Skip to main content
Log in

Constrained decision-making for low-count radiation detection by mobile sensors

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper approaches from an optimal control perspective the problem of fixed-time detection of mobile radioactive sources in transit by means of a collection of mobile sensors. Under simplifying assumptions on the motion and geometry of the source, the sensors, and the surrounding environment, the optimal control problem admits an intuitive, analytic closed-form solution. This solution is obtained thanks to analytic expressions for bounds on the probabilities of detection and false alarm for a Neyman–Pearson detection test. The intuition derived from this analytic solution supports the development of a motion control law that steers (suboptimally) the sensors to a given neighborhood of the suspected source, while navigating among stationary obstacles in their environment. This motion controller closes the loop at the acceleration level of a heterogeneous collection of sensor platforms. Experimental studies with these platforms corroborate the theoretical convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. When \(\Vert x_i - x_t \Vert = 0\), the source is touching the surface of the sensor, and the latter measures exactly half of source’s emitted rays.

  2. We need to note, however, that requiring \(x_i\) to be away from saddle points cannot be guaranteed a priori for all initial conditions; there will be a set of initial conditions (Fig. 3) around the attraction regions of the unstable critical points of \(\varphi _i\) that generate trajectories which cross into \(\big \{ x_i : 1 + \frac{\Vert J_i \nabla _{x_i} \beta \Vert }{\Vert k \beta \nabla _{x_i} J_i - J_i \nabla _{x_i} \beta \Vert } \ge \frac{u_{max}-c}{\max \{\Vert \dot{x}_t\Vert \}} \big \}.\)

  3. In fact, the robot’s manufacturer does not give direct access to the attitude control loops; the roll-pitch-yaw angles are treated as control setpoints by the default firmware on this robot.

  4. This type of behavior is expected, since detection tests of this nature are skewed conservatively on the side of keeping false alarm rates very low. The rationale is that if this is not the case, then human operators will tend to ignore the report of the detection systems.

References

  • Archibold, R. C., & Gladstone, R. (2013). Truck with lethal load is recovered in Mexico. The New York Times, 2013 Dec. 5, pp. A12.

  • Ayanian, N., Kallem, V., & Kumar, V. (2011). Synthesis of feedback controllers for multiple aerial robots with geometric constraints. IEEE/RSJ international conference on intelligent robots and systems, San Francisco, CA (pp. 3126–3131).

  • Brémaud, P. (1981). Point Processes and Queues. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Brennan, S., Mielke, A., & Torney, D. (2005). Radioactive source detection by sensor networks. IEEE Transactions on Nuclear Science, 52, 813–819.

    Article  Google Scholar 

  • Broad, W. J. (2012). The nun who broke into the nuclear sanctum. The New York Times, 2012 Aug. 11, pp. A1.

  • Byrd, R., Moss, J., Priedhorsky, W., Pura, C., Richter, G., Saeger, K., et al. (2005). Nuclear detection to prevent or defeat clandestine nuclear attack. IEEE Sensors Journal, 5, 593–609.

    Article  Google Scholar 

  • Chin, J. C., Rao, N. S. V., Yau, D. K. Y., Shankar, M., Yang, Y., Hou, J. C., et al. (2010). Identification of low-level point radioactive sources using a sensor network. The ACM Transactions on Sensor Networks, 7, 21:1–21:35.

    Article  Google Scholar 

  • Choudhury, S., Scherer, S., & Singh, S. (2013). RRT*-AR: Sampling-based alternate routes planning with applications to autonomous emergency landing of a helicopter. IEEE International Conference on Robotics and Automation.

  • Dimarogonas, D. V., Loizou, S. G., Kyriakopoulos, K. J., & Zavlanos, M. M. (2006). A feedback stabilization and collision avoidance scheme for multiple independent non-point agents. Automatica, 42(2), 229–243.

    Article  MATH  MathSciNet  Google Scholar 

  • Ghaffarkhah, A., & Mostofi, Y. (2009). Communication-aware navigation functions for cooperative target tracking. American Control Conference, St. Louis, MO (pp. 1316–1322).

