributions of this work are

as follows. (i) The development of a generalized projec-
tor, which can regulate to what extent a lower-priority

task is projected into the null-space of a higher-priority

task. In other words, this generalized projector allows a

task to be completely, partially, or not at all projected
into the null-space of some other tasks. (ii) The devel-

opment of a generic dynamic hierarchical control frame-

work, which solves a single quadratic program (QP) and
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uses generalized projectors as a mechanism to account

for an arbitrary number of strict and non-strict task
priorities. It can achieve desired priority transitions, as

well as an elegant way of inserting and deleting tasks

among those to be performed. Task hierarchies are han-
dled by the modulation of a priority matrix, without the

necessity of modifying the control problem formulation

each time the hierarchies change.

2 Related Works

This section reviews some classical hierarchical control
frameworks and priority transitions within them.

2.1 Approaches for handling a strict hierarchy

Analytical methods based on null-space projections can

ensure that lower priority tasks are executed only in the

null-space of higher-priority tasks. The idea is based on

the use of the limited Jacobian of a lower-priority task,
which is projected into the null-space of higher prior-

ity tasks by the application of a null-space projector

[25]. Such an idea is applied in prioritized inverse kine-
matics [30, 31], in acceleration based control [14, 15],

and in joint torque based control [21, 41, 44]. A generic

framework, from which several existing control laws can
be derived, is presented in [33]. Projected inverse dy-

namics schemes are developed for constrained systems

in [2, 23], where the dynamics equation is projected

into the null-space of the Jacobian of constraint equa-
tions. As the limited Jacobians mentioned above could

be rank deficient, task priority strategies involving their

pseudo-inverses may lead to algorithmic singularities.
To overcome the effects of such singularities, a tech-

nique based on damped least-squares and extended Ja-

cobian [10] is proposed, which requires to choose the
damping factor carefully in order to guarantee good

behaviors near singularities.

Inequality constraints are usually difficult to be di-
rectly dealt with in analytical approaches using pseudo-

inverses and projection matrices. A common method is

to transform inequality constraints into task objectives
by applying artificial potential fields [20], from which re-

pulsive forces are derived to prevent the robot from en-

tering into activation zones of the inequality constraints
[20, 32, 35, 42, 43, 46]. However, performing these tasks

cannot guarantee that these inequality constraints are

actually met. The approach presented in [28] integrates

unilateral constraints at any priority level, albeit time
consuming. The algorithm introduced in [13, 14] pro-

poses to disable the most critical joint and redistribute

joint motion commands to guarantee the satisfaction

of some hard bounds of joint variables. However, this

algorithm deals with inequality constraints only at the
joint level. Furthermore, the optimal solution satisfy-

ing the control problem may require the movement of

a joint which has unfortunately been disabled.

To deal with prioritized inequality constraints more

easily, hierarchical quadratic programming (HQP) ap-

proaches use numerical QP solvers to solve a hierarchi-
cal quadratic program [12, 17, 36, 37]. The idea of HQP

is to first solve a QP to obtain a solution for a higher

priority task objective; and then to solve another QP for

a lower priority task, without increasing the obtained
minimum of the previous task objective. This prioritiza-

tion process corresponds to solving lower-priority tasks

in the null-space of higher-priority tasks while trying to
satisfy lower-priority tasks at best.

Generally, approaches that handling strict hierar-

chies parameterize the relative priority of one task with

respect to another one of a different importance level in
a lexicographic way [37]: either strictly higher or strictly

lower. However, in many contexts, organizing tasks by

assigning them with strict priorities is not generic, i.e.
can have some limitations. First, a strict priority is just

an extreme case of the relative priority of tasks. In fact,

a task may not always have a strict priority over an-
other one and it is usually difficult to define a strict

hierarchy among a set of tasks. Second, strict priorities

can sometimes be too conservative so that they may

completely block lower-priority tasks. Compared with a
discrete parameterization of strict task priorities, a con-

tinuous parameterization of both strict and non-strict

task priorities is richer and more informative. There-
fore, this work uses a continuous priority parameteri-

zation. Moreover, priorities are defined here by pairs of

tasks and are encoded by a priority matrix. This choice
of priority representation can handle not only a single

standard lexicographic hierarchy as HQP does, but also

a complex priority network. For example, it can repre-

sent two lexicographic hierarchies 1⊲2⊲31 and 4⊲5⊲6,
with an additional relationship 2 ⊲ 5, leaving the rela-

tionships among all the other pairs of tasks free.

2.2 Approaches for handling a non-strict hierarchy

Non-strict priorities are usually handled by approaches

using weighting strategies [1, 5, 7, 26, 40]. These con-
trol frameworks solve all the constraints and task ob-

jectives in one QP and provide a trade-off among task

objectives with different importance levels. As the per-
formances of higher priority tasks cannot be guaran-

1 The notation i ⊲ j indicates that task i has a strict higher
priority over task j.
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teed by simply adjusting the weights of task objectives,

a prioritized control framework is proposed in [27] to
ensure the performance of a higher-priority task. How-

ever, this approach handles priorities of only two levels.

In approaches based on weighting strategies, task pri-
orities can be parameterized continuously. Nonetheless,

even though the work in [9] on soft constraints in model

predictive control could probably be adapted to pro-
vide a way to reach the extreme case of strict priorities,

the existing robotic applications of these frameworks do

not extend to strict hierarchies. The control framework

proposed in this paper outperforms weighting strate-
gies by permitting priorities to change gradually from

a non-strict case to a strict case.

