
Autonomous Robots manuscript No.
(will be inserted by the editor)

Generation of Human Walking Paths

Alessandro Vittorio Papadopoulos · Luca Bascetta · Gianni Ferretti

Received: date / Accepted: date

Abstract This work investigates the way humans plan their
paths in a goal-directed motion, assuming that a person acts
as an optimal controller that plans the path minimizing a
certain (unknown) cost function. Taking this viewpoint, the
problem can be formulated as an inverse optimal control
one, i.e., starting from control and state trajectories one wants
to figure out the cost function used by a person while plan-
ning the path. The so-obtained model can be used to support
the design of safe human-robot interaction systems, as well
as to plan human-like paths for humanoid robots. To test
the envisaged ideas, a set of walking paths of different vol-
unteers were recorded using a motion capture facility. The
collected data were used to compare two solutions to the in-
verse optimal control problem coming from the literature to
a novel one. The obtained results, ranked using the discrete
Fréchet distance, show the effectiveness of the proposed ap-
proach.
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1 Introduction

In the last decade there was an increasing interest of robotic
researchers towards robot co-workers and human-robot co-
existence and cooperation [1,15,40,41,47]. These emerging
research topics have shown their relevance either in the in-
dustrial robotics and in the service robotics scenarios.
In the former, the research aims at removing the fences be-
tween human workers and robots allowing for a fruitful co-
operation, but keeping the interaction safe [8, 36–38, 47]. In
this context, the knowledge of how a human plans a walking
path is of utmost importance, as it allows to predict where
a human is heading to, inferring a related danger level and
triggering a suitable safety reaction. Improving the accuracy
and reliability of the human walking model allows thus to
increase the safety of the system and to reduce the conser-
vatism of the safety controller.
In the latter, humanoid robots are getting closer to humans,
helping impaired and elderly people in their everyday life
duties, or receiving and guiding visitors in museums, exhibi-
tions, and shopping malls [12]. In these contexts, predicting
where a human is heading to, for example to give him the
appropriate description of a picture or suitable advertisings
related to a shop, is still an important issue. Nevertheless, de-
veloping a planner for humanoid robots in such a way that
the planned paths are perceived by humans as human-like
is even more important: increasing the human-likeliness of
the path improves the social acceptance of such machines in
everyday life.

The aforementioned motivations drove the research of
the last decade on investigating how humans plan their walk-
ing paths. Researchers have been focused on the study of
the so-called goal-oriented motion model [3, 5, 16, 30, 33],
i.e., where the humans walk from an initial pose towards a
predefined goal pose, assuming that the process adopted by
humans to plan their walking paths can be represented as the
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solution of an optimal control problem. Adopting this frame-
work, the problem can be converted into the investigation of
the cost function the human is supposed to minimize.

The same framework is addressed in this paper and can
be formulated in more detail as follows: given a set of ex-
perimentally recorded goal-directed walking paths, select a
motion model and a cost function in such a way that the
paths generated as solutions of the optimal control prob-
lems (whose dynamic constraints and optimality criteria are
the aforementioned motion model and cost function), each
one having as initial and final conditions the human pose at
the first and last point of the experimental path, resemble as
much as possible the corresponding experimental ones.

In this paper we extend the work in [32], presenting a
novel cost function that considers the normalized energy and
position of the human with respect to the target. The results
obtained with this cost function are compared to others pre-
sented in the literature, adopting the discrete Fréchet dis-
tance [2] as a metric to assess the similarity of a set of paths,
as opposite to standard approaches that use the Euclidean
one, e.g., [5,22,34]. The overall objective of this work is not
just to identify a motion model and a cost function that can
suitably interpolate a given dataset, but to devise a model
that is able, given a starting and an ending pose, to generate
a human-like walking path.

The approach has been investigated with reference to
about one thousand walking paths, recorded using a six-
camera motion capture system adopted in biomedical pos-
ture and motion analysis. A statistical analysis of the errors
among the paths generated by the identified optimal control
problem and the experimental paths confirmed that the cost
functions here proposed, compared to other cost functions
presented in the literature, allow to achieve a significant im-
provement in the reproduction of the human walking paths.
In addition, the cost functions here proposed are simpler and
allow for a more intuitive and physically-grounded interpre-
tation.
It is worth mentioning that this improvement is not only due
to the proposed cost function. Indeed, one of the major con-
tributions of this work is to consider the problem in the space
domain. This choice allows for a simplification in the solu-
tion of the inverse optimal control problem, and represents
a significant difference with respect to previous approaches,
e.g. [3, 30, 35].
On the other hand, this work does not aim at proposing
a methodology to solve a generic inverse optimal control
problem as on this specific topic a huge amount of liter-
ature exists (the interest reader can make reference, e.g.,
to [10, 14, 16, 21, 23, 25, 42]).

The paper is organised as follows. First, a review of the
literature is discussed in Section 2. The problem statement is
outlined in Section 3. Section 4 describes the experimental

setup used to collect human walking paths. In Section 5 the
reformulation of the locomotor model in the space domain
is introduced, and some cost functions are proposed and dis-
cussed. In Section 6 the solution of the inverse optimal con-
trol problem is outlined. Section 8 presents a comparison,
based on the experimental paths, among the three cost func-
tions described in Section 5 and among the results obtained
with the time and space formulations. Some conclusions are
given in Section 9.

2 Review of the literature

An optimal control approach has been formerly applied in
the field of neuroscience [43] to predict motion of limbs,
i.e., by searching a control input according to some perfor-
mance criterion, such as minimization of jerk [46], torque-
change [45], maximization of smoothness [19], [44], and so
forth.
Such an approach has been first adopted in [6], just to find
the underlying principle explaining the shape of human walk-
ing trajectories. First of all, they assumed that goal-directed
walking may be planned as a whole at trajectory level, rather
than on successive footsteps. This implies that all biome-
chanical issues related to motion generation can be neglected.
As a consequence, they assumed a purely kinematic model
of human locomotion in the form of a unicycle model, ex-
tended to make the curvature a state variable, in order to
prevent curvature discontinuities. Finally, they assumed the
minimization of the control energy as the optimality crite-
rion, which comes down to the minimization of the time
derivative of the curvature for “reasonably” constant for-
ward velocities (this hypothesis has been confirmed by a
statistical analysis). Clothoid arcs were obtained as the ge-
ometric shapes of the walking trajectories from the solution
of the optimal control problem, i.e., minimum-length con-
tinuous curvature paths under a centripetal peak-jerk con-
straint1. The locomotor model has been further extended
in [29] with an additional holonomic (orthogonal) acceler-
ation input, to account for sidewards motion. The cost func-
tion has been also modified with the inclusion of the total
time, and its weights have been selected based on empiri-
cal observations and numerical investigations, while anyway
penalizing the holonomic motion, except for near targets and
similar initial and final orientations.