  • Goncalves, V. M., Pimenta, L. C. A., Maia, C. A., Dutra, B. C. O., & Pereira, G. A. S. (2010). Vector fields for robot navigation along time-varying curves in n-dimensions. IEEE Transactions on Robotics, 26, 647–659.

    Article  Google Scholar 

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.

    Article  Google Scholar 

  • Koditschek, D. E. (1987). Adaptive techniques for mechanical systems. Fifth yale workshop on applications of adaptive systems theory (pp. 259–265).

  • Koditschek, D. E., & Rimon, E. (1990). Robot navigation functions on manifolds with boundary. Advances in Applied Mathematics, 11, 412–442.

    Article  MATH  MathSciNet  Google Scholar 

  • Loizou, S., Tanner, H., Kumar, V., & Kyriakopoulos, K. (2003). Closed loop navigation for mobile agents in dynamic environments. Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 4, pp. 3769–3774).

  • Marble, J., & Bekris, K. (2013). Asymptotically near-optimal planning with probabilistic roadmap spanners. IEEE Transactions on Robotics, 29(2), 432–444.

    Article  Google Scholar 

  • Mellinger, D., Michael, N., & Kumar, V. (2012). Trajectory generation and control for precise aggressive maneuvers with quadrotors. The International Journal of Robotics Research, 31, 664–674.

    Article  Google Scholar 

  • Nemzek, R., Dreicer, J., Torney, D., & Warnock, T. (2004). Distributed sensor networks for detection of mobile radioactive sources. IEEE Transactions on Nuclear Science, 51, 1693–1700.

    Article  Google Scholar 

  • Pahlajani, C. D., Poulakakis, I., & Tanner, H. G. (2014a). Networked decision making for Poisson processes with applications to nuclear detection. IEEE Transactions on Automatic Control, 59, 193–198.

    Article  Google Scholar 

  • Pahlajani, C. D., Sun, J., Poulakakis, I., & Tanner, H. G. (2014b). Error probability bounds for nuclear detection: Improving accuracy through controlled mobility. Automatica, 50(10), 2470–2481.

    Article  MATH  MathSciNet  Google Scholar 

  • Perez, A., Platt, R., Konidaris, G., Kaelbling, L., & Lozano-Pérez, T. (2012). LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics. IEEE international conference on robotics and automation (pp. 2537–2542).

  • Tanner, H., & Boddu, A. (2012). Multiagent navigation functions revisited. IEEE Transactions on Robotics, 28(6), 1346–1359.

    Article  Google Scholar 

  • Wei, H., Lu, W., Zhu, P., Huang, G., Leonard, J., & Ferrari, S. (2014). Visibility-based motion planning for active target tracking and localization. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL (pp. 76–82).

  • Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1879–1884).

Download references

Acknowledgments

Work supported in part by ARL MAST CTA # W911NF-08-2-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Sun.

Appendix

Appendix

To simplify notation, we drop the subscript \(x_i\) from the expressions of the gradient and hessian of the navigation, with the understanding that all these differentiations are with respect to \(x_i\). Similarly, instead of distinguishing the obstacle and navigation function of agent i by writing \(\beta _i\) and \(\varphi _i\), we simply refer to it generically as \(\beta \) and \(\varphi \). We will use the index i to range over obstacles in the environment.

With a slight abuse of notation, we will now think of the free workspace \(\mathcal {P}\) as a subset of \(\mathbb {R}^n\) (instead of just \(\mathbb {R}^3\)); the results established in this section hold irrespectively of the particular value of \(n \in \mathbb {N}_+\). Let \(\partial \mathcal {S}_T = \{x \in \mathbb {R}^n: \Vert x-x_t\Vert =r_t\}\), for a small \(\epsilon >0\) \(\mathcal {B}_i(\epsilon ) \triangleq \{x \in \mathbb {R}^n: 0<\beta _i(x)<\epsilon )\), and (re)define the decomposition of \(\overline{\mathcal {P}}\) into sets \(\partial \mathcal {F}\), \(\mathcal {F}_0(\epsilon )\), \(\mathcal {F}_1(\epsilon )\), \(\mathcal {F}_2(\epsilon )\) and \(\mathcal {W}(\epsilon )\) as follows.