2.3 Task transitions

Recently, different methods have been developed to han-

dle task transition problems. An approach to smooth

priority rearrangement between only two levels of tasks
is proposed in [19, 34]. A specific inverse operator is

proposed in [29] to ensure continuous inverse in the an-

alytical computation of control laws. The approach pre-
sented in [24] is based on intermediate desired values in

the task space. When the number of task transitions

increases, this approach suggests to apply an approxi-
mation to reduce the computational cost. An approach

of hierarchical control with continuous null-space pro-

jections is presented in [8]. However, the design of an

activator used by this approach makes it difficult to be
implemented for the separate handling of different task

directions. On the other hand, task transitions can be

easily achieved within a non-strict hierarchy by the con-
tinuous variation of task weights [40]. This method is

used in HQP approaches to swap the priorities of tasks

coming from two consecutive priority levels [16]. This is
achieved by tuning the weights of the tasks, which are

merged in the same priority level, to comply with their

priorities before and after the transition phase. How-

ever this strategy may require a set of swaps before
bringing a task to the desired priority level. A novelty

of the control framework proposed in this paper is that

it allows the simultaneous priority rearrangements for
an arbitrary number of pairs of tasks, and it requires

only one swap to switch priorities between each pair of

tasks at two non-consecutive levels.

3 Modeling

Consider a robot as an articulated mechanism with n

degrees of freedom (DoF) including na actuated DoF.

The dynamics of the robot in terms of its generalized

coordinates q ∈ R
n is written as follows

M(q)q̈ + n(q, q̇) = Jc(q)
Tχ, (1)

where M(q) ∈ R
n×n is the generalized inertia ma-

trix; q̇ ∈ R
n and q̈ ∈ R

n are the vector of veloc-

ity and the vector of acceleration in generalized co-

ordinates, respectively; n(q, q̇) ∈ R
n is the vector of

Coriolis, centrifugal and gravity induced joint torques;

χ =
[

wT
c τT

]T
is the vector of the actuation torques

(τ ∈ R
na) and the external contact wrenches applied to

the robot (wc =
[

wT
c,1 . . . wT

c,nc

]T
), with nc, the num-

ber of contact points; Jc(q)
T = [Jc,1(q)

T . . . Jc,nc
(q)T

S(q, q̇)T ] is the transpose of a Jacobian matrix, with

Jc,nβ
(q), the Jacobian matrix associated to a contact

point β and S(q, q̇)T ∈ R
n×na , a selection matrix for

the actuated DoF. In the control problem considered in

this paper, the vector χ is called the action variable.

A task i of a physical frame attached to the robot

body can be defined by the following characteristics:
(I) A task variable ξi ∈ R

mi expressed in terms

of some goals to be achieved by the task frame in the

task space, such as a desired position or orientation of
dimension mi. The second order derivative of ξi can be

linearly related to that of q

ξ̈i = Ji(q)q̈ + J̇i(q, q̇)q̇ (2)

where Ji(q) is the Jacobian matrix representing the dif-

ferential kinematics mapping from joint space to task
space, and J̇i(q, q̇)q̇ is the task space drift vector.

(II) A local controller ξ̈
d

i , the goal of which is to
correct task errors and ensure the convergence of the

task variable ξi towards its desired trajectory. For task

motion control, ξ̈
d

i can take the form of a proportional-

integral-derivative controller with a feed-forward term.

For task wrench control, ξ̈
d

i can take the form of a
proportional-integral controller with a feed-forward term.

The wrench task can be expressed as a motion task us-

ing the inverse of the operational space inertia matrix

Λi(q) = [Ji(q)M(q)−1 Ji(q)
T ]−1 [6, 22]

ξ̈
d

i = Λi(q)
−1wd

i (3)

which maps the desired task wrench wd
i to a desired

acceleration ξ̈
d

i at the task frame.

(III) A set of relative importance levels with respect
to nt tasks, including task i, characterized by a priority

matrix

Ai = diag
(

αi1Im1
, . . . , αijImj

, . . . , αint
Imnt

)

(4)

whereAi is a diagonal matrix, the main diagonal blocks

of which are square matrices: αijImj
. Imj

is the mj ×



4 Mingxing Liu, Yang Tan, and Vincent Padois

mj identity matrix, and αij ∈ [0, 1]. By convention,

the coefficient αij indicates the priority of task j with
respect to task i.

– αij = 0 corresponds to the case where task j has

strict lower priority with respect to task i.

– 0 < αij < 1 corresponds to a non-strict priority be-
tween the two tasks: the greater the value of αij , the

higher the importance level of task j with respect

to task i.

– αij = 1 corresponds to the case where task j has a
strict higher priority with respect to task i.

The role of the particular element αii is given and ex-

plained in detail in section 4.2.1.

4 Generalized Projector for Hierarchical

Control

The hierarchical control proposed in this paper is based
on a new generalized projector, which can precisely reg-

ulate how much a task is affected by other tasks. The

following part of this subsection first looks at several
forms of projectors, then the analysis of which leads to

the development of the generalized projector.

4.1 Review of projectors for hierarchical control

Strict priorities can be handled by analytical methods

using a null-space projector Nj = I − J
†
jJj , where J

†
j

is the Moore-Penrose pseudo-inverse of the Jacobian

Jj
2. The projection of a task i into the null-space of

another task j can ensure that the lower-priority task
i is performed without producing any motion for the

higher-priority task j. To handle priorities between one

task i and a set of other tasks with higher priorities,

task i is projected into the null-space of an augmented
Jacobian of all the higher priority tasks [4, 45].

To achieve smooth priority transitions, the null-space
projector is replaced by the following matrix in [19, 34]

N
′

j(αij) = I− αijJ
†
jJj , (5)

where a scalar parameter αij ∈ [0, 1] is used to regulate

the priority between two tasks i and j. The greater

αij is, the more task i is projected into the null-space

of task j. This method can handle priority transitions
between only two levels of tasks, and it can hardly be

extended to the case of simultaneous transitions among

multiple priority levels.