In [6] and [30] the authors assume that decisions are op-
timal with respect to a certain (unknown) cost function, and
try to minimize the difference between what is observed and
what would have been observed given a candidate cost func-
tion. The cost function is represented as a linear combination
of basis functions weighted by an unknown parameter vec-

1 This conclusion has been however the subject of some criticisms
in [11].
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tor. Their approach infers the parameter vector, solves the
corresponding optimal control problem, predicts what the
resulting observations would be, and then applies derivative-
free optimization to minimize the difference between pre-
dicted and observed trajectories. This approach, however, is
computationally expensive as it requires solving an optimal
control problem at each iteration of the optimizer.

Other approaches are presented in [17], in which the au-
thors implement several algorithms, based on inverse rein-
forcement learning, that do not require solving the forward
problem, and in [13,39], where statistical analysis is applied
over a set of recorded human trajectories, in order to extract
a low dimensional linear model of human walking trajectory
planning. In particular, in [13] Principal Component Anal-
ysis has been applied, showing that the span of in-training
human paths can be reasonably approximated by a linear
subspace of five modes only, while in [39] a statistical tech-
nique based on multilinear algebra has been performed for
studying heterogeneous databases of human motion behav-
iors.

3 Problem statement

It must be emphasized that, in all reviewed approaches, the
focus is on the geometric shape of the human walking tra-
jectories and, in this respect, the role of the forward veloc-
ity should be put in question. On the one hand, it has been
observed that the forward velocity remains nearly constant
along the trajectories [6] (a constant forward velocity has
been even explicitly assumed in [9]). On the other hand, re-
cently, Mombaur et al. [30] have noticed that the objective
function of human locomotion trajectories does not seem to
depend on the forward velocity, and the same observation
has been made for the jerk. Accordingly, it appears reason-
able to assume that a human being plans the shape of her/his
trajectory in the space domain, moving along it at a velocity
consistent with her/his particular biomechanical characteris-
tics. Indeed, it has been observed from the experiments that
different subjects follow similar paths with fairly different
velocities.
This fact has suggested a reformulation of the unicycle model
in the space domain, assuming the natural coordinate as the
independent variable instead of time.

Apart from removing the dependence from the forward
velocity and lowering the number of model inputs to one, the
said reformulation has the advantage of avoiding the need
of rescaling the trajectories [6, 13, 39] since, of course, even
from trial-to-trial, the duration of the motion performed by
different subjects can be different, while producing similar
paths. Moreover, the only input of the reformulated model
is actually the curvature, whose continuity is assured by the
solution of the optimal control problem itself, rather than

from an extension of the unicycle model in order to make
the curvature a state variable [4, 6, 9].

According to the space domain reformulation of the mo-
tion model, in this work walking paths instead of walking
trajectories are considered in the search of an optimality cri-
terion, adapting the approach proposed in [26, 35] and al-
ready considered in [32]. This new formulation of inverse
optimal control assumes that the observations are perfect,
while the system is considered to be only approximately op-
timal. This allows to define residual functions based on the
Karush-Kuhn-Tucker (KKT) necessary conditions for opti-
mality [28]. Then, the inverse optimal control problem can
be solved by minimizing these residual functions, recover-
ing the parameters that govern the cost function. As a re-
sult, the inverse optimal control problem reduces to a simple
least-squares minimization, which can be solved very effi-
ciently.

This approach is also similar to the “analytical” one pre-
sented in [42], which exploits the Lagrange principle – thus
analogous to the necessary conditions of optimality of the
KKT – and solves the weights in closed form. This method
is proven to converge always to a unique global minimum in
the case of linear constraints, reaching very accurate approx-
imations of the true cost function, while being 300 times
faster than other classical approaches. Unfortunately, due to
the nonlinearity in the dynamics of the walking person, the
resulting optimization problem cannot be formulated with
linear constraints.

From the discussion above, it should be clear that there
are two key aspects that have to be considered in order to
address the planning problem.
First, as the problem of selecting a suitable cost function
given a set of experimental paths, can be considered as an
identification problem, collecting a dataset of human walk-
ing paths is a fundamental step. Therefore, the first part of
this paper is dedicated to the description of the experimental
setup used for the process of human path recording.
Second, as the identified cost function should be somehow
general, and not just tailored on the considered set of exper-
imental paths, in the authors’ opinion the procedure adopted
to select the structure and weights of this cost function should
guarantee that the optimality criterion has a straightforward
physical interpretation.

4 Collecting human walking paths

As previously mentioned, collecting human walking paths
is a preliminary but fundamental aspect of this work. In this
section, the experimental setup used to collect the dataset is
thus described.
About one thousand paths were recorded using a six-camera
motion capture system (SMART system by BTS S.p.A.).
Each subject was equipped with 3 light reflective markers,
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two located on the hips – anterior superior iliac spine (asis)
–, and one located on the sacrum (Figure 1). This is not
the optimal placement of markers in order to minimize the
oscillations induced by step alternation, in this respect the
shoulders’ midpoint would be a better choice [3,30], but the
consequences of this choice on the regularity in the recon-
struction of motion were anyway negligible.

asis sx

asis dx

sacrum

Fig. 1: Marker positions and barycenter.