  1. 1.

    the free space boundary

    $$\begin{aligned} \partial \mathcal {F} = \partial \mathcal {P} = \beta ^{-1}(0); \end{aligned}$$
  2. 2.

    the set “near the obstacles”

    $$\begin{aligned} \mathcal {F}_0(\epsilon ) \triangleq \bigcup _{i=1}^M\mathcal {B}_i(\epsilon ) \, {\setminus } \, \partial \mathcal {S}_T ; \end{aligned}$$
  3. 3.

    the set “near the workspace boundary”

    $$\begin{aligned} \mathcal {F}_1(\epsilon ) \triangleq \mathcal {B}_0(\epsilon ) \, {\setminus } \, \left( \partial \mathcal {S}_T \cup \mathcal {F}_0(\epsilon )\right) ; \end{aligned}$$
  4. 4.

    the set “away from the obstacles”

    $$\begin{aligned} \mathcal {F}_2(\epsilon ) \triangleq \mathcal {P} \, {\setminus } \, \left( \partial \mathcal {S}_T \cup \partial \mathcal {F} \cup \mathcal {F}_0(\epsilon ) \cup \mathcal {F}_1(\epsilon )\right) . \end{aligned}$$
  5. 5.

    the set “away from the obstacles and target”

    $$\begin{aligned} \mathcal {W}(\epsilon ) = \mathcal {F}_2(\epsilon )\, {\setminus }\, \mathcal {B}_{x_t}(\delta _t) \end{aligned}$$

Recall that a workspace is called valid, if the obstacles do not overlap with each other and the destination (set).

Proposition 3

If the workspace is valid, any \(x_d \in \partial \mathcal {S}_T\) is a degenerate local minimum of \(\varphi \). A vector v satisfying \({v}^\intercal \;\nabla ^2\varphi (x_d) \; {v} = 0 \) has to be tangent to \(\partial \mathcal {S}_T\).

Proof

Evaluate

and note that since and , it is \(\nabla \varphi ({x_d}) = 0\). Now

Consider arbitrary vector \(v\in \mathbb {R}^n\) and evaluate the quadratic form

$$\begin{aligned} v^\intercal \, \nabla ^2\varphi (x_d) \,v= & {} 8\,\beta ^{-1/k}\, v^\intercal \,(x_d-x_t)(x_d-x_t)^\intercal \,v \\= & {} 8\,\beta ^{-1/k}\,\Vert v^\intercal (x_d-x_t) \Vert ^2 . \end{aligned}$$

This means that \(v^\intercal \, \nabla ^2\varphi ( x_d) \,v\ge 0\) with equality if and only if v is normal to \((x_d-x_t)\), that is, when v is tangent to \(\partial \mathcal {S}_T\). \(\square \)

Proposition 4

If the workspace is valid, all the critical points of \(\varphi \) are in the interior of the free space.

Proof

Let \(x_0\) be a point in \(\partial \mathcal {F}\). Then by definition, \(\beta _i(x_0)=0\) for some \(i \in \{0,\ldots ,M\}\). From the workspace being valid, it follows that \(\beta _j>0\) for all \(j \in \{0,\ldots ,M\}\), \(j \ne i\). Then,

which completes the proof. \(\square \)

Proposition 5

For every \(\epsilon > 0\) there exists a positive integer \(N(\epsilon )\) such that if \(k \ge N(\epsilon )\) then there are no critical points of \(\frac{J^k}{\beta }\) in \(\mathcal {W}(\epsilon )\).

Proof

A sufficient condition for \(\frac{J^k}{\beta }\) not having critical points in \(\mathcal {W}\) is (Koditschek and Rimon 1990, Proposition 3.4)

$$\begin{aligned} k > \frac{J \, \Vert \nabla \beta \Vert }{\beta \, \Vert \nabla J\Vert } . \end{aligned}$$

For this, it is sufficient to have

$$\begin{aligned} k \ge \sup _\mathcal {W} \frac{J}{\Vert \nabla J \Vert } \,\sup _\mathcal {W} \frac{\Vert \nabla \beta \Vert }{\beta } > \frac{J \, \Vert \nabla \beta \Vert }{\beta \, \Vert \nabla J\Vert } . \end{aligned}$$

