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Abstract In this paper, we develop estimation and

control methods for quickly reacting to collisions be-

tween omnidirectional mobile platforms and their en-

vironment. To enable the full-body detection of exter-

nal forces, we use torque sensors located in the robot’s

drivetrain. Using model based techniques we estimate,

with good precision, the location, direction, and magni-

tude of collision forces, and we develop an admittance

controller that achieves a low effective mass in reac-

tion to them. For experimental testing, we use a facility

containing a calibrated collision dummy and our holo-

nomic mobile platform. We subsequently explore col-

lisions with the dummy colliding against a stationary

base and the base colliding against a stationary dummy.

Overall, we accomplish fast reaction times and a reduc-

tion of impact forces. A proof of concept experiment

presents various parts of the mobile platform, includ-

ing the wheels, colliding safely with humans.

Keywords Mobile Platform · Force Estimation ·
Admittance Control

1 Introduction

As mobile robots progress into service applications, their

environments become less controlled and less organized

compared to traditional industrial use. In these envi-

ronments, collisions will be inevitable, requiring a thor-

ough study of the implications of this type of interaction

as well as potential solutions for safe operation. With

this in mind, we are interested in characterizing the

safety and collision capabilities of statically stable mo-

bile bases moving in cluttered environments. The work
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presented here is the first of which we are aware to

address, in depth, the mitigation of the effects of colli-

sions between these types of sizable robots and objects

or people.

The majority of work addressing mobility in clut-

tered environments has centered around the idea of

avoiding collisions altogether. However, collisions be-

tween robotic manipulators and objects and humans

have been investigated before [9,29]. Push recovery in

humanoid robots allows them to regain balance by step-

ping in the direction of the push [20] or quickly crouch-

ing down [25]. Inherently unstable robots like ball-bots

[18,14] and Segways [19] have been able to easily recover

from pushes and collisions using inertial sensor data. A

four-wheel robotic base with azimuth joint torque sen-

sors [7] has been able to respond to human push inter-

actions, but only when its wheels are properly aligned

with respect to direction of the collision. Also, a non-

holonomic base with springs on the caster wheels was

recently developed [15] and reported to detect pushes

from a human, but with very preliminary results and

without the ability to detect forces in all directions or

detect contacts on the wheels themselves. In this work,

we focus on non-stationary robots, as opposed to fixed

base manipulators. In the field of non-stationary robotic

systems, such as statically or dynamically balancing

mobile bases and legged robots, one of the key defi-

ciencies is the availability of collision reaction methods

that can be used across different platforms. Dynami-

cally balancing mobile bases and humanoid robots rely

on IMU sensing to detect the direction of a fall and

then regain balance along that direction. However, this

type of method is limited to robots which naturally tip

over at the slightest disturbance.

The main objective of this paper is to develop gen-

eral sensing and control methods for quickly reacting
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to collisions in statically stable mobile bases. Specifi-

cally, we develop methods that rely on joint level torque

sensing instead of inertial measurement sensing to de-

termine the direction and magnitude of the collision

forces. If IMUs were used, accelerations would only be

sensed accurately once the robot overcomes static fric-

tion which, for a sizable robot, could be quite large.

Torque sensors, which are mounted next to the wheels,

can quickly detect external forces sooner than IMUs

and therefore are more suitable for quick collision re-

sponse. Equally important is the fact that statically

stable mobile bases can move in any direction or not at

all in response to a collision, whereas dynamically bal-

ancing mobile bases and humanoid robots must move

in the direction of the collision. This ability makes stat-

ically stable mobile bases more flexible when maneuver-

ing in highly constrained environments.

To provide these capabilities, we take the follow-

ing steps: (1) we develop a floating base model with

contact and rolling constraints for an omnidirectional

mobile base; (2) we process torque sensor signals using

those models and statistical techniques; (3) we estimate

roller friction and incorporate it into the constrained

dynamics; (4) we implement a controller to quickly es-

cape from the collisions; (5) we present an experimen-

tal testbed; and (6) we perform experiments including

several calibrated collisions with the testing apparatus,

and a proof of concept experiment in which the robot

moves through a cluttered environment containing peo-

ple against whom it must safely collide.

Overall, our contributions are (1) developing the

first full-body contact sensing scheme for omnidirec-

tional mobile platforms that includes all of the robot’s

body and its wheels, (2) being the first to use floating
base dynamics with contact constraints to estimate con-

tact forces, and (3) being the first to conduct an exten-

sive experimental study on collisions with human-scale

mobile bases.

2 Related Work

2.1 Mobile Platforms with Contact Detection

To be compliant to external forces, mobile robots have

adopted various sensing techniques. One simple way

to detect external forces is by comparing actual and

desired positions [12] or velocities [4]. This method is

easy to implement because it can use the built-in en-

coders on the robot joints or wheels to detect external

forces. However, the ability to detect contacts using this

method depends largely on the closed-loop impedance

chosen for the control law.

Fig. 1 Concept: unexpected collision between a robot and
a person on a bicycle, as presented in our supporting video.

Another means of detecting external forces is phys-

ical force/torque sensors such as strain gauges or op-

toelectronics. This approach has been used in many

mobile platform applications such as anticipating user

intention with a force-based joystick [21], developing a

handle with force/torque sensing capabilities [24], im-

plementing an impedance control law based on force/

torque sensed on a handle [2], and quantifying user

intent and responding with an admittance controller

based on a force/torque sensor mounted on a stick [11,

27]. However, all of these methods rely on detecting

forces and torques at a specific location, such as on a

handle, or joystick. When the user interacts or collides

with other parts of the robot’s body, such robots will

not be able to respond to the applied forces safety.