The experimental protocol was inspired to the one adopted
in [6]. More specifically, the study is restricted to the “natu-
ral” forward locomotion, excluding goals located behind the
starting position and goals requiring side-walk steps.
Goals are defined both in position and orientation, and in or-
der to cover at best the accessibility region, a 4m×6m rect-
angle corresponding to the calibrated volume, was sampled
with 144 points defined by 12 positions on a 2D grid (left
side of Figure 2) and 12 orientations each. The final orien-
tation varied from 0 to 2π in intervals of π/6 at each final
position (right side of Figure 2). The starting position and
orientation were always the same (they are shown by a small
arrow in the 2D grid of Figure 2).
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Fig. 2: Final porch positions (left) and orientations (right).

Locomotor trajectories of 7 healthy people (both males
and females), who volunteered for participation in the ex-
periments, were recorded. Their ages, heights, and weights
ranged from 24 to 50 years, from 1.60 to 1.85m, and from
50 to 90kg, respectively. Each subject performed all the 144
trajectories. Subjects walked from the same initial configu-
ration to a randomly selected final configuration. The target
consisted of a porch that could be rotated around a fixed

x1

x2

1m

2.5m

1m

6m

4m

Fig. 3: An example of experiment.

position in order to show the desired final orientation (Fig-
ure 3).
The subjects were instructed to freely cross over this porch
without any spatial constraint relative to the path they might
take. Further, they were allowed to choose their natural walk-
ing speed to perform the task. It is worth noticing that the
trajectory was recorded starting from the time instant when
the subject crossed the (0,0) position in Figure 2. This was
done in order to limit as much as possible holonomic behav-
iors that may arise in the case of the closer targets [30].

A pre-processing phase on the paths collected by the op-
toelectronic system was required in order to remove outliers,
fill in missing data and smooth the curves, interpolating each
marker with a smoothing spline. Then, considering the tri-
angle that the three markers form (Figure 1), the path of
a unique “virtual” marker representing the human walking
path was computed as the barycenter of said triangle.

5 Walking path generation using optimal control

In the framework just introduced, the problem of planning
human walking paths can be formulated as an optimal con-
trol problem, whose dynamic model and cost function have
to be selected in such a way that the planned paths are human-
like, i.e., resemble the paths walked by a human. These two
fundamental aspects, i.e., the selection of the walking model
and of the cost function, are discussed in detail in this sec-
tion.

5.1 Locomotion model

A walking human can be represented by a rectangular box
(Figure 4), that can translate and rotate around an axis par-
allel to the vertical dimension of the box, and crossing the
base in its center.
The pose of the human is thus completely described by the
coordinate of the rectangular box base center P, with respect
to a reference frame fixed on the ground plane, and by the
angle formed by the tangent to the walking path with the
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x1

x2

Fig. 4: Formalization of a human walking path.

x1-axis. Then, a human walking path is defined as the curve
followed by the point P through the ground plane.

As far as human path planning is concerned, the complex
activities performed during walking by muscles and brain
in commanding and coordinating many elementary motor
acts can be neglected, and the problem may be considered
from a high-level kinematic model perspective. Following
this approach, the walking human can be modeled [3, 35]
with the unicycle kinematic model

ẋ1 = vcos(x3)

ẋ2 = vsin(x3)

ẋ3 = ω

(1)

where x1, x2 are the Cartesian coordinates of point P, v is the
linear (nonholonomic) velocity along the direction of mo-
tion, x3 is the orientation, and ω is the angular velocity.

A solution of the unicycle kinematic model (1) repre-
sents a trajectory in the Cartesian space, including thus the
geometry of the path and the position of point P over time,
as well.
In the authors’ opinion, however, the problem of generat-
ing human-like walking paths should be addressed focusing
only on the geometry of the path, instead of the complete
trajectory as a function of time. In fact, the forward velocity
v can vary with time along the path and it depends on a large
number of factors [27,31]. As an example, a statistical anal-
ysis of the dataset presented in Section 4 shows that the aver-
age and median walking velocity are very close, i.e., 1.12m/s
and 1.14m/s, respectively, but the walking velocity, even ne-
glecting possible outliers, spans the range 0.61− 1.69m/s,
exhibiting thus a very high variance.
Furthermore, in the absence of obstacles and environmental
stimuli that can trigger unpredictable human reactions, the
velocity v can be considered independent from the geome-
try of the path, as at walking velocity the inertial effects are
almost negligible.
For these reasons, the remaining of this work is focused on
planning only the geometry of the path, assuming that once

a human-like path has been generated, one can superimpose
on this path any desired velocity profile, just holding the
constraint of “natural walking” introduced in [6]. In addi-
tion, leaving out from the estimation the forward velocity,
in principle, reduces the dimension of the inverse optimal
control problem, thus making its solution easier and more
reliable [14, 23].

In order to study the geometry of the path, model (1) can
be rewritten with the natural coordinate s as the independent
variable, avoiding the explicit dependence of the model from
the velocity v, and lowering the number of input variables to
one. Thus, if v > 0 along the path, i.e., if the assumption of
“natural walking” introduced in [6] holds, the relation be-
tween the natural coordinate s and time t is given by

s(t) =
∫ t

0
v(τ) dτ

and can be inverted, defining t = t(s). As a consequence,
model (1) can be rewritten as

x′1 = cos(x3)

x′2 = sin(x3)

x′3 = σ

(2)

where σ = ω/v is a new input variable, and the notation ′

represents the derivative with respect to the natural coordi-
nate s: x′ = dx/ds.

Considering now how complex are the activities per-
formed during walking, but how simple are models (1) and (2)
herein introduced, a question naturally arises: is the unicy-
cle model well-suited to describe the dynamics of a human
that is walking in a free space? Or, alternatively, should it be
improved, adding the curvature as a further state variable, as
proposed in [4, 6, 9]2?
In order to reply to this question, it must be first noticed that
in [4, 6, 9] the authors extended the unicycle model (1), in-
cluding the path curvature as a further state variable, in order
to enforce its continuity along the path.
Considering the unicycle model in the space domain (2),
however, it can be easily verified that the path curvature κ

has the following expression

κ =

∣∣∣∣∣∣ x
′
1x′′2− x′2x′′1(
x′21 + x′22

) 3
2

∣∣∣∣∣∣=
∣∣∣∣∣∣x
′
3 cos2 (x3)+ x′3 sin2 (x3)(
sin2 (x3)+ cos2 (x3)