2 The dependence to q is omitted for clarity reasons.

The following matrix N
′′

is proposed in [8] for con-

tinuous null-space projections

N
′′

= I−VΘVT , (6)

where V ∈ R
n×n is the right singular vectors of Jj , the

Jacobian of a higher priority task, and Θ ∈ R
n×n is a

diagonal activation matrix. The k-th diagonal element

of Θ, θkk ∈ [0, 1], refers to the k-th column vector in

V: when θkk = 1, the k-th direction in V is activated
in N

′′

; when 0 < θkk < 1, the k-th direction in V is

partially deactivated; when θkk = 0, the k-th direction

in V is deactivated. As mentioned in [8], for any one-
dimensional task j (Jj ∈ R

1×n), the matrix (6) becomes

N
′′

j = I− θ11
JT
j

‖Jj‖

Jj

‖Jj‖
, (7)

where only the first element θ11 ofΘ is relevant.N
′′

j can
be applied to achieve activation or deactivation of task

j direction in the projection matrix by the variation

of the scalar θ11. When extended to a task (or a set
of tasks) of m directions (Jj ∈ R

m×n), this method

allows one to apply the same transition to all the m

directions of Jj , but its application for achieving the
separate regulation of each task direction is not easy.

This is because each activator θkk is directly referred

to the k-th direction in the right singular vectors of Jj ,

but not directly referred to a specific direction in Jj .

4.2 Generalized projector

In order to achieve variations of multiple task priorities
simultaneously among an arbitrary number of tasks,

and to be able to ensure a priority network with both

strict and non-strict priorities, an approach to the com-
putation of a generalized projector Pi(Ai) ∈ R

n×n is

developed in this section. Here the subscript i in Pi

indicates that the projector takes into account the pri-

orities of a set of tasks with respect to task i. The de-
pendence of Pi toAi is sometimes omitted hereafter for

clarity reasons. Similarly to the form of the matrix N
′′

in the case of considering a one-dimensional task (7),
the form of Pi is obtained without the necessity of the

computation of pseudo-inverse matrices. Moreover, the

new projector allows one to regulate the activation of
each task directions in a more intuitive way, by regulat-

ing the priority matrix Ai that is more closely related

to task directions than the activator Θ in (6).

First, look at the following matrix, which extends
N

′′

j defined by (7) from the handling of one task direc-

tion to the handling of the directions of nt tasks

N
′′′

= I−

nt
∑

j=1

αij

JT
j

‖Jj‖

Jj

‖Jj‖
, (8)
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where, without the loss of generality, each task dimen-

sion is supposed to be 1, and αij with j = 1, 2, 3, . . . , nt

parameterizes the priority of each of the nt tasks with

respect to a certain task i. For any task k among the nt

tasks with αik = 1, which means that task k is of the
highest priority, the product of N

′′′

with Jk leads to

JkN
′′′

= Jk − Jk

JT
j

‖Jj‖

Jj

‖Jj‖
−
∑

j 6=k

Jkαij

JT
j

‖Jj‖

Jj

‖Jj‖

= −
∑

j 6=k

Jkαij

JT
j

‖Jj‖

Jj

‖Jj‖
.

(9)

In (9), JkN
′′′

= 0 if JkJ
T
j = 0 for each j 6= k and

αij > 0. This means that the highest priority of task k

may not be satisfied if it is interfered by a lower priority

task j, which has a component along task k direction.

On the contrary, task priorities can be maintained if
such task interferences disappear, or in other words, if

all the lower priority task directions become orthogonal

to all the higher priority task directions. Based on this
observation, the computation of the generalized projec-

tor Pi is divided into three steps.

Step one is a preliminary processing of the matrices

J and Ai, where

J =
[

JT
1 . . .JT

j . . .JT
nt

]T
(10)

is the augmented Jacobian concatenating the Jacobian

matrices of all the nt tasks. The processing of J and Ai

is carried out according to the priorities of the nt tasks

with respect to task i. As each row of J is associated
to αij , the rows of J can be sorted in descending order

with respect to the values of the diagonal elements in

Ai. The resulting matrix Jsi is thus constructed so that
tasks which should be the least influenced by task i

appear in its first rows, while tasks which can be the

most influenced by task i appear in its last rows. The
values in Ai are sorted accordingly, leading to As

i , the

diagonal elements of which are organized in descending

order starting from the first row.

Step two consists in the computation of a matrix
Bi(Jsi) ∈ R

r×n by using Jsi , where r is the rank of Jsi .

The rows of Bi(Jsi) form an orthonormal basis of the

joint space obtained using elementary row transforma-
tions on Jsi . Algorithm (1) describes this computation.

As in any numerical scheme, tolerances are used here

for numerical comparison, such as ǫ in line #11 of Al-
gorithm (1), which is defined as a small positive value.

As the use of ǫ may lead to rank jumps in Bi, it is sug-

gested to assign the smallest value greater than zero to

ǫ to avoid large variation of Bi.
Step three is to compute the generalized projector,

which is given by

Pi(Ai) = In −Bi(Jsi)
TA

r,s
i (Ai,origin)Bi(Jsi), (11)

where Ar,s
i is a diagonal matrix of degree r. The vector

origin ∈ R
r is a vector of the row indexes of Jsi se-

lected during the construction of the orthonormal basis

Bi. Each of these r rows in Jsi is linearly independent to

all the previously selected ones. The diagonal elements
of Ar,s

i are restricted to the r diagonal elements of As
i ,

which correspond to the r rows of Jsi , the row indexes

of which belong to origin . Algorithm (2) summarizes
the construction of the generalized projector.

Note that the interference of lower priority tasks
with higher priority tasks, which exists in (8) if two

task directions of different priorities are not orthogo-

nal (JkJ
T
j 6= 0), is avoided in Pi. Indeed, each row in

Bi corresponds to the component of a task direction

that is effectively accounted for by the projector Pi.