In [10], a force/torque sensor measures forces be-

tween the mobile robot’s body and an external pro-

tection cover, providing partial safety, but collisions

against the wheels cannot be detected. In [7] they in-

troduce a quasi omni-directional mobile robot that is

compliant to external forces by measuring torques on

the yaw joints of its caster wheels. This technique can

detect collisions on the wheels like ours, but suffers from

singularities which limit both the directions in which it

can detect force and its freedom of motion. In [15] a

sensorized spring system is installed on the frame of

a mobile base with caster wheels and is used for push

interactions. However, the base can respond to forces

only in limited directions and is once more insensitive

to collisions against the wheels.

Other sensing properties have been used for contact

interactions, notably the tilt measured by an inertial

measurement unit on ball-bot robots [18]. This type

of robot, and the associated inertial sensing, have been
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used effectively to handle contact interactions with peo-

ple [14]. However, the main drawback of this method is

that the robot must move in the direction of the distur-

bance or it will fall over. In contrast, non-inertial force

sensing techniques like ours allow a robot to react in

any direction upon collision or force interaction. This

ability might be very useful when producing planned

movements tailored to the external environment.

2.2 Contact Detection via Joint Torque Sensing

Several existing studies use joint torque sensing to de-

tect contact, like us, but only address serial robotic ma-

nipulators. Note that this technique is distinct from the

commonly used multi-axis force/torque sensor located

at the end effector of a manipulator. Many researches

have investigated sensing external forces on all parts

of a manipulator’s body using distributed joint torque

sensors [28,17].

Like our method, this indirect external force sens-

ing requires estimation that considers dynamic effects

such as linkage and motor masses, inertias, momentum,

gravitational effects, and friction. Statistical estimation

methods [6] are used to estimate external forces based

on joint torque sensing [16]. These methods have in-

spired our research, but we note that we have taken

similar approaches for a mobile platform instead of for

a robotic manipulator. A mobile platform has different

dynamics because it has a non-stationary base and its

wheels are in contact with the terrain. Such differences

imply different dynamic models and modifications of

the estimation methods.

2.3 Safety Analysis in Robotics

Pioneering work on safety criteria for physical human-

robot interaction are provided in [29]. In particular,

curves of maximum tolerable static forces and dynamic

impacts on various points of the human body are em-

pirically derived. A method to detect external forces

using motor current measurements and joint states is

proposed, and a viscoelastic skin is utilized to dampen

impacts.

In [31] the positive effects on safety of actuators with

a series elastic compliance are brought up but linked to

lower performance. A double macro-mini actuation ap-

proach is proposed to accomplish safe operation while

maintaining performance, and the automotive indus-

try’s Head Injury Criterion index is used to demon-

strate the benefits of this approach in terms of safety.

A comprehensive experimental study on human-robot

impact is conducted in [9]. This study suggests that the

Head Injury Criterion is not well suited for studying in-

juries resulting from human-robot interaction. Instead,

the authors propose contact forces acting as a proxy to

bone fractures as their injury indicator. The low out-

put inertia achievable with their torque control manip-

ulators is shown to be highly conducive to preventing

injury during collisions.

Also relevant to our work is the study considering

child injury risks conducted in [8]. Extensive experi-

mental data is obtained from a 200Kg mobile robot

moving at speeds of 2Km/h and 6Km/h and colliding

against a robot child dummy fixed to a wall. The head

injury and neck injury criteria are used to study the

consequences of the impacts, and the severity of injury

is expressed by the Abbreviated Injury Scale. Those

criteria are reinforced with analysis of chest deflection

for severity evaluation. In contrast with our work, their

mobile platform is uncontrolled and does not have the

ability to sense contact. This study is focused purely

on impact analysis instead of contact sensing and safe

control.

2.4 Model-Based Control of Omnidirectional Platforms

A mobile platform colliding or interacting with the en-

vironment is not only affected by external forces, but

also by static and dynamic effects such as the robot’s

inertia, its drivetrain and wheel friction, and other me-

chanical effects. [30] considers a simulated system con-

sisting of a 6-DOF omni-directional mobile robot with

caster wheels, and addresses the modeling and control

of motion and internal forces in the wheels. [3] derives

the dynamic equation including the rolling kinematic

constraint for a mobile platform similar to ours, but

uses an oversimplified dynamic friction model with re-

spect to the effects of roller friction. Studies that incor-

porate static friction models include [26,1], but again

these use oversimplified models that ignore omniwheel

and roller dynamics. The studies above are mostly the-

oretical, with few experimental results.

3 System Characterization

3.1 Hardware Setup

To perform experimental studies on human-robot col-

lisions, we have built a series of capable mobile plat-

forms. This study uses the most recent. We began de-

signing mobile bases to provide omnidirectional rough

terrain mobility to humanoid robot upper bodies [22].

The newest iteration of our platform, produced in [12],

replaced the previous drivetrain with a compact design
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Fig. 2 Control Diagram showing how estimated external
force, Fext, is fed through the collision detector and ulti-
mately determines the position controller’s input. When the
robot detects a collision it uses an admittance controller in
place of its usual trajectory to escape the contact as fast as
it can safely move.

that minimized backlash by using belts and pulleys.

Rotary torque sensors in the drivetrain and harmonic

drives on the actuators were incorporated into the base

in [13], enabling accurate force feedback control for

impedance behaviors. The electronics in the current

system improve over that of [13] in that the once cen-

tralized torque sensor signal processing is now divided

into each actuator’s DSP in order to minimize electri-

cal crosstalk. This paper is the first study that uses

the torque sensors on the hardware base for full-body

model-based estimation of the contact forces.

Rotary torque sensors in the wheel drivetrains pro-

duce the unique feature of our base: full-body contact

estimation on all parts of its body, including any part

of the wheels. An alternative would have been to cover

all of a robot’s body with a sensitive skin, but this op-

tion would have left the wheels uncovered and therefore

unable to detect contact. We note that the wheels are

often the first part of the base that collides with unex-

pected objects. Therefore, our solution with three ro-

tary torque sensors in the wheel’s drivetrain is the first

and only one of which we are aware that can respond to

collisions on all parts of the mobile platform. Addition-

ally, the harmonic drives and belt-based drivetrain of

the base minimize backlash and therefore achieve more

accurate force sensing.