) 3
2

∣∣∣∣∣∣= ∣∣x′3∣∣
being thus equal to the absolute value of the quantity σ , that
in the optimal control problem plays the role of the control
variable.
Further, under mild assumptions concerning the continuity
and differentiability of the model equations and of the cost

2 Note that, considering the assumption of natural forward locomo-
tion, the unicycle and the extended unicycle are the only models that
appeared in the literature on planning human walking paths.
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function, it can be proved that the solution of the optimal
control problem, i.e., the optimal state and control trajecto-
ries, is continuous [20]. The same conclusion can be drawn
even when state constrained problems are considered and/or
when the optimal control is constrained, assuming that it be-
longs to a convex set.
As a consequence, if one considers the walking model in
the space domain, there is no need to introduce an extended
model, as even the simplest one, i.e., model (2), thanks to
the properties of the solution of the optimal control prob-
lem, ensures the continuity of the path curvature.
On the other hand, in order to experimentally assess the va-
lidity of model (2), each experimental path has been com-
pared with the corresponding one obtained integrating the
model fed by the velocities computed using the experimental
data. This comparison was based on the Fréchet metric [2],
that the authors consider the best way to measure the geo-
metrical difference between two curves—a deeper discus-
sion is presented in Section 7.
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Experimental data

Unicycle model

Fig. 5: A comparison between the paths generated using the
unicycle model and the experimental paths: on the left side
the box-plot of the validation error, on the right side the sim-
ulated (green line) and experimental (blue line) paths corre-
sponding to the worst outlier. The ‘o’ and ‘x’ indicate the
initial and final position, respectively.

Fréchet distance [cm]
25th Percentile Median 75th Percentile

0.84785 1.4176 1.7982

Table 1: Statistical validation of the unicycle model.

Figure 5 and Table 1 show the results of a statistical com-
parison between the unicycle model (2) and the path dataset
introduced in Section 4. As it is clearly shown by the values

reported in Table 1, the error is almost negligible, in particu-
lar as it is very close to the resolution of the motion capture
system. The slight difference between the paths generated
by the model and the experimental one is also evident in
the left side of Figure 5, where a path, corresponding to the
worst outlier pointed out by the statistical analysis, is com-
pared with the corresponding experimental one.

5.2 Choosing the cost function

The multiplicity of different approaches to human planning
as an optimal control problem that have been devised in the
literature [3,6,9,10,32,35] reveal that the choice of the cost
function is the most critical issue. In fact, apart from obvious
criteria such as minimization of the energy consumption or
minimization of the distance and the derivative of the curva-
ture, the way humans plan walking paths depends in general
from the situation, from environmental constraints and stim-
uli, etc.
As already discussed in Section 3, this work is focused on
the definition of a cost function that, apart from obviously
being experimentally validated, it should be physically grounded
and as simple as possible. To this extent, three different cost
functions are presented in the following.The results achiev-
able with such cost functions, in generating a human-like
walking path, are compared in Section 8.

5.2.1 Energy-based cost function

In [3, 6, 9, 35] an energy-based (EB) cost function was pro-
posed. Considering the unicycle model in the time domain (1),
this cost function can be rewritten in continuous time as fol-
lows

J =
1
2

∫ T

0

(
αv2 +ω

2) dt (3)

where T is the duration of the trajectory, and α is an un-
known parameter that has to be estimated through the solu-
tion of an inverse optimal control problem. This parameter
governs how much we penalize control effort v relative to
control effort ω .
As previously mentioned, the cost function introduced in [3,
6, 9, 35] is related to the energy needed to perform the path,
and the underlying rationale is that humans wants to mini-
mize it.

5.2.2 Hybrid energy/goal-based cost function

Following the same approach already introduced in [35],
in [32] the authors proposed a new cost function, that is
based on the space domain unicycle model (2), and accounts
either for the energy related to the control effort σ , and for
the distance between the current state and the final state.
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This cost function, we refer to as the hybrid energy/goal-
based (HEGB), can be formulated in continuous time as fol-
lows

J =
1
2

∫ S

0
σ

2 (1+β
T

Γ
2) ds (4)

where S is the length of the path, β T =
[
β1 β2 β3

]
is a set of

unknown parameters that need to be estimated through the
solution of an inverse optimal control problem, and(
Γ

2)T
=
[(

x1− x1g

)2 (x2− x2g

)2 (x3− x3g

)2
]

(
x1g ,x2g ,x3g

)
=: xg being the final pose of the human.

The rationale behind this cost function is that the distance of
the current state from the goal can be interpreted as a space-
varying weight on the control effort σ .

5.2.3 Normalized hybrid energy/goal-based cost function

A new cost function, is here considered, with the aim of sim-
plifying the identification of the β parameters, and of im-
proving the quality of the planned walking paths.
To this extent, two changes are introduced:

1. a reduction of the number of parameters, weighting the
Euclidean distance from the actual to the final human po-
sition instead of separately weight the x1- and x2-distances;

2. a normalisation of the Euclidean and angular distances
with respect to their boundary values.

The modified cost function, we refer to as the normalized
hybrid energy/goal-based (NHEGB), can be thus formulated
as follows

J =
1
2

∫ S

0
σ

2 (1+ γ
T

Γ̃
2) ds (5)

where γT =
[
γ1 γ2

]
is a set of unknown parameters that need

to be estimated through the solution of an inverse optimal
control problem, and

(
Γ̃

2)T
=

[ (
x1− x1g

)2
+
(
x2− x2g

)2(
x1s − x1g

)2
+
(
x2s − x2g

)2

(
x3− x3g

)2(
x3s − x3g

)2

]

(x1s ,x2s ,x3s) =: xs and
(
x1g ,x2g ,x3g

)
=: xg being the initial

and final pose of the human, respectively.

6 Solving the Inverse Optimal Control problem

This section introduces the methodology used to solve the
inverse optimal control problem. This methodology extends
the work in [35], by suitably adapting and applying the solu-
tion of the inverse optimal control problem to the proposed
cost functions.