The row sorting in step one ensures that higher prior-
ity task directions are accounted for in Bi prior to any

lower priority task direction, and the orthonormaliza-

tion process in step two ensures that each direction (or

row) of Bi is orthogonal to previous rows associated to
all the higher priority task directions.

By varying the value of each αij in Ai, one can

regulate the priority of each task j with respect to task

i separately. Indeed, during the execution of task i, the
projector Pi can be configured such that

– for tasks having strict priority over task i, the move-
ment along their task directions is completely for-

bidden by setting corresponding αi• to 1;

– for tasks over which task i has a strict priority, the
movement along their directions is completely al-

lowed by setting corresponding αi• to 0;

– and for tasks with non strict priorities, the move-

ment along their task directions is partially allowed
according to the value of their priority parameters.

The increase of the values of corresponding αi• ∈

(0, 1) leads to the increase of the priorities of the
associated tasks with respect to task i, and thus

stronger restriction of task i movements along their

task directions.

4.2.1 Task insertion and deletion

There is a particular case induced by the proposed for-

mulation and corresponding to the influence of task i

on itself. Even though not intuitive, this self-influence

has to be interpreted in terms of task existence, mod-

ulated by αii. If αii = 1 then task i is projected into

its own null-space, i.e. it is basically canceled out. De-
creasing αii continuously to 0 activates task i gradually.

Conversely, increasing αii continuously from 0 to 1 de-

activates the task gradually.
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Algorithm 1: Orthonormal basis computation -
GetOrthBasis(J)

Data: J, ǫ
Result: B, origin , r

1 begin

2 n←− GetNbCol(J)
3 m←− GetNbRow(J)
4 i←− 0
5 for k ← 0 to m− 1 do

6 if i ≥ n then

7 break

8 B[i, :]←− J[k, :]
9 for j ← 0 to i− 1 do

10 B[i, :]←− B[i, :]−
(

B[i, :]B[j, :]T
)

B[j, :]

11 if norm(B[i, :]) > ǫ then

12 B[i, :]←− B[i, :]/norm(B[i, :])
13 origin [i]←− k
14 i←− i+ 1

15 r ←− i

16 return B, origin , r

Algorithm 2: Generalized projector computation

- task i
Data: Ai, J
Result: Pi

1 begin

2 n←− GetNbCol(J)
3 index ←− GetRowsIndexDescOrder(Ai)
4 As

i ←− SortRows(Ai, index)
5 Jsi ←− SortRows(J, index)
6 Bi,origin , r ←− GetOrthBasis(Jsi) ⊲Alg. (1)

7 A
r,s
i ←− GetSubDiagMatrix(As

i ,origin)
8 Pi ←− In −BT

i A
r,s
i Bi

9 return Pi

5 Generalized Hierarchical Control Framework

This paper handles task hierarchies subject to linear

constraints. This multi-objective control problem is for-

mulated as a Linear Quadratic Programming (LQP)
problem here, where all the task objectives and con-

straints are solved simultaneously in one LQP. Con-

straints are formulated in terms of priority consistent
joint accelerations by applying generalized projectors.

This section first briefly reviews the LQP control

framework that is commonly used by weighting strate-
gies, then explains the implementation of generalized

projectors in such a framework to achieve generalized

hierarchical control.

5.1 LQP control framework for weighting strategies

When only non-strict task hierarchies are considered,

weighting strategies, such as those proposed in [5, 7,

26, 40], can be applied to handle the relative priorities

of multiple elementary tasks. In this case, the control
problem can be formulated as a LQP problem as

argmin
q̈,χ

nt
∑

i=1

∥

∥

∥
f i

(

q̈, ξ̈
d

i

)∥

∥

∥

2

Qi

+

∥

∥

∥

∥

[

q̈

χ

]∥

∥

∥

∥

2

Qr

(12a)

subject to M(q)q̈ + n(q, q̇) = Jc(q)
Tχ (12b)

G(q, q̇)

(

q̈

χ

)

≤ h(q, q̇) (12c)

where f i

(

q̈, ξ̈
d

i

)

= Ji(q)q̈ + J̇i(q, q̇)q̇ − ξ̈
d

i is the ob-

jective function which measures the error of task i.

The regulation term minimizes the norm of joint ac-
celerations and action variables. For a redundant robot

with many solutions satisfying the same task objective,

the regulation term is useful for ensuring the unique-
ness of the solution [40]. In (12), Qi = ωiImi

is a

weighting matrix to regulate the importance level of

task i, with ωi denoting the weight of task objective

i. Qr = ωrIn+na+3nc
is the weighting matrix of the

regularization term, with ωr denoting the weight value.

As the regulation term may increase task error, ωr is

usually very small compared to ωi. The equation of mo-
tion (12b) constitutes an equality constraint to ensure

physical realism. The matrix G and the vector h ex-

press some other equality or inequality constraints, such
as actuation capabilities (maximum actuator torques

and velocities), geometrical limits (joint limits, Carte-

sian space obstacles), and contact wrenches (contact

existence conditions, bounds on the norms of contact
wrenches).

By solving (12), the solution of q̈ and χ can be
obtained, from which the solution of joint torques is

extracted.

5.2 Generalized hierarchical control using generalized

projectors

The control framework based on weighting strategy (12)

can qualitatively regulate the relative priorities of tasks

by weighting task objectives, but it cannot ensure strict
task priorities. The GHC framework proposed here ex-

tends framework (12) through the implementation of

generalized projectors defined by (11) to handle a pri-
ority network with both strict and non-strict task pri-

orities.