3.2 Safety Controller Design

When a mobile base collides with people, two cases can

be previously distinguished: In unconstrained collisions

a person can be pushed away, whereas in fixed collisions

the person is pushed against a wall. In either scenario

our robot moves away from the collision as quickly as

possible to mitigate injury.

Fig. 2 shows our proposed control architecture for

detection of and reaction to collisions. Under normal

circumstances, the controller tracks a trajectory given

by a motion planner or sensor-based algorithm. When

an external force breaches our contact threshold, the

controller switches on an admittance controller. This

admittance controller generates a trajectory that re-

sponds to the sensed external force and rapidly leads

the robot away from the contact. We tested both an

impedance and an admittance controller in this role

during the course of our research, but found the admit-

tance controller to be more responsive.

3.3 Reaction to Collisions

The admittance controller is designed to provide com-

pliance with respect to the external force. The desired

dynamics can be expressed as

Mdesẍ+Bdesẋ = Fext,x(t), (1)

where Mdes and Bdes are the desired mass and damping

of a virtual compliant system, and Fext,x(t) is the time

dependent force disturbance applied to the system. As-

suming the external force is close to a perfect impulse,

i.e. a Dirac delta function, the above equation can be

solved to produce the desired trajectory,

x (t) = x0 +
Fext,x

Bdes

(
1− e−Bdes/Mdes t

)
, (2)

where x0 is the position of the system when the collision

happens. An identical admittance controller operates

on the y degree of freedom.

Our controller attempts to maintain constant yaw

throughout the collision, i.e.

θ(t) = θ0. (3)

Combining the three degrees of freedom, we write the

robot’s full trajectory as

xdes(t) =
(
xdes(t), ydes(t), θdes(t)

)T
. (4)

This trajectory is differentiated and then converted into

a desired joint space trajectory using the constrained

Jacobian, Jc,w given in Eq. (19), i.e.

q̇w,des(t) = Jc,w(t) ẋdes(t), (5)

qw,des(t) = qw,des(t0) +

∫ t

t0

q̇w,des(τ)dτ, (6)

and fed to the PD controller of Fig. 2 to achieve the

intended impedance behavior.
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Fig. 3 Collision Testing Apparatus simulates human contact using a 10kg mass on a slider. This one degree of freedom
system is accelerated via a second weight hanging from an elaborate pulley system, and can also be used to apply a static
force. Motion capture markers attached to the slider and the PU bumper are used to measure their position.

3.4 Collision Testbed

To assess the safety of our mobile platform, we con-

structed a calibrated collision testbed. Following the

collision test procedure used in the automotive industry

[5], we chose a 10kg mass as our leg-form test dummy.

The collision dummy is attached to a sliding system

which provides a single degree of freedom for impact,

and is accelerated by a free falling weight. In Fig. 3

we illustrate details of the test environment. The abso-

lute positions of the dummy and the mobile base are

measured by the Phase Space motion capture system

described in [12]. Four markers on the mobile base mea-

sure its position and two markers on the dummy mea-

sure its linear motion.

3.5 Stiction-Based Bumper

The time requirement for our base to detect colli-

sion and reverse direction is roughly one hundred mil-

liseconds. Keeping the collision time brief works to re-

duce injury, but is insufficient to eliminate it altogether.

Though it is impractical to fully pad a robot, some

padding can drastically reduce the collision forces due

to collision with specific parts of the robot’s body. Yet

reducing the forces makes the problem of detecting the

collision more difficult, and increases the amount of

time before the robot acknowledges an impact. We have

designed a one DOF springloaded bumper with a rela-

tively long travel to study the design of safe padding for

omnidirectional robots. This design features a magnetic

lock at peak bumper extension, which works to allow

earlier detection of a collision, while simultaneously re-

ducing the overall maximum impact force. Details of

the bumper can be found in Fig. 3.

4 Full-Body External Force Estimation

To estimate external forces based on drivetrain torque

sensing, we rely on a model of the actuators, and on the

robot’s kinematics and dynamics. The constrained kine-

matic mapping between the base’s motion and wheel
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Torque

Sensor
Fig. 4 Actuator Model including the torque sensor, mod-
eled as a spring. The two masses m and M represent the mo-
tor inertia, reflected through the gear system, and the load
mass. Motor side friction and load side friction are expressed
as the damping terms B1 and B2, respectively.

motion is used to find the base and omniwheel roller

velocities based on measured wheel velocities. The ac-

tuator model provides a mapping between motion and

expected torque sensor values in the absence of external

forces. This model is trained empirically to better esti-

mate the friction in the omni-wheel rollers. Ultimately

the position, magnitude, and direction of the applied

external forces is estimated based on the deviation of

the observed wheel torques from those predicted by the

force free model, and the kinematics are again invoked

to transform this into the Cartesian frame.

To build an intuition of our method for estimat-

ing external forces, consider the single actuator system

shown in Fig. 4. In this system, the torque sensor is

modeled as a torsional spring, with spring constant k,

and its displacement is proportional to the torque ap-

plied to the sensor. The spring is compressed or ex-

tended through the combined action of the motor, the

wheel’s inertia, and the external environment. Some of

the important variables include the motor’s torque, τm,

its rotor’s mass, as reflected through mechanical gear-

ing, m, the gear friction, B1, the load’s mass (i.e. the

wheel, or the robot itself in the constrained case), M ,

the friction between the wheel and the external envi-

ronment, B2. But most importantly, the torque τenv
includes the effect of the wheel traction on the floor

and any possible external collision with objects or peo-

ple,

τenv = τtrac + τext. (7)

Assuming that the effect of the wheel traction, τtrac can

be modeled, our goal is to estimate the external forces,

τext, based on observed sensor torque τs:

τext = −τtrac +B2 +Mẍ− τs. (8)

This method can then be applied to the estimation

problem of the full base by using the kinematic con-

straint relationships between the wheels and the ground.