First of all, model (2) can be discretised yielding
x1(k+1) = x1(k)+∆s(k)cos(x3(k))

x2(k+1) = x2(k)+∆s(k)sin(x3(k))

x3(k+1) = x3(k)+∆s(k)σ(k)

(6)

where ∆s(k) = s(k)− s(k−1) is a discrete space step, and k
is not a time, but a space index.
Considering, for the sake of an example, the cost function (4),
the inverse optimal control problem can be formulated as
follows

min
x(k),σ(k)

1
2

N−1

∑
k=0

σ(k)2 (1+β
T

Γ
2)

∆s(k)

s.t. x(0)−xs = 0

x(N−1)−xg = 0

x1(k+1)− [x1(k)+∆s(k)cos(x3(k))] = 0

x2(k+1)− [x2(k)+∆s(k)sin(x3(k))] = 0

x3(k+1)− [x3(k)+∆s(k)σ(k)] = 0

∀k = 0, . . . ,N−1

(7)

where x =
[
x1 x2 x3

]T is the state vector, xs and xg are the
initial and the final states, respectively, and N is the num-
ber of samples. The only unknown parameter is vector β ,
that, together with Γ , acts as a space-varying weight on the
control effort σ .

Solving the inverse optimal control problem associated
with (7) could be quite complex and computationally ineffi-
cient, due to its nonlinearities. For this reason, in [35] a more
efficient solution, based on the KKT conditions for optimal-
ity, is proposed and here briefly presented.
Let χ =

[
xT σ

]T , f (χ,β )∈R the cost function, and g(χ)∈
Rm the set of constraints.
For a given β , assuming that χ? is a local minimum of prob-
lem (7) and is regular, there exist a unique Lagrange multi-
plier vector λ ? ∈ Rm [28] such that∇χ f (χ?,β )+

m

∑
i=1

λ
?T

i ∇χ gi(χ
?) = 0

g(χ?) = 0
(8)

provided that f (·) and g(·) are continuously differentiable
functions. Equations in (8) are known as the KKT neces-
sary (and sufficient) conditions for equality constraint opti-
mization problems: the first one is the stationarity condition,
while the second equation ensures primal feasibility.
The KKT conditions for the Lagrangian of problem (7) can
be written as

∇(χ,λ )L (χ,β ,λ ) = ∇(χ,λ )

(
f (χ,β )+

m

∑
i=1

λ
T
i gi(χ)

)
= 0

Assuming that the system is only “approximately op-
timal”, while observations are perfect, the inverse optimal
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control problem can be solved by minimizing the residual
function

min
β ,λ

1
2
‖∇(χ,λ )L (χ,β ,λ )‖2 = min

β ,λ

1
2
‖Jz−b‖2 (9)

where z =
[
β λ

]T , while J and b depend on the collected
data.
The same approach can be followed for each of the cost
functions introduced in Section 5.2. The corresponding ex-
pressions for J and b are presented in Appendix.
As can be seen, the initial constrained optimization prob-
lem (7) has been cast into a convex unconstrained least-
squares optimization, which is easier to solve than the ini-
tial constrained optimization one, and reads as the classical
normal equation, i.e., with the solution z? = J†b, where J†

denotes the Moore-Penrose pseudoinverse of J.
One of the main limitations of the approach proposed

in [35], is that there is no guarantee that the value of β ?

resulting from the normal equation is actually positive. In
fact, in many cases, starting from the considered dataset, the
solution is a negative value of β , making the optimization
problem non-convex.
To overcome this problem, the solution of the normal equa-
tion is here taken as the initial guess for the solution of a
new optimization problem, i.e., a constrained version of (9),
which reads as

min
β ,λ

1
2
‖Jz−b‖2

s.t. β ≥ 0
(10)

Problem (10) can be easily solved using any optimization
software, selecting as initial guess the solution obtained with
the normal equation. It is quite intuitive that this modifica-
tion to the optimization problem (9) is simple yet extremely
important.

7 Choosing the performance metric

Another important aspect that must be taken into account
is how the performance of different methods are evaluated,
i.e., which is the similarity metric that is more suited for the
problem.

In the literature, the similarity metric that has been widely
adopted is the Euclidean distance [5, 22, 34]. However, with
this metric, the comparison of different paths depends on the
number of available samples. An extreme case is when two
paths generated by two people are compared. Even if the
geometry of the path is exactly the same, the computed dis-
tance – e.g., the Average Trajectory Errors (ATEs) and Max-
imal Trajectory Errors (MTEs) [5, 34] – is usually greater
than zero, due to the different walking velocities of the two

persons, then due to the different samplings. Even consid-
ering a parametrisation of the two trajectories based on the
natural coordinate, so as to be invariant with respect to the
velocity, is not a viable solution.
Consider, for example, the two curves depicted in Figure 6.
They have been compared on the basis of the Root-Mean-
Square Error (RMSE), of the ATE and the MTE, using a
parametrisation based on the natural coordinate, with or with-
out normalizing the curves with respect to their lengths, and
sampling each curve with a resolution of 1mm, 1cm, and
1dm. The resulting distances are reported in Table 2.
Varying the parametrisation the distance changes less than
10%, but comparing the same metric and parametrisation
with and without length normalization yields an error greater
than 30%. In principle, a good metric should be defined in
such a way to be as much invariant as possible with respect
to the chosen parametrisation.
For this reason, the Fréchet distance3, that is by definition
independent of the chosen parametrisation, is here adopted
to evaluate the similarity between two curves, i.e., to state
how good are different models in replicating human walk-
ing paths.

0 0.5 1 1.5 2 2.5 3

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x1 [m]

x
2
[m

]

Fig. 6: Two paths used to compare different distance metrics.