Consider the control problem for solving nt tasks.
The operating principle of GHC is summarized by the

following LQP problem, which takes into account the

desired task priorities parameterized by the priority
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matrix Ai.

argmin
q̈′

,χ

nt
∑

i=1

∥

∥

∥
f i

(

q̈′
i, ξ̈

d

i

)∥

∥

∥

2

+

∥

∥

∥

∥

[

q̈′

χ

]∥

∥

∥

∥

2

Qr

(13a)

subject to Jc(q)
Tχ = M(q)q̈ + n(q, q̇) (13b)

G(q, q̇)

(

q̈

χ

)

≤ h(q, q̇) (13c)

q̈ = Pq̈′ =
∑nt

i=1
Pi(Ai)q̈

′
i (13d)

with q̈′ =







q̈′
1

...

q̈′
nt






andP = [P1(A1) . . .Pnt

(Ant
)]. Each

q̈′
i in (13) is an intermediate joint acceleration variable

associated to each task i and q̈ is the overall joint accel-

erations accounting for the sets of desired task priorities

(A1, . . . ,Ant
). Assuming a perfect model, q̈ is the joint

accelerations resulting from the application of the joint

torques computed by solving (13).

This optimization problem minimizes the objective
function of each task as well as the magnitude of the

control input, subject to constraints. Each task objec-

tive function is expressed in terms of the intermediate
joint acceleration variable q̈′

i. Note that in GHC, task

priorities are handled by using the generalized projec-

tors Pi in (13d) instead of task weights ωi. Therefore,

here the task weighting matrix Qi is set to the identity
matrix, which is omitted in (13a).

A solution to the equation of motion (13b) can be

ensured as long as there exists a highest priority task i

such that Pi(Ai) = In (with Ai being the zero matrix),

which means that this task is not projected in the null-

space of any other task. Indeed, (13b) can be expressed
in terms of intermediate joint accelerations as

Jc(q)
Tχ = M(q)Pq̈′ + n(q, q̇), (14)

with P = [P1(A1) . . .Pnt
(Ant

)]. As the inertia matrix
M is positive definite, a solution to (14), and thus (13b),

can be ensured if P has full row rank. A sufficient condi-

tion to ensure this property of P is that there exists at

least one Pi which equals the identity matrix, and this
is the case for the highest priority task in a hierarchy.

Since the constraints have a higher priority than the

objectives in LQP, and in (13) the constraints are ex-
pressed in terms of the overall joint accelerations q̈, it is

ensured that the solution accounting for desired task hi-

erarchies satisfies the constraints. Or in other words, the
GHC framework ensures that the constraints, such as

the equation of motion (13b) and the other constraints

of physical limitations (13c), have a higher priority over

task hierarchies. Moreover, this GHC framework can
handle strict task hierarchies represented by standard

lexicographic orders. The proof is provided in Appendix

A.

Another property of GHC is that it is robust to

both kinematic and algorithmic singularities. In this
framework based on LQP, tasks are expressed in a for-

ward way and most LQP solvers do not require the ex-

plicit inversion of Jacobian matrices. Therefore, GHC
does not have problems of numerical singularities due

to kinematic singularities. Moreover, unlike approaches

using the pseudo-inverse of limited Jacobians (JiNj),
which requires special treatment for handling algorith-

mic singularities when the limited Jacobians drop rank

[38], GHC does not require the inversion of priority con-

sistent Jacobians. Therefore, the framework does not
have to handle such kind of algorithmic singularities.

6 Results

The proposed GHC framework (13) is applied to the

control of a 7-DoF KUKA LWR robot. The experiments

are conducted in the Arboris-Python simulator [39],

which is a rigid multibody dynamics and contacts sim-
ulator written in Python. The LQP problem is solved

by a QP solver included in CasADi-Python [3], which

is a symbolic framework for dynamic optimization.

In the experiments, three tasks are defined: task 1
for the control of the three dimensional position (or

position and force) of the end-effector, task 2 for the

control of the three dimensional position of the elbow,
and task 3 for the control of the 7-DoF posture. The

elbow task target is a static target position and the

posture task target is a static posture. For each task
i, an optimization variable q̈′

i ∈ R
7 is defined. A local

proportional-derivative controller ξ̈
d

i is used to ensure
the convergence of each task variable towards its target.

When a task target is static, ξ̈
d

i = kpei+kdėi with kp =

30s−2 and kd = 20s−1. When tracking a desired trajec-

tory ξ̈
∗

i , ξ̈
d

i = ξ̈
∗

i + kpei + kdėi with kp = 100s−2 and
kd = 20s−1. The priority parameter matrices associated

with the three tasks are: Ai = diag(αi1I3,αi2I3,αi3I7)

with i = 1, 2, 3. The regularization weight ωr is chosen
as 0.01. The following function is used for the smooth

variation of αij (conversely αji) from 0 to 1 during the

transition time period ([t1, t2])

αij(t) = 0.5− 0.5 cos

(

t− t1

t2 − t1
π

)

, t ∈ [t1, t2],

αji(t) = 1− αij(t).

(15)
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Fig. 1 Experiment of priority switching.

6.1 Hierarchical control with priority transitions, task

insertions, and task deletions

In the experiments, task hierarchy is changed four times
(see Fig. 1), and the equality constraint (13b) as well as

inequality constraints, such as joint velocity and joint

torque limits, are imposed. The evolution of the task hi-
erarchy is 3⊲2⊲1 ⇒ 1⊲2⊲3 ⇒ 2⊲1⊲3 ⇒ 1⊲3 ⇒ 1⊲2⊲3.

In the beginning, the tasks, in the priority level decreas-

ing order, are the posture task, the elbow task, and the
end-effector task. Then the end-effector task priority

increases and the posture task priority decreases simul-

taneously. Afterward, the priorities of the end-effector

task and the elbow task are switched. Then the elbow
task is removed. Finally, the elbow task is inserted with

its priority level between those of the end-effector task

and the posture task.

The experiment is carried out first using static task

targets for steady state error analysis, then using a
dynamic end-effector trajectory of a lemniscate shape.

Moreover, the performance of GHC is compared with

the HQP approach [18].