4.1 Torque Output Dynamics

To derive wheel and roller kinematics, we consider a

planar scenario where the wheel moves omnidirection-

ally on a flat floor. In [12] we developed the following

equations relating the contribution of the ith wheel’s

angular velocity, q̇w,i, and their omniwheel roller’s an-

gular velocity, q̇r,i, to the Cartesian velocity of the robot

with respect to a fixed inertial frame, ẋ and ẏ:

ẋ = rr q̇r,i cos (θ + φi)−
(
rw q̇w,i −Rθ̇

)
sin (θ + φi) ,

(9)

ẏ = rr q̇r,i sin (θ + φi) +
(
rw q̇w,i −Rθ̇

)
cos (θ + φi) .

(10)

Where, θ is the absolute orientation of the robot’s body,

R is the distance from the center of the robot’s body to

the center of the wheel, rw and rr are the radii of the

wheels and their passive rollers, respectively, and φi is

the angle from a reference wheel to the i-th wheel in

sequential order, i.e. 0◦, 120◦, or 240◦. The kinematics

of q̇w,i and q̇r,i are obtained from Eq. (9)

rw q̇w,i = −ẋ sin (θ + φi) + ẏ cos (θ + φi) +Rθ̇, (11)

rr q̇r,i = ẋ cos (θ + φi) + ẏ sin (θ + φi) . (12)

Expressing these equations in matrix form,

q̇w = Jc,w ẋ, (13)

q̇r = Jr,w ẋ (14)

where

Jc,w ,
1

rw

− sin (θ + φ0) cos (θ + φ0) R

− sin (θ + φ1) cos (θ + φ1) R

− sin (θ + φ2) cos (θ + φ2) R

 ∈ R3×3,

(15)

Jc,r ,
1

rr

cos (θ + φ0) sin (θ + φ0) 0

cos (θ + φ1) sin (θ + φ1) 0

cos (θ + φ2) sin (θ + φ2) 0

 ∈ R3×3,

(16)

are the Jacobian matrices, qw , (qw,0, qw,1, qw,2)T ,

qr , (qr,0, qr,1, qr,2)T , and x , (x, y, θ)T . The sys-

tem’s generalized coordinates combine the wheel and

Cartesian states

q ,
(
xT qT

w qT
r

)T
. (17)

Notice that we not only include wheel rotations, qw,

but also side roller rotations, qr. This representation

contrasts previous work on modeling that we did in [23].

The main advantage, is that the augmented model will

allow us to take into account roller friction which is
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significant with respect to actuator friction. As such,

we will be able to estimate external interaction forces

more precisely.

The mappings given in Eqs. (13) and (14) can be

written as the constraint

Jc q̇ = 0, (18)

with

Jc ,

(
Jc,w −I 0

Jc,r 0 −I

)
∈ R6×9. (19)

Using the above kinematic constraints, one can express

the coupled system dynamics in the familiar form

Aq̈ + B + JT
c λc = UTT, (20)

where A is the mass/inertia generalized tensor, B is a

vector containing the estimated wheel drivetrain fric-

tion and roller to floor friction, and λc is the vector

of Lagrangian multipliers associated with the traction

forces of the wheel, where λc,w enforces the relationship

between Cartesian robot position and wheel angle, and

λc,r enforces the relationship between Cartesian robot

position and omniwheel roller angle. In other words

λc =
(
λT
c,w, λ

T
c,r

)T
. (21)

Additionally, U is the vector mapping motor torques to

generalized forces, and T ∈ R3 is the vector of output

torques on the wheels. As mentioned previously, these

are equivalent to the sensed torques, Ts = T. Values for

the aforementioned matrices are

A =

M 0 0

0 IwI 0

0 0 IrI

 ∈ R9×9, M =

M 0 0

0 M 0

0 0 Ib

 , (22)

B =
(
0 BT

w BT
r

)T ∈ R9, U =
(
0 I 0

)
∈ R3×9, (23)

where M , Ib, Iw, and Ir are the robot’s mass, body in-

ertia, wheel inertia, and roller inertia respectively. The

damping term, B, consists of the damping at the wheel

output (i.e. torque sensor bearings and belt drive), Bw,

and the damping from the side rollers, Br. We note

that the side rollers do not have bearings and consist

of a relatively high friction bushing mechanism. There-

fore, the wheel friction is negligible relative to that of

the side rollers. Thus we estimate only roller friction in

our final controller. Eq. (20) can be decomposed into

separate equations expressing robot’s body, wheel and

roller dynamics as
Mẍ +

(
JT
c,w JT

c,r

)
λc = 0,

Iwq̈w − λc,w = T,

Irq̈r + Br − λc,r = 0.

(24)

Using the second and third equations above, we can

calculate the constraint forces on the wheels and rollers,

λc =

(
Iwq̈w −T

Irq̈r + Br

)
. (25)

Substituting this expression into the first equation of

the equation system (24) we get

Mẍ + JT
c,w (Iwq̈w −T) + JT

c,r (Irq̈r + Br) = 0. (26)

Solving the above for the output torque, T , we get the

nominal torque model

T = J−T
c,w

[
Mẍ + JT

c,r (Irq̈r + Br)
]

+ Iwq̈w. (27)

This model predicts torque sensor values in the absence

of external forces. By comparing the torque sensor data

against this estimate, as in Eq. (8), we will be able to

infer the external forces. But first we must calibrate the

roller friction estimate.

4.2 Empirical Estimation of Roller Damping

As we shown in Eqs. (20) and (23), the damping terms

associated with the output dynamics correspond to

wheel output damping, Bw and roller damping, Br.