Furthermore, the Fréchet distance was indeed adopted to
compare parametric curves in different fields, ranging from
morphing and handwriting recognition [18], to protein struc-
ture alignment [24], but especially in computational geom-
etry [2, 7]. In particular, in [2] it has been proven that the
Fréchet distance is a better measure of similarity for curves

3 Given two curves φ : [a,b]→ V and γ : [a′,b′]→ V , their Fréchet
distance is defined as

δF (φ ,γ) = inf
α,β

max
t∈[0,1]

d (φ (α (t)) ,γ (β (t))) (11)

where α and β are arbitrary continuous non-decreasing function from
[0,1] onto [a,b] and [a′,b′] respectively.
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Metric Distance [mm]
RMSE sampling 1mm 37.59
RMSE sampling 1cm 37.56
RMSE sampling 1dm 37.29
RMSE sampling 1mm, normalized length 47.13
RMSE sampling 1cm, normalized length 46.92
RMSE sampling 1dm, normalized length 44.93
ATE sampling 1mm 34.27
ATE sampling 1cm 34.49
ATE sampling 1dm 36.58
ATE sampling 1mm, normalized length 44.00
ATE sampling 1cm, normalized length 43.99
ATE sampling 1dm, normalized length 43.42
MTE sampling 1mm 50.00
MTE sampling 1cm 49.99
MTE sampling 1dm 49.91
MTE sampling 1mm, normalized length 69.60
MTE sampling 1cm, normalized length 69.59
MTE sampling 1dm, normalized length 69.59
Fréchet 49.99

Table 2: Comparison between different distance metrics.

than other alternatives, such as the Hausdorff distance, for
arbitrary point sets.
Though the computation of this distance is not trivial, there
are some efficient techniques to determine its discrete coun-
terpart over a polygonal curve, which has been proven to
be converging to (11) as the number of points goes to infin-
ity [2].

8 Experimental results

This section presents a comparison, based on the experimen-
tal paths introduced in Section 4, among the three cost func-
tions described in Section 5.2.
The geometry of two curves is here compared using the
Fréchet metric.

In order to obtain a general cost function that can be used
for all the possible couple of initial and final position and
orientation different approaches can be adopted. In [42], the
authors compute the residual for each experiment, and they
compute the weights through the solution of least squares
optimization for all of the residuals jointly. However, adopt-
ing this approach would mean losing the advantage of solv-
ing the inverse optimal control problem as the solution of a
system of linear equations. In [30], the general cost function
is obtained on the basis of 5 “scenarios”, i.e., 5 prescribed
initial and goal conditions, and of 5 subjects, for a total of
25 trajectories out of the 2040 trajectories available in their
dataset. Still in [30], the authors performed also experiments
with only a single scenario for 5 subjects (out of the 10 con-
sidered in their study) and they obtained that the “resulting
parameters in all cases were very similar”.
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Worst HEGB: 15.43 cm, traj 16
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Fig. 7: The best and the worst path generated with the EB
and with the HEGB approaches. The solid lines represent
the experimental paths, the dashed lines are the optimal EB
and HEGB solutions, and the ‘o’ and ‘x’ indicate the initial
and final position, respectively.
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Fig. 8: Statistical analysis (box-plot) of the distance be-
tween each generated path and the corresponding experi-
mental one.

In this work, we choose to obtain the general cost func-
tion as follows. For each trajectory in the dataset, the opti-
mal value of the parameters is estimated by solving the in-
verse optimal control problem, considering all the subjects
in the study. Then, the average of the weights is computed,
see Table 3. Then, the solution of the (direct) nonlinear op-
timization problem (10) is performed using an interior point
algorithm [28], and the the cost function with the computed
average of the weights. Other studies in the literature have
used a similar approach, e.g., [4, 6, 35].

It is worth noticing that the average of the weights is
not the solution to any of the solved inverse optimal control
problems, but is a generalization of the obtained weights.
The results presented in this section are thus in validation,
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Cost function parameters
α β1 β2 β3 γ1 γ2

Energy-based 0.06 - - - - -
Hybrid energy/goal-based - 125 42.47 190 - -
Normalized hybrid energy/goal-based - - - - 7.55 0.27

Table 3: Parameters of the cost functions introduced in Section 5.2 estimated from the experimental dataset.
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-0.4

-0.3

-0.2

-0.1

0

0.1

x1 [m]

x
2
[m

]

Median HEGB: 6.82 cm, traj 55

Fig. 9: A comparison among the paths, corresponding to the
median distance error, generated with the EB (red line) and
the HEGB (black line) approach and the corresponding ex-
perimental path (blue line). The ‘o’ and ‘x’ indicate the ini-
tial and final position, respectively.

proving that the robustness of the proposed methodology is
quite high with respect to the chosen weights, that the sen-
sitivity of the weights is fairly low, and also that there is no
overfitting.

First, we consider and compare the paths generated with
the EB and HEGB methods. From Figure 7 it is apparent
that the EB solution is not able to reliably reproduce the col-
lected data. Indeed, though Figure 7 shows only the paths
which are characterized by the minimum and the maximum
error with respect to the experimental ones, this kind of be-
haviour is also present in many other optimized trajectories,
omitted here for space limitations. A concise representation
of the performance of the method presented in [35], in re-
producing the dataset considered herein, is given by the sta-
tistical analysis of the distance between each generated path
and the corresponding experimental one (Figure 8) and by
the comparison of the paths that give rise to the median dis-
tance (Figure 9).

It is opinion of the authors that this kind of error in re-
producing the experimental paths is not only due to the fact
that the chosen value of the cost function parameter α is not
the optimal one, but also to the selected cost function (3)
which is inherently not able to replicate the human way of
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Best NHEGB: 0.26 cm, traj 52
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0

0.5

x2 [m]

Worst NHEGB: 11.79 cm, traj 42

Fig. 10: The best and the worst path generated with cost
function (5). The blue lines represent the experimental paths,
the ‘o’ and ‘x’ indicate the initial and final position, respec-
tively.
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Median NHEGB: 4.28 cm, traj 122

Fig. 11: A comparison between the path, corresponding to
the median distance error, generated with cost function (5)
(black line) and the corresponding experimental path (blue
line). The ‘o’ and ‘x’ indicate the initial and final position,
respectively.

planning paths.
In some cases both the EB and the HEGB methods man-
age to reproduce the human path, but also in those cases
the HEGB method seems to be closer. There are also sev-
eral other cases, however, in which the EB method fails.
The performance improvement achieved by the cost func-
tion (4) is apparent, either from a qualitative comparison
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Fig. 12: Statistical analysis (box-plot) of the distance be-
tween each path, generated with the space method and with
cost function (5), and the corresponding experimental one.

among the paths generated by the two approaches and the
corresponding experimental ones (Figure 7), and from the
statistical analysis of the error distances (Figure 8). Further,
the Fréchet distance between the generated path and the ex-
perimental one (Figure 7) shows that the HEGB method out-
performs the EB approach in the worst case and in the best
case as well.