The results corresponding to the use of static task

targets are presented in Fig. 2 to 5. Task errors by us-
ing HQP (Fig. 2) as well as those by using GHC with

different hierarchy rearrangement durations (Fig. 3 and

Fig. 4) are shown. The hierarchy rearrangement dura-
tion is 0.005 seconds in Fig. 3 and 2 seconds in Fig.

4. Fig. 5 shows the integration of the absolute values

of the resulting joint jerks
∑n

i=1

(

∫ t

0

|d3qi|
dt3

dt

)

by using

HQP that performs instantaneous hierarchy rearrange-

ments, as well as by using GHC with faster and slower

hierarchy rearrangements. Steady state task errors for
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Fig. 2 Task errors using HQP, with fixed task targets. Pri-
ority transitions as well as the insertion and deletion of the
elbow task are performed. The hierarchy rearrangement is
instantaneous.

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

t im e(s)

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

t im e(s)

0.0

0.5

1.0

1.5

ta
s
k

 e
rr

o
r

end-effector

elbow

posture

Fig. 3 Evolution of αs (top) and task errors (bottom) using
GHC, with fixed task targets. Priority transitions as well as
the insertion and deletion of the elbow task are performed.
The hierarchy rearrangement duration is 0.005 seconds.

each task hierarchy configuration are shown in Table 1,

where the results using GHC and HQP are included.



Generalized Hierarchical Control 9

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

t im e(s)

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

0.0
0.2
0.4
0.6
0.8
1.0

0 5 10 15 20 25 30

t im e(s)

0.0

0.5

1.0

1.5

ta
s
k

 e
rr

o
r

end-effector

elbow

posture

Fig. 4 Evolution of αs (top) and task errors (bottom) using
GHC, with fixed task targets. Priority transitions as well as
the insertion and deletion of the elbow task are performed.
The hierarchy rearrangement duration is 2 seconds.
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Fig. 5 Integration of the absolute values of joint jerks using
GHC and HQP, with fixed task targets. The value is increased
each time the task hierarchy is changed. GHC generates less
amount of joint jerks by performing slower hierarchy rear-
rangements; while HQP, which perform instantaneous hierar-
chy rearrangements generates larger joint jerks.

GHC provides similar results in terms of task errors

compared with HQP, as can be observed in Fig. 3 and

Table 1 Steady state task errors for each task hierarchy con-
figuration

priority 3 ⊲ 2 ⊲ 1
task 1 2 3
GHC 0.46 0.40 2.2e-30
HQP 0.46 0.40 2.8e-10

priority 1 ⊲ 2 ⊲ 3
task 1 2 3
GHC 1.0e-6 0.46 1.8
HQP 4.5e-7 0.46 1.8

priority 2 ⊲ 1 ⊲ 3
task 1 2 3
GHC 0.42 2.6e-6 3.0
HQP 0.42 2.7e-6 3.1

priority 1 ⊲ 3
task 1 2 3
GHC 3.9e-6 0.55 0.79
HQP 4.5e-6 0.55 0.79

Fig. 6 The desired and the resulting end-effector trajectory
provided by GHC, when the end-effector task has the highest
priority. The end-effector moves along the lemniscate-shaped
trajectory with an orbital period of 2π seconds.

2. The results of task errors in Table 1 show that both
GHC and HQP can ensure strict priority. When con-

trolled by either GHC or HQP, errors of the tasks with

the highest priority are very small. Moreover, GHC can
perform slower and smoother hierarchy rearrangements

that require less joint jerks. This can be seen in Fig. 5,

which shows that GHC can generate smaller joint jerks

than HQP does.

When a lemniscate-shaped end-effector trajectory is

used, the end-effector task is to move along this lem-

niscate orbit periodically, with an orbital period of 2π
seconds. The desired and the resulting end-effector tra-

jectory is shown in Fig. 6. The resulting task errors

using GHC is presented in Fig. 7. The resulting joint

velocities and joint torques are shown in Fig. 8. A video
of this experiment that presents the main features of

GHC (priority transitions, the insertion and deletion of

tasks) is attached to this paper.
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Fig. 7 Task errors using GHC, with the end-effector tracking
a lemniscate-shaped trajectory. Desired priority transitions
as well as the insertion and deletion of the elbow task are
achieved. Strict priorities are maintained.
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Fig. 8 Evolution of joint velocities and joint torques. The
upper and lower bounds of q̇ are 1.2 rad/s and −1.2 rad/s,
respectively. The upper and lower bounds of τ are 1.5 N ·m
and −1.5 N · m, respectively. These bounds are voluntarily
set low in order to easily illustrate the fact that they are
respected.

Fig. 7 shows that when the end-effector task has the

highest priority, it can track its desired trajectory pre-

cisely. Moreover, Fig. 8 shows that joint velocity and
joint torque limits are respected, which demonstrate

that GHC can maintain desired task hierarchies while

satisfying constraints.

6.2 Hierarchical control with a force task

In this experiment, the end-effector task is to move to-
wards a plane, and then to apply a desired contact force

against the plane in the vertical direction (see Fig. 9).

Before the establishment of the contact with the plane,

Fig. 9 The target end-effector position is on the plane. The
end-effector starts from an initial position, which is above the
target position and pointing upwards, then it should move
towards the target position, and then apply desired forces to
the plane.

the end-effector task (task 1) is a motion task. Once the

contact is established, the end-effector task is a com-

position of a position subtask in the horizontal plane
(task 1a) and a force subtask in the vertical direction

(task 1b). The force task is transformed into a motion

task by applying (3). The evolution of task hierarchy is
2⊲1⊲3 ⇒ 1⊲2⊲3. At the beginning of this experiment,

the elbow task has the highest priority, and the initial

position of the end-effector is above its target position

but pointing upwards. Then the priorities between the
elbow task and the end-effector task switches. The in-

crease of the priority level of the end-effector task allows

the end-effector to point downwards, move towards its
target position on the surface of the plane, and then

push against the plane.