Wheel output damping consists of the friction sources

between the torque sensor and the wheel, which corre-

spond to sensor bearings and the belt connecting the

sensor to the wheel. Notice that gear friction is not in-

cluded, as the torque sensor is located after the gears.

When we lift the robot of the ground and rotate the

wheels, the mean value of the torque sensor signal is

close to zero, meaning that the drivetrain output fric-

tion is negligible compared to roller friction. On the

other hand, roller friction is relatively large as the rollers

do not have bearings and therefore endure high friction

when rotating in their shaft. In the next lines we will

explain our procedure to estimate roller damping based

on torque sensor data.

Fig. 5 demonstrates the two experiments under which

the roller friction model was calibrated. In these tests,

joint position controllers for each wheel, simple high

gain servos, push the robot through a nominal path,

and the resulting torque sensor values are measured in

the absence of any external force. In Subfig. 5 (a) we

show an experiment in which wheel 0 moves sinusoidally

with time while the other two wheels remain fixed, re-

sulting in an arc motion of the entire robot. In Subfig.

5 (b) we plot the sinusoidal joint trajectory of wheel 0

and the torque sensor readings from the three wheels.

The torque signals on all wheels show an approximately

square wave shifting phase according to the direction of
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Fig. 5 Torque Signals from Simple Motions are used to calibrate the roller friction model. No external forces are applied
to the robot in this test. The JPos lines represent the motion along the two simple arc trajectories. Torque signals from the
calibrated model are shown to the right of the graphs representing the actual data on which they were trained. Subfigures
(a-c) represent the rotation of the robot about a virtual pivot outside the base of support, while (d-f) show a pivot centered on
Wheel 2. Gray arrows in figures (a) and (d) represent the torque sensed at the wheels, while the black arrows represent wheel
motion. By comparing (b) against (c) and (e) against (f), we can conclude that the expected roller friction torque model at
least partially captures the gross shape of the data.

wheel’s 0 motion. Because of this pattern, we assume

that most of the friction is due to Coulomb effects in-

stead of dynamic friction effects. We approximate this

Coulomb friction in our model using a tanh softening

of the signum function, i.e.

Br,i = Br tanh (α q̇r,i) , (28)

where the magnitude Br and scaling factor α are tun-

able parameters that we adjust based on the empirical

data. To do the tuning, we implemented Eq. (27) in a

software simulation and compared its output to the ex-

perimental data. In that equation, the accelerations of

the wheels, the robot’s body and the side rollers must

be known. We calculate them using the wheel trajecto-

ries, qw,0 = 3/2− 3/2cos(2πωt), qw,1 = qw,2 = 0, which

can be easily differentiated twice to obtain q̈w. To ob-

tain the robot’s body acceleration we use the inverse of

Eq. (13) and take the second derivative, yielding

ẍ = J−1
c,wq̈w + J̇−1

c,w q̇w. (29)

Eq. 14 then provides the roller accelerations

q̈r = Jr,wẍ + J̇r,wẋ. (30)
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Plugging these values into the simulation of Eq. (27),

with Br given by the model of Eq. (28) we searched over

Br and α until the simulation matched the real data.

In Fig. 5 (c) we show the result of the simulation using

Eq. (27) which can be compared to the real data of Fig.

5 (b). Our final model parameters were Br = 0.2Nm

and α = 0.4.

To further validate the procedure we conducted a

second estimation process, shown in the Figs. 5 (d), (e)

and (f) in which two wheels of the mobile base track

a sinusoidal trajectory while one of them remains at

a fixed joint position. As we can see, the simulated

torques with the estimated roller friction model of Fig.

5 (f) has a good correspondence to the actual data of

Fig. 5 (e).

4.3 Model-Based Force Estimation

Following the simplified estimation of external torques

from Eq. (8), we modified Eq. (20) to account for ex-

ternal forces, yielding

Aq̈ + B + JT
c λc + JT

extFext = UTT. (31)

where Jext is the Jacobian corresponding to the location

of the external forces, and Fext is an external wrench

containing a Cartesian force and a torque, i.e.

Fext ,
(
Fext,x Fext,y τext

)T
. (32)

The differential kinematics of the point on the exterior

of the body at which the external force is applied can be

expressed in terms of the robot’s differential coordinates

as

ẋext = ẋ + θ̇ iz × d = Jext,bẋ (33)

where xext ,
(
xext yext θext

)T
, θ̇ is the angular veloc-

ity of the base, iz is the unit vector in the vertical, z,

direction, × is the cross product, and d is a vector de-

scribing the distance from the center of the robot to the

collision point. Developing the above equations, we can

define

Jext,b ,

1 0 y − yext
0 1 xext − x
0 0 1

 ∈ R3×3. (34)

Extending Eq. (33) with respect to the full generalized

coordinates yields

ẋext = Jext q̇, with Jext ,
(
Jext,b 03×6

)
. (35)

Using the above expression for Jext in the extended

dynamics of Eq. (31), and neglecting the effect of the

wheel and roller inertias, Iw ≈ 0, and Ir ≈ 0 with

Fig. 6 External Force Estimation is predicated on the
assumption that the external force is a purely translational
push applied to the robot’s surface, as approximated by a tri-
angular prism. The green triangle is the approximated robot
body shape in a horizontal plane, and the perceived contact
point, a red circle, occurs at the first of two intersections be-
tween this triangle and the line of zero external moment.

respect to the robot’s mass, and the effect of the wheel

friction, Bw ≈ 0 with respect to the roller friction, we

get a similar system of equations than that shown in

Eqs. (24), i.e.
Mẍ +

(
JT
c,w JT

c,r

)
λc + JT

ext,bFext = 0,

−λc,w = T,

Br − λc,r = 0.