The results achieved with the HEGB approach, can be
further improved by the cost function (5) herein proposed.
The reduction of the distance error is apparent from the qual-
itative analysis of the best and the worst path (Figure 10),
and of the path corresponding to the median distance error
(Figure 11).
Further, the quantitative analysis shows that the Fréchet dis-
tance between the generated path and the experimental one
has been reduced, with respect to the HEGB method, of 20%
in the case of the worst path and 80% for the best path (Fig-
ures 7 and 10).
Finally, the statistical analysis (Figure 12) confirms that the
previous conclusions hold for the whole dataset. As it is
clearly shown by the comparison between the box-plots ob-
tained with the HEGB and with the NHEGB approaches,
whatever distance measure is considered, the last one yields
a significant improvement in the reproduction of the human
walking paths.

In order to make the comparison between the three cost
functions herein analysed more clear, the results of the sta-
tistical analysis of the distances between each generated path
and the corresponding experimental one are summarized in
Table 4.
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Fig. 13: Close targets
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Fig. 14: Porch at π orientation.

8.1 Discussion

In addition to the presented results, there are some other im-
portant aspects that are worth discussing. The first problem
is how the model behaves in the case of “close targets”. In
fact, in [30] it was proven that in the case of targets really
closed to the initial position, the nonholonomic assumption
may not hold. In this respect, it must be recalled from Sec-
tion 4, that the subjects started walking before entering in the
calibrated volume, thus the initial velocity was greater than
zero. As a consequence, the holonomic assumption holds
from the beginning of the motion.
Figure 13 shows the trajectories for a single target, a single
subject, with all the orientations. Apparently, the proposed
method is able to reproduce accurately all the trajectories.

Another interesting issue is represented in Figure 14.
In principle, when the porch is to be crossed with a final
orientation of x3g = π (see Figure 2), there are two differ-
ent solutions that are equivalent both from the cost function
and from the kinematic model viewpoint. In the figure, solid
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Fréchet distance
[cm]

25th Percentile Median 75th Percentile
Energy-based 6.4652 19.177 51.526
Hybrid energy/goal-based 4.8189 6.8581 9.9262
Normalized hybrid energy/goal-based 2.3489 4.2763 6.6964

Table 4: A comparison between the cost functions introduced in Section 5.2.

lines represent two different paths chosen by the subjects,
while dashed lines are the solution of the NHEGB. Appar-
ently the problem itself, for its inherent symmetry, does not
have a unique solution, independently of the formulation. In
the presented solution, the initial guess is always the human
trajectory, therefore the solution to the optimization prob-
lem is converging to the same side as the human path. On
the other hand, from a practical viewpoint, in these special
cases one can just consider the solution that can be obtained
on one side, and (easily) compute the symmetric case. For
example, if the goal is to avoid the robot to collide with the
walking person, the robot can just compute the solution to
the optimization problem, and if it is in this situation, just
consider also the symmetric case for the planning. Figure 14
shows also the result of this procedure. The NHEGB model
has been used for generating the prediction of the trajectory
on the bottom and its symmetric has been computed. Appar-
ently, the obtained performance are still really good when
compared to the human trajectory.

As a last remark, it is important to remember that main
focus of the manuscript is to accurately describe, and thus
predict, the human trajectory. The obtained model can be
used in different ways. On one hand, one may use such a
model to predict the human trajectory in such way to enforce
a safer human-robot interaction. However, defining suitable
safety regions requires to measure or estimate the velocity
of the person and of the robot, and this is a problem that
can be solved on top of the trajectory obtained with the pre-
sented approach. On the other hand, the model can also be
used for the robot motion planning, producing human-like
trajectories. The motion planner can generate the shape of
the trajectory by solving the optimal control problem, and
then decide a suitable velocity for reaching the final goal.
Human-like trajectory generation becomes critical for im-
proving the acceptance of robots in working environments,
as well as for a safer human-robot interaction [47].

9 Conclusion

An inverse optimal control technique has been applied to in-
vestigate the way humans plan their walking paths in a goal-
directed motion. While this approach is widely considered
in the robotics literature, some novelties are proposed in this
work. First of all, the kinematic model has been reformu-

lated in the space domain, assuming the natural coordinate
as the independent variable, thus avoiding the dependence
from the forward velocity and the need of rescaling the tra-
jectories performed by different subjects. The only input of
the reformulated model is just the curvature, which enters
directly in the cost function. Then, a recently proposed ap-
proach to the solution of the inverse optimal control prob-
lem has been adopted, based on simple least-squares mini-
mization. A novel cost function has been also proposed and
compared with other cost functions proposed in the litera-
ture, adopting the discrete discrete Fréchet distance as a tool
to assess the similarity of a set of paths, a metric that was
never used for the performance measurement in the context
of generation of human walking paths to date. The approach
has been investigated with reference to about one thousand
walking paths, recorded using a six-camera motion capture
system adopted in biomedical posture and motion analysis.
A statistical analysis of the errors among the paths gener-
ated by the identified optimal control problem and the ex-
perimental paths confirmed a significant improvement in the
reproduction of the human walking paths.

A Appendix

This appendix reports the calculation of the matrices required to setup
the least-squares optimization problem (10), for each of the cost func-
tions introduced in Section 5.2.