The change of αs, the errors of the elbow position
and the end-effector horizontal position, as well as the

error of the end-effector contact force are shown in

Fig. 10. After the priority switch, the highest prior-

ity of the end-effector task allows the controlled frame
to achieve its target position and to follow its contact

force reference after the contact establishment, except

for the impact peak at the moment when the contact
is established between the two rigid bodies. This re-

sult illustrates the fact that the highest priority of the

end-effector task, including both the horizontal posi-
tion control component and the vertical force control

component, is maintained.

6.3 Control with a non-strict hierarchy

In the previous experiments, non-strict priorities are

used only in the transition phase. Experiments here

handle constant non-strict priorities by using GHC. The

elbow task and the end-effector task are considered,
with α12 being set to a value between 0 and 1. Fig.

11 shows the task errors with respect to different val-

ues of α12. It can be seen in this figure that by setting
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Fig. 10 Results of contact force control. The top figure shows
the change of αs. The figure in the middle shows the end-
effector position error in the horizontal plane as well as the
elbow position error. The bottom figure represents the desired
and resulting contact forces between the end-effector and the
plane.
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Fig. 11 Errors of the elbow task and the end-effector task
with respect to their different relative priorities. Three prior-
ity values are applied: α12 = 0.2, α12 = 0.5, and α12 = 0.8.

α12 to certain values between 0 and 1, no task is com-

pletely satisfied and non-strict hierarchies are achieved.
When α12 = 0.5, the errors of the two tasks show more

or less an equal compromise between them. When α12

is increased, the performance of the end-effector task is

reduced in order to improve the performance of the el-
bow task. In fact, the increase of α12 corresponds to the

increase of the elbow task weight with respect to that

of the end-effector when using a weighting strategy.

7 Discussion

In this section, the computation cost of GHC is ana-

lyzed, which shows that the computation time tends

to increase with the number of DoF of the robot and
the number of tasks. For a robot of n DoF perform-

ing k tasks of different priority levels with a total task

dimension of m, the computation cost by using the
HQP solver [11] is dominated by the hierarchical com-

plete orthogonal decomposition, whose cost is equiva-

lent to n2m + nm2 +
k
∑

i=1

(mi − ri)m
2
i , with mi and ri

being respectively the task dimension and the rank of
task Jacobian in the i-th hierarchy. By using the GHC

strategy, the magnitude order of optimization variables

is kn, since an intermediate joint acceleration variable
q̈′
i ∈ R

n is created for each task i. In this case, one level

of QP (13) needs to be solved, so the computation cost

is in O((kn)2m+ knm2 +(m− r)m2), with r being the
rank of the augmented task Jacobian.

The computational cost of the current GHC strat-

egy is sensitive to the number of DoF of the robot and

the number of tasks. For a fixed-based KUKA robot
with 7 DoFs performing n1 motion tasks of different

priority levels, a set of intermediate joint acceleration

variables q̈′ ∈ R
7n1 and the joint torques τ ∈ R

7 needs
to be solved for. For a fixed-based humanoid robot iCub

with 32 DoF performing n2 tasks, the number of vari-

ables would be 32(n2 + 1). Fig. 12 shows the compu-
tation time of using GHC to solve randomly selected

hierarchical control problems for the KUKA robot and

the iCub robot performing different numbers of tasks.

Each control problem consists of the constraint (13b),
a posture task with random joint goal positions, and a

set of 3-dimensional Cartesian motion tasks with ran-

dom goal positions. For the KUKA robot performing
totally 5 tasks, the mean computation time per itera-

tion is 2.7 ms; for the iCub robot performing the same

number of tasks, the mean computation time is 88ms.
These results correspond to a C++ implementation of

the controller on a standard Linux PC.

8 Conclusions and Future Works

This paper proposes a generalized hierarchical control

approach for handling tasks with both strict and non
strict priorities. A generalized projector is developed. It

can precisely regulate how much a task can influence or

be influenced by other tasks through the modulation of

a priority matrix: a task can be completely, partially, or
not at all projected into the null-space of other tasks.

Multiple simultaneous changes of task priorities can be

achieved by using this generalized projector and, using
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Fig. 12 Mean and standard deviation of the computation
time per iteration, when using GHC to solve randomly se-
lected hierarchical control problems for a fixed-based KUKA
robot and a fixed-based iCub robot. Each control problem
consists of a posture task and a set of 3D Cartesian motion
tasks (0 to 4 motion tasks for KUKA and 0 to 6 motion tasks
for iCub), subject to the whole-body equilibrium constraint
(13b).

the same mechanism, tasks can be easily inserted or

deleted. Moreover, the GHC approach can maintain and
switch task priorities while respecting a set of equality

and inequality constraints.

In this work, the GHC approach is illustrated at the
dynamic level; however, the generalized projector intro-

duced here is not restricted to this case. In fact, it can

also be used in other types of controllers, such as a ve-
locity kinematics controller or a quasi-static controller.

The idea is to associate each task with an intermedi-

ate task variable in joint space (q̇′
i, q̈

′
i, τ

′
i, etc.), then

to apply generalized projectors to these task variables,
and finally the global joint space variable is the sum

of each projected task variables(Pi(Ai)q̇
′
i, Pi(Ai)q̈

′
i,

Pi(Ai)τ
′
i, etc.).

Immediate future work includes the reduction of the

computational cost of GHC to achieve real-time control

of complex robots with a high number of DoF. More-
over, the use of robot learning techniques to incremen-

tally learn and improve the tuning of the relative in-

fluence of each task with respect to others is of great

interest.

A Proof of the maintenance of strict

hierarchies represented by standard

lexicographic orders subject to constraints

This section proves that the proposed GHC approach (13)
can maintain strict task hierarchies represented by standard
lexicographic orders while accounting for linear constraints.