(36)

Substituting λc , (λc,w, λc,r) on the first equation above

by the values of λc,w and λc,r obtained from the second

and third equations we get

Mẍ− JT
c,w T + JT

c,rBr + JT
ext,bFext = 0. (37)

In the absence of external forces, we can solve for the

torques

T
∣∣
Fext=0

= J−T
c,w

[
Mẍ + JT

c,rBr

]
. (38)

The important point of the mapping above is that

it can be numerically solved using the model and the

acceleration estimate of Eq. (29). On the other hand,

when the robot collides with the environment, the torque

sensors read values according to the dynamics of Eq.

(37). Assuming the output torque is equal to the value

given by the torque sensors, i.e. Ts = T, we can use the

previous two equations to solve for the external forces(
T
∣∣
Fext=0

−Ts

)
= J−T

c,wJ
T
ext,bFext, (39)

which can be written in the alternative form

JT
ext,bFext = JT

c,w

(
T
∣∣
Fext=0

−Ts

)
. (40)

We now make the following simplifying assumptions:
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– The external wrench has no net torque.

– The external wrench is applied at a point on the

triangular prism approximation of the body

– The external wrench is always of a pushing nature

With those premises and the expression of Eq. (34), the

above equation becomes[
Fext,x, Fext,y, (xext − x)Fext,y − (yext − y)Fext,x

]T
= JT

c,w

(
T
∣∣
Fext=0

−Ts

)
. (41)

This equation has four unknowns, {Fext,x, Fext,y, xext,

yext} but only three entries. It is attempting to simul-

taneously solve the external force and its location. Let

us focus on the third entry of the above equation. The

third row can be written in the form

(xext − x)Fext,y − (yext − y)Fext,x = Ib θ̈ −
R

rw

2∑
i=0

τs,i.

(42)

This derivation comes from first comparing Eqs. (37)

and (40), which lead to

JT
c,w

(
T
∣∣
Fext=0

−Ts

)
= Mẍ− JT

c,w T + JT
c,rBr, (43)

and then deriving the third row of the right hand side

of the above equation, yielding

JT
c,w

(
T
∣∣
Fext=0

−Ts

) ∣∣∣∣
row 3

= Ibθ̈ −
R

rw

2∑
i=0

τs,i. (44)

The above results are obtained from the third rows of

the transpose of Eqs. (19) and (16), i.e.

JT
c,w

∣∣
row 3

=
1

rw

(
R R R

)
, (45)

JT
c,r

∣∣
row 3

=
(
0 0 0

)
. (46)

Because Eq. (42) corresponds to a geometric line, the

location of the contact point can be solved using solely

Eq. (42) and our previously stated assumptions. The

line is parallel to the direction of the external force,

Fext, and can be used to find the distance from the cen-

ter of the robot to the intersection of the line with the

robot’s body. The shape of our mobile base can be ap-

proximated as a triangular prism, and its planar section

is a triangle, which is convex. Thus, there are only two

points on its body where the line meets the premises.

Therefore, we solve for the location where the exter-

nal force is applied using those geometric constraints

as shown in Fig. 6.

Once we find the location of the contact point, we

now solve for the external force using the first and sec-

ond row of Eq. (41).

5 Experimental Results and Assessment

Throughout the previous sections we have established

the following infrastructure: (1) full-body collision de-

tection capabilities using constrained models and in-

cluding wheel and side roller dynamics; (2) estimation

of roller damping which is dominant in the behavior of

the output robot dynamics; (3) fast collision response

capabilities by achieving desired impedances through

an admittance controller; (4) an experimental infras-

tructure including, a mobile base with torque sensors

on the wheel drivetrains, a calibrated collision dummy,

and a motion capture system.

The goal of this section is multi-objective: (1) to

characterize the performance of our infrastructure in

terms of accuracy of force detection and the impact lo-

cation, (2) to measure the amount of time that takes our

robot to detect collisions, (3) to measure the amount of

time it takes our robot to respond to collisions once

they have been detected, (4) to poke the robot in var-

ious places to proof that we can detect collisions in all

parts of the robot including its wheels, and (5) to give

an idea of what are the implications of our methodology

for providing safety in human-scale mobile bases.

To do so, we conduct five calibrated experiments

where we measure performance using a combination of

the wheel torque sensor data, the wheel odometry and

the motion capture data on the robot and the collision

dummy. Additionally, we conduct a proof of concept ex-

periment on safety, where the robot roams freely around

people in all sorts of postures and collides with them

safely.

5.1 Detection of External Force and Contact Location

In this experiment we evaluate our method’s ability to

detect the point of contact on the robot’s body, the

direction of the external force, and the magnitude of the

external force. In particular we will use only the wheel

drive-train torque sensors to identify those quantities

without any use of external sensor mechanisms. In other

words, the robot does not utilize motion capture data

or wheel odometry to detect those quantities.

To conduct these tests, we use the infrastructure

depicted in Fig. 3. The horizontally sliding dummy is

connected to a pulley system that runs to an overhead

system with a vertical weight of 1Kg. As a result a con-

stant force of 10N is applied to the slider. In Fig. 7 we

show images of the experimental setup where the slider

is placed in contact with the base before conducting the

estimation process. The robot’s wheels are powered off,

and because of the high friction of the harmonic drives,
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Fig. 7 Estimating Static External Forces using only the torque sensors results in an accurate estimate of their location,
angle, and magnitude. In Subfigures (a-d), the bar on the left side of the image confers an external push of roughly 9 Newtons
onto the robot, above which is overlaid a triangle and a dot. This overlay is meant to reveal the robot’s internal coordinate
system, for clarity. The estimated forces from all four robot positions are shown directionally in Subfigure (f), where they
are represented in the coordinate system of the robot. Subfigure (e) illustrates the magnitude of these forces, in the same
coordinate system, emanating from the origin.

the forces applied by the dummy are not enough to

push the robot away.

Subfigs. 7 (a)-(d) show the procedure that we con-

duct. We first place the robot in different directions and

orientations with respect to the dummy. Using only the

torque sensor data, we proceed to use the force estima-

tion techniques described in Sec. 4 to identify the point

of contact, the direction of the force, and its magnitude.