A.1 Energy-based cost function

First of all, the unicycle time model in (1) can be discretized yielding


x1(k+1) = x1(k)+∆ t(k)v(k)cos(x3(k))
x2(k+1) = x2(k)+∆ t(k)v(k)sin(x3(k))
x3(k+1) = x3(k)+∆ t(k)ω(k)

(12)

where ∆ t is the discrete time step, and x1, x2, x3 are the Cartesian
coordinates of point P and the orientation, respectively.
Then, considering a discretised version of the cost function (3) and the
model in (12), the inverse optimal control problem can be formulated

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Generation of Human Walking Paths 13

as follows

min
x(k),v(k),ω(k)

1
2

N−1

∑
k=0

(
αv(k)2 +ω(k)2)

∆ t(k)

s.t. x(0)−xs = 0

x(N−1)−xg = 0

x1(k+1)− [x1(k)+∆ t(k)v(k)cos(x3(k))] = 0

x2(k+1)− [x2(k)+∆ t(k)v(k)sin(x3(k))] = 0

x3(k+1)− [x3(k)+∆ t(k)ω(k)] = 0

∀k = 0, . . . ,N−1

(13)

where x =
[
x1 x2 x3

]T is the state vector, xs and xg are the initial and
the final states, respectively, and N is the number of samples.
Writing, now, the Lagrangian associated with (13), as described in Sec-
tion 6, the residual functions matrices in (10) become where

z =
[
α λ 0

1 λ 0
2 λ 0

3 · · · λ
N−1
1 λ

N−1
2 λ

N−1
3

]T b =


ζ (0)
ζ (1)

...
ζ (N−1)


and

J =


ψ(0) I5×3 M(0) 05×3 05×3 · · · 05×3
ψ(1) 05×3 −I5×3 M(1) 05×3 · · · 05×3
ψ(2) 05×3 05×3 −I5×3 M(2) · · · 05×3

...
...

...
...

...
. . .

...
ψ(N−1) 05×3 05×3 05×3 05×3 · · · −I5×3


with

ζ (k) =


0
0
0
0

∆ t(k)ω(k)

 , I5×3 =

[
I3×3
02×3

]
, ψ(k) =


0
0
0

∆ t(k)v(k)
0

 ,

M(k) =


1 0 0
0 1 0

−∆ t(k)v(k)sin(x3(k)) ∆ t(k)v(k)cos(x3(k)) 1
∆ t(k)cos(x3(k)) ∆ t(k)cos(x3(k)) 0

0 0 ∆ t(k)

 .

A.2 Hybrid energy/goal-based cost function

Considering a discretised version of the cost function (4) and the dis-
cretized unicycle space model in (6), the inverse optimal control prob-
lem can be formulated as follows

min
x(k),σ(k)

1
2

N−1

∑
k=0

σ(k)2 (1+β
T

Γ
2)

∆s(k)

s.t. x(0)−xs = 0

x(N−1)−xg = 0

x1(k+1)− [x1(k)+∆s(k)cos(x3(k))] = 0

x2(k+1)− [x2(k)+∆s(k)sin(x3(k))] = 0

x3(k+1)− [x3(k)+∆s(k)σ(k)] = 0

∀k = 0, . . . ,N−1

(14)

where x =
[
x1 x2 x3

]T is the state vector, xs and xg are the initial and
the final states, respectively, and N is the number of samples.

Writing, now, the Lagrangian associated with (14), as described in Sec-
tion 6, the residual functions matrices in (10) become

z =
[
β T λ 0

1 λ 0
2 λ 0

3 · · · λ
N−1
1 λ

N−1
2 λ

N−1
3

]T
b =

[
ζ (0)T ζ (1)T · · · ζ (N−1)T

]T
and

J =


ψ(0) I4×3 M(0) 04×3 · · · 04×3
ψ(1) 04×3 −I4×3 M(1) · · · 04×3
ψ(2) 04×3 04×3 −I4×3 · · · 04×3

...
...

...
...

. . .
...

ψ(N−1) 04×3 04×3 04×3 · · · −I4×3


with

ζ (k) =


0
0
0

∆s(k)σ(k)

 , I4×3 =

[
I3×3
01×3

]

ψ(k) =∆s(k)σ(k)·
σ(k)

(
x1(k)− x1g

)
0 0

0 σ(k)
(
x2(k)− x2g

)
0

0 0 σ(k)
(
x3(k)− x3g

)(
x1(k)− x1g

)2 (
x2(k)− x2g

)2 (
x3(k)− x3g

)2



M(k) =


1 0 0
0 1 0

−∆s(k)sin(x3(k)) ∆s(k)cos(x3(k)) 1
0 0 ∆s(k)



A.3 Normalized hybrid energy/goal-based cost function

Considering a discretised version of the cost function (5) and the dis-
cretized unicycle space model in (6), the inverse optimal control prob-
lem can be formulated as follows

min
x(k),σ(k)

1
2

N−1

∑
k=0

σ(k)2 (1+ γ
T

Γ̃
2)

∆s(k)

s.t. x(0)−xs = 0

x(N−1)−xg = 0

x1(k+1)− [x1(k)+∆s(k)cos(x3(k))] = 0

x2(k+1)− [x2(k)+∆s(k)sin(x3(k))] = 0

x3(k+1)− [x3(k)+∆s(k)σ(k)] = 0

∀k = 0, . . . ,N−1

(15)

where x =
[
x1 x2 x3

]T is the state vector, xs and xg are the initial and
the final states, respectively, and N is the number of samples.
Writing, now, the Lagrangian associated with (15), as described in Sec-
tion 6, the residual functions matrices in (10) become

z =
[
γT λ 0

1 λ 0
2 λ 0

3 · · · λ
N−1
1 λ

N−1
2 λ

N−1
3

]T
b =

[
ζ (0)T ζ (1)T · · · ζ (N−1)T

]T
and

J =


ψ(0) I4×3 M(0) 04×3 · · · 04×3
ψ(1) 04×3 −I4×3 M(1) · · · 04×3
ψ(2) 04×3 04×3 −I4×3 · · · 04×3

...
...

...
...

. . .
...

ψ(N−1) 04×3 04×3 04×3 · · · −I4×3


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with

ζ (k) =


0
0
0

∆s(k)σ(k)

 , I4×3 =

[
I3×3
01×3

]
,

and, letting δsg,i = xis − xig , i ∈ {1,2,3} to lighten the notation, the
remaining matrices become

ψ(k) =∆s(k)σ(k)



σ(k)
x1(k)− x1g

δ 2
sg,1 +δ 2

sg,2
0

σ(k)
x2(k)− x2g

δ 2
sg,1 +δ 2

sg,2
0

0 σ(k)
x3(k)− x3g

δ 2
sg,3(

x1(k)− x1g

)2
+
(
x2(k)− x2g

)2

δ 2
sg,1 +δ 2

sg,2

(
x3(k)− x3g

)2

δ 2
sg,3



M(k) =


1 0 0
0 1 0

−σ(k)sin(x3(k)) σ(k)cos(x3(k)) 1
0 0 σ(k)


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