The existence of a finite bound of \(\sup _\mathcal {W} \frac{J}{\Vert \nabla J \Vert } \,\sup _\mathcal {W} \frac{\Vert \nabla \beta \Vert }{\beta }\) can be established analytically as follows.

$$\begin{aligned} \sup _\mathcal {W} \frac{J}{\Vert \nabla J\Vert }= & {} \sup _\mathcal {W} \frac{\big (\Vert x-x_t\Vert ^2-r_t^2\big )^2}{4\Vert x-x_t\Vert ^3-4r_t^2\Vert x-x_t\Vert } \\= & {} \sup _\mathcal {W}\frac{\Vert x-x_t\Vert ^2-r_t^2}{4\Vert x-x_t\Vert } . \end{aligned}$$

Since \(\Vert x-x_t\Vert \) is bounded from below and above in \(\mathcal {W}\), and \(\inf _\mathcal {W} \Vert x-x_t\Vert = \delta _t\), it is ensured that \(\sup _\mathcal {W} \frac{J}{\Vert \nabla J\Vert }\) is finite. For the other bound, we have

$$\begin{aligned} \frac{\Vert \nabla \beta \Vert }{\beta }< & {} \sup _\mathcal {W} \frac{\Vert \nabla \beta \Vert }{\beta } \nonumber \\\le & {} \sup _\mathcal {W} \sum _{i=0}^M \frac{\Vert \nabla \beta _i\Vert }{\beta _i} \nonumber \\\le & {} \frac{2}{\epsilon }\left[ \rho _0 + \sum _{i=1}^M \sup _\mathcal {W} \Vert x-o_i \Vert \right] \end{aligned}$$
(17)

The strict inequality is due to the fact that \(\Vert x\Vert < \rho _0\) for any point in \(\mathcal {W}\). Equation (17) implies that \(\sup _\mathcal {W} \frac{\Vert \nabla \beta \Vert }{\beta } \) exists and is bounded. Thus, a choice of a sufficiently large \(k \ge N(\epsilon )\) would be

$$\begin{aligned} N(\epsilon ) := \frac{1}{\epsilon } \sup _\mathcal {W} \left\{ \frac{\Vert x-x_t\Vert ^2-r_t^2}{2\Vert x-x_t\Vert } \right\} \left( \rho _0+ \sum _{i=1}^M \sup _\mathcal {W} \Vert x-o_i \Vert \right) . \nonumber \\ \end{aligned}$$
(18)

The proof is thus completed. \(\square \)

Proposition 6

For any valid workspace, there exists an \(\epsilon _0>0\) such that \(\frac{J^k}{\beta }\) has no local minima in \(\mathcal {F}_0(\epsilon )\), as long as \(\epsilon < \epsilon _0\).

Proof

The analysis focuses on \(\mathcal {F}_0(\epsilon )\), and that implies that for any critical point \(x_c \in \mathcal {F}_0(\epsilon )\), for some i we will have \(x_c \in \mathcal {B}_i(\epsilon )\); therefore, \(0<\beta _i(x_c)<\epsilon \). The validity of the workspace guarantees that \(\Vert o_i-x_t\Vert >r_t+\rho _i+\epsilon _t\). Because of this, that particular ball \(\mathcal {B}_i(\epsilon )\) is bounded away from \(\partial \mathcal {S}_T\): for any \(x \in \mathcal {B}_i(\epsilon )\), it is \(\Vert x-x_t\Vert >r_t\) as long as \(0<\Vert x-o_i\Vert -\rho _i< \sqrt{\epsilon +\rho _i^2}-\rho _i< \epsilon _t <\Vert o_i-x_t\Vert -r_t-\rho _i\). Since \(x_c\) is a critical point, \(k\beta \, \nabla J = J \;\nabla \beta \) at \(x_c\). Note that everywhere in \(\mathcal {F}_0(\epsilon )\), \(J \ne 0\) and \(\beta \ne 0\). Therefore, \(\nabla J\) is aligned with \(\nabla \beta \). Using the concept of the omitted product (Koditschek and Rimon 1990)

$$\begin{aligned} \bar{\beta }_i \triangleq \prod _{j=0,\,j\ne i}^M \beta _j \end{aligned}$$