We repeat the same experiment for 4 different scenar-

ios applying the same amount of force. Without loss

of generality, all the external forces are applied to the

same side of the robot as the robot is symmetrical.

Fig. 7 (e) and (f) shows the results of the estima-

tion process. Subfig. 7 (e) shows that the magnitude

and direction of the estimated forces and Subfig. 7 (f)

shows the contact point and the force direction with re-

spect to the base geometry and orientation. The mag-

nitude of the forces estimated ranges from 5.5N to 10N.
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Fig. 8 Upper Body Collision Testing illustrates the robot’s collision avoidance behavior with respect to the three different
bumper designs when the impact occurs above its center of mass. The magnet bumper impact is shown at three representative
frames in (a), with t = 0.14s representing the peak of force and spring deflection. Subfigure (b) shows the position evolution of
the robot from the instant of contact, and highlights the instant when the robot’s software registered the impact in each of the
three trials. After the initial impact but before the robot recognized the impact, that is, during the detection phase, the force
of impact pushed Trikey backwards. In (c), the measured torque sensor value on the Wheel 0 for each trial is plotted against
the same time range. Note that the initial dip in torque is due the propensity of an upper body impact to tip the robot over,
rolling the wheels forward. By virtue of being a more direct transfer of energy, the PU bumper is detected first, causes more
initial motion, and results in a higher peak torque than the other experiments The faster detection is due to the larger torque,
since external force measurement is based on a moving average filter of the torque sensor signals.

Those values are (0% − 45%) smaller than the 10N of

force applied by the contact dummy. We believe that

the reason is due to stiction of the overall mechani-

cal structures standing between the contact point, the

wheels in contact with the ground, and the pulley sys-

tem connecting the wheel to the torque sensors. The

maximum error in detecting the direction of the forces

is 3.3% with respect to the full circle, or equivalently

12deg over 360deg with a mean value of ±2%. Finally,

the maximum error in detecting the point of contact is

11cm with a mean value of 4.5cm, or equivalently, 18%

of error with a mean value of 7.5% with respect to the

61cm of length of the robot’s side walls.

Overall we accomplish maximum errors of 45% for

the magnitude, 3.3% for the direction and 18% for the

location of the external forces. The good accuracy of

the location and direction of the estimated force can be

leveraged to respond safely to impacts by moving away

from the colliding bodies with precision. The medium

accuracy of the estimated force’s magnitude is prob-

ably due to the mechanical structure and not due to

the estimation strategy. Nonetheless, it is sufficient for

the controller to execute the admittance control model.

However, if we wish to achieve the target impedance

with high precision, the external force’s magnitude will

have to be estimated with higher accuracy. In that case
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improved designs of the mobile robot that minimize

stiction should be sought.

5.2 Collisions with Motionless Robot

In this experiment we evaluate our method’s ability to

not only detect collisions but to quickly react in a man-

ner that is perceived as safe. Moreover, the tests dis-

cussed here will analyze collisions with the mobile base

standing motionless close to the collision dummy. Re-

sponding safely to collisions when the robot is still is

one of the hardest case scenarios that a robot may en-

counter. In such case, the safe response of the robot

solely depends on its ability to estimate the external

forces with accuracy. In contrast, when a robot col-

lides while in motion its controller knows the trajec-

tory where it came from. As such a simple safe response

would be to reverse direction towards that trajectory.

Once more we use the infrastructure of Fig. 3. How-

ever, this time around we connect the pulley system to

a vertical weight of 4.54Kg producing a constant hori-

zontal force of 44.54N on the contact dummy. The con-

tact dummy is also now connected to a sliding weight

of 9.08Kg which constitutes the effective mass that col-

lides with the mobile base. The sliding dummy is re-

leased at a certain distance to the robot and when it col-

lides with the robot it has reached a velocity of 0.5m/s.

The robot is initially at rest and when it detects con-

tact it moves away from the collision in the direction of

the collision.

In Fig. 8 we show the procedure that we conduct.

We first place the robot next to the collision dummy

with the dummy separated from the robot. Once more,

we only use torque sensor data to estimate the direction,

location and magnitude of the collision and respond

to it. We implement the force estimation procedure of

Sec. 4 and the admittance controller of Sec. 3. The de-

sired impedance that we implement for the controller is

Mdes = 2kg and Bdes = 1.6N/m2. The motivation for

these values is first to maximize the reaction speed by

setting a low target mass. However, if we make Mdes

too small, the robot accelerates too quickly in reaction

to the collision and it tips over. Therefore, we decrease

it to just over the limit where it tips over. In order to

select Bdes we follow the subsequent procedure. Using

Eq. (2), the position achieved by the controller on a

particular direction, e.g. x, after impact at time ∞ is

xdes(t→∞) = x0 +
Fext,x

Bdes
. (47)

Based on this equation, we design Bdes such that the

robot moves away by 0.5m upon collision, i.e.

xdes(t→∞) = x0 + 0.5. (48)

Taken into account that we use a threshold of |Fext| =
0.8N to initiate the admittance controller (see Fig. 2),

solving Eq. (47) for these values we getBdes = 0.8/0.5 =

1.6N/m2.

We conducted the collision experiments using three

different materials on the collision dummy: the default

thin polyurethane plastic (PU bumper), a thin poly-

urethane foam with a spring (Spring bumper), and the

same thin polyurethane foam with the spring and a

magnetic latch as described in Subsection 3.5 (Mag-

netic bumper).

Additionally, to compare performance, we conduct

collision tests both in the upper and lower parts of the

mobile base. As shown in Fig. 8 (c), the collision was

detected in 45ms (PU bumper), 95ms (Spring bumper),

and 85ms (Magnet bumper).