Suppose there are nt tasks that should be organized in a
way such that each task i has a strict lower priority than task

i−1 with i = 2, ..., nt. In this case, the generalized projector Pi

for a task i is in fact a null-space projector, which projects
a task Jacobian into the null-space of all the previous i −

1 tasks, and each Ai is an identity matrix. Let each task
objective function be f i = Jix

′

i − xd
i , with x′

i being a joint
space task variable, such as q̇′

i, q̈
′

i, or τ ′

i, etc. Moreover, the
global variable x =

∑

i
Pix

′

i should satisfy linear equality or
inequality constraints Gx ≤ h.

At the first stage, the regulation term is neglected, and
the optimization problem can be written as follows

argmin
x′

(nt)

nt
∑

i=1

∥

∥Jix
′

i − xd
i

∥

∥

2

subject to G

nt
∑

i=1

Pix
′

i ≤ h

(16)

where x′

(nt)
=
{

x′

1,x
′

2, . . .x
′

nt

}

, and the solution to (16) is

denoted as x∗

(nt)
=
{

x∗

1,x
∗

2, . . .x
∗

nt

}

.

When nt = 1, the optimization problem can be written
as

argmin
x′

(1)

∥

∥

∥
J1x

′

(1) − xd
1

∥

∥

∥

2

subject to Gx′

(1) ≤ h.

(17)

The solution to this problem x∗

(1)
is the same as the one to

the problem formulated by HQP.
When nt = k, the optimization problem is formulated as

argmin
x′

(k)

k
∑

i=1

∥

∥Jix
′

i − xd
i

∥

∥

2

subject to G

k
∑

i=1

Pix
′

i ≤ h.

(18)

Suppose the solution x∗

(k)
can maintain the strict task hierar-

chy: if a task k+1 is inserted with lowest priority with respect
to the set of k tasks, then the optimization problem with the
k + 1 tasks can be written as

argmin
x′

(k+1)

k
∑

i=1

∥

∥Jix
′

i − xd
i

∥

∥

2
+
∥

∥Jk+1x
′

k+1 − xd
k+1

∥

∥

2

subject to G

(

k
∑

i=1

Pix
′

i +Pk+1x
′

k+1

)

≤ h.

(19)

As PkPk+1 = Pk+1, the term
k
∑

i=1

Pix
′

i + Pk+1x
′

k+1 in

the constraint in (19) is equivalent to
k−1
∑

i=1

Pix
′

i +Pkςk, with

ςk = x′

k +Pk+1x
′

k+1. (20)

Then problem (19) can be written as

argmin
x′

(k),ςk,xk+1

k−1
∑

i=1

∥

∥Jix
′

i − xd
i

∥

∥

2
+
∥

∥Jkςk − xd
k

∥

∥

2
+

∥

∥Jk+1x
′

k+1 − xd
k+1

∥

∥

2

subject to G

(

k−1
∑

i=1

Pix
′

i +Pkςk

)

≤ h

ςk = x′

k +Pk+1x
′

k+1.

(21)
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x′

k
in (21) is a free variable, and this problem can be separated

into two sub-problems. The first sub-problem is

argmin
x′

(k−1),ςk

k−1
∑

i=1

∥

∥Jix
′

i − xd
i

∥

∥

2
+
∥

∥Jkςk − xd
k

∥

∥

2

subject to G

(

k−1
∑

i=1

Pix
′

i +Pkςk

)

≤ h.

(22)

The optimal solution
k−1
∑

i=1

Pix
∗,′
i + Pkς

∗

k
to this problem is

equivalent to the one of (18). Indeed, these two solutions have
the same effect on task k

Jk

k
∑

i=1

Pix
∗,′
i = Jk

(

k−1
∑

i=1

Pix
∗,′
i +Pkς

∗

k

)

. (23)

To prove (23), one needs to notice that JiPj = 0 with j ≥ i.
The second sub-problem is given by

argmin
xk+1

∥

∥Jk+1x
′

k+1 − xd
k+1

∥

∥

2
. (24)

Therefore, the insertion of a lower priority task k+1 does
not change the optima of the k previous task objectives. In
other words, the strict task hierarchy of an arbitrary number
of tasks subject to linear constraints can be maintained.

We have proved that each lower priority task will not in-
crease the obtained optima of all the previous tasks. The rest
of this proof explains the roles of the regulation term. As
mentioned in Section 5, the use of a regulation term, which
minimizes the norm of each task variable, helps to ensure
the uniqueness of the solution. As each task objective i is as-
signed with the weight ωi = 1, which is much greater than
the weight of the regulation term (ωr << 1), the task vari-
ables are optimized to mainly satisfy task objectives. More-
over, in GHC, this regulation term also helps to improve the
performance of lower priority tasks. Consider k + 1 levels of
tasks to handle, as JiPj = 0 with j ≥ i, the final solution

is
k
∑

i=1

Pix
∗

i + Pk+1x
∗

k+1. Denoting the elements required by

task i as xi,∗
i and the rest elements that are are not effectively

handled by task objective i as x
f,∗
i , the final solution can be

rewritten as S =
k
∑

i=1

Pi
ix

i,∗
i +

k
∑

i=1

P
f
i x

f,∗
i + Pk+1x

∗

k+1, with

Pi
i and P

f
i the columns in Pi that correspond to x

i,∗
i and x

f,∗
i

respectively. The term
k
∑

i=1

P
f
i x

f,∗
i that is not required by the

k previous tasks may contribute to task k + 1 and affect its
task performance. The minimization of the norm of xf

i in the
regulation term improves the performance of task k + 1 by

making S closer to
k
∑

i=1

Pi
ix

i,∗
i +Pk+1x

∗

k+1, where Pi
ix

i,∗
i are

used to perform the k previous tasks and Pk+1x
∗

k+1 is used to

perform the (k+1)-th task in the null-space of all the higher
priority tasks.
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