In Subfig. 8 (c) we observe that that the estimated

external force in the PU bumper case reaches the reac-

tion threshold at t = 0.05s. As a result, the admittance

controller kicks in causing the robot to move quickly

away. As shown in Subfig. 8 (b), after detecting the

contact, the robot’s change in position seems to hit a

plateau for about 50ms. The reason is due to the robot

accelerating quickly and lifting the front wheel (see Sub-

fig. 8 (a) for that effect). After that plateau, the robot

quickly moves away from the collision.

Let us focus on Subfig. 8 (d). Positive wheel torques

result from the impact forces on the robot and nega-

tive torques result from the robot moving away from

the impact. As we can see, using the spring and mag-

net bumpers reduces the impact torques by about 20%

with respect to the peak value of the PU bumper. Ad-

ditionally, if we focus on Subfig. 8 (b) we can see during
the collision time, t ∈ (0, tdetection), the robot’s trajec-

tory associated with the response to the PU bumper

accelerates much more quickly than that for the spring

or magnetic bumpers. It is this combination of lower

peak force and lower acceleration that will make the

use of the spring or magnetic bumpers safer.

5.3 Collisions with Moving Robot

The setup for this experiment is similar to the one be-

fore. However, the robot now moves towards the rest-

ing contact dummy and produces a collision to which

it needs to respond. This experiment tests the reaction

time and peak torques of the moving robot upon colli-

sion.

The collision dummy is initially at rest with a total

sliding mass of 13.62Kg. The robot moves towards the

dummy and hits it with a velocity of 0.22m/s. This time

around, we only conduct the experiment with the mag-
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Fig. 9 Collision Against a Static Obstacle tests Trikey’s ability to reverse direction when moving at full speed, after an
impact with the magnet bumper. Various stills in (a), including the t = 0.18s frame with maximum spring deflection, illustrate
the experimental procedure. Subfigure (b) plots various reference positions including the position of Trikey itself, the position
of the bumper, the position of the slider, the spring deflection, and the angle of Wheel 0 (times a scaling factor), with all
positions normalized to zero at the instant of collision. Subfigure (c) plots the torque sensor from Wheel 0, the expected Wheel
0 torque sensor value, and the estimated external force. This external force exceeds the predefined collision threshold when
t = 105ms, corresponding to the Detection timestamps in both (b) and (c).

netic bumper. The same estimation and control meth-

ods used in the previous section are applied.

Similarly to the tests before that contain the spring

or magnetic bumper, it takes 105ms to detect the col-

lision threshold. Fig. 9 (c) shows the measured torque

from the torque sensor in Wheel 0 and the magnitude

of the estimated external force.

Overall, the reaction time is similar to the motion-

less experiment before and the peak torque values are

about twice the values we had obtained with the spring

or magnetic bumpers. This increase in value is due

to the robot having an initial velocity which causes a

higher force collision due to the robot’s heavy weight.

5.4 Additional Experiments

In Fig. 10 an experiment involving our mobile base

executing circular arc trajectories while being pushed

away is presented. The trajectory of the mobile base is

recorded using the motion capture system. As we can

see, collisions are promptly detected resulting in the



Title Suppressed Due to Excessive Length 15

-800

-600

-400

-200

0

200

400

600

800

-200 0 200 400 600 800 1000 1200 1400 1600

Y
 (

m
m

)

X (mm)

Fig. 10 Omni-directional Motion with Unplanned Collisions demonstrates Trikey’s full motion capability as it moves
about a 1.5m diameter circle at 0.16m/s. A composite image of several frames, (a) shows the motion, the escapes, and the
human obstacles in the experiment. The trajectory captured by the motion capture system is shown in (b).

robot reacting to them in the opposite direction of the

colliding force.

Finally, as a proof of concept, we conducted an ex-

periment where we let the mobile base move around

performing circular arc trajectories while people pro-

vide it with simulated accidental collisions. Fig. 11 shows

the robot’s reaction to collision with a bicycle, a hand

placed on the floor in the wheel path, and a person lying

down.

6 Conclusions

Mobile robots will not be truly useful until they are

very safe in cluttered environments. We have presented

a methodology for these types of robots to quickly re-

act and achieve low impedance behaviors upon discov-

ering an unexpected collision. It is the first study to

accomplish full-body collision detection on all parts of

a mobile platform.

Our estimation method has been shown to estimate

the contact location of the collisions with 18% error, di-

rection of the contact forces with 3.3% error, and mag-

nitude of those forces with 45% error. The lower accu-

racy of the magnitude is due to mechanical limitations

of the structure of the base and the connection of the

wheel to the torque sensors. Those could be improved

by having a stiffer structure and improved connections

from the wheel to the torque sensor.

Empirically estimating roller dynamics has been key

to enhancing the external force sensing accuracy. We

have chosen to use only model based estimation and

have achieved good precision but feel we could benefit

in the future from statistical methods such as [6]. Our

detection and reaction to collisions rely solely on the

on-board torque sensor data. They do not rely on wheel

odometry or external global pose estimation. As such

they can attain a very fast reaction time.

As shown in the experiment of Fig. 10, the admit-

tance controller developed in Sec. 3 has been effec-

tive at providing the desired impedances. In particu-

lar, it decreased the peak contact torques without tip-

ping over the base. At the same time, the desired closed

loop damping prevents the robot from moveing too far

away from the collision source. These parameters can

be tuned depending on the application.

In the future we would like to conduct experiments

with test dummies that are clamped against a wall.

Such scenario is one of the most dangerous ones. We

would also like to apply safety criteria that compare

the static and dynamic forces of our base to the maxi-

mum tolerable curves obtained from previous empirical

studies. Additionally, we would like to study collisions

of the base at moderately high speeds. Because bases

are heavy and have limited braking ability, their reac-

tion capabilities are similar to those of cars. As such we

would like to apply injury indicators from the automo-

tive industry to explore these types of collisions.
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