vector \( \nabla \beta \) expands to

$$\begin{aligned} \nabla \beta= & {} \sum _{j=1}^M 2(x_c-o_j)\bar{\beta }_j - 2 \bar{\beta }_0 x_c \\= & {} 2(x_c-o_i)\bar{\beta }_i+2 \beta _i \sum _{j=1,j\ne i}^M (x_c-o_j) \;\frac{\bar{\beta }_j}{\beta _i} - 2\bar{\beta }_0\,x_c \end{aligned}$$

and by defining

$$\begin{aligned} \alpha _i\triangleq 2\!\!\sum _{j=1,j\ne i}^M (x_c-o_j)\,\frac{\bar{\beta }_j}{\beta _i} -2\frac{\bar{\beta }_0}{\beta _i}\,x_c \end{aligned}$$

which is a vector independent from \(\epsilon \), and bounded in \(\mathcal {F}_0(\epsilon )\), one has

$$\begin{aligned} \nabla \beta = 2(x_c-o_i)\bar{\beta }_i+\beta _i \,\alpha _i . \end{aligned}$$

From \(k\beta \, \nabla J = J \;\nabla \beta \) at \(x_c\) it now follows that

$$\begin{aligned} \nabla J= & {} \frac{J}{k\beta }\nabla \beta \\\iff & {} 4\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) (x_c-x_t) \\= & {} \frac{J}{k\beta }\left[ 2(x_c-o_i)\bar{\beta }_i+\beta _i \,\alpha _i\right] \end{aligned}$$

which leads to

$$\begin{aligned} x_c-x_t=\frac{\Vert x_c-x_t\Vert ^2-r_t^2}{4}\left( 2\frac{x_c-o_i}{k\beta _i}+\frac{\alpha _i}{k\bar{\beta }_i} \right) . \end{aligned}$$
(19)

If one now sets

$$\begin{aligned} C_k\triangleq \sup _\mathcal {W}\left\{ \frac{\Vert x_c-x_t\Vert ^2-r_t^2}{2\Vert x_c-x_t\Vert }\right\} \Big (\rho _0+\sum _{i=1}^M\sup _\mathcal {W}\Vert x_c-o_i\Vert \Big ) \end{aligned}$$

then according to (18) in the proof of Proposition 5, a suitable choice of k would be

$$\begin{aligned} k := \frac{C_k}{\epsilon } \end{aligned}$$

in which case (19) becomes

$$\begin{aligned} x_c-x_t=\frac{\epsilon (\Vert x_c-x_t\Vert ^2-r_t^2)}{4C_k}\left( 2\frac{x_c-o_i}{\beta _i}+\frac{\alpha _i}{\bar{\beta }_i} \right) . \end{aligned}$$
(20)

Taking the inner product of both sides of \(k\beta \nabla J = J \nabla \beta \) with \(\nabla J\) yields

$$\begin{aligned}&k\beta \nabla J^\intercal \, \nabla J = J\; \nabla \beta ^\intercal \, \nabla J \nonumber \\&\quad \implies k \beta = \frac{\bar{\beta }_i \,\nabla \beta _i^\intercal \, \nabla J + \beta _i \,\nabla \bar{\beta }_i^\intercal \, \nabla J}{16 \Vert x_c-x_t\Vert ^2} \end{aligned}$$
(21)

From this point, one can then prove that the critical point of \(\frac{J^k}{\beta }\) is not a local minimum by showing that \( \nabla ^2\frac{J^k}{\beta }\) has at least one negative eigenvalue at that point. (The procedure follows the exact same steps as Koditschek and Rimon 1990, Proposition 3.6.) Essentially, it amounts to using any vector \(\hat{v}\) orthogonal to \(\frac{\nabla \beta _i}{\Vert \nabla \beta _i \Vert }\) as a test vector, and showing that at \(x_c\) and for small enough \(\epsilon \), \(\hat{v}^\intercal \; \nabla ^2\frac{J^k}{\beta }\; \hat{v} < 0\). The process in detail is as follows:

(22)

To determine the sign of the far right side of (22), perform the expansion of \(\hat{v}^\intercal \; \nabla ^2J \; \hat{v} \) into

$$\begin{aligned}&\hat{v}^\intercal \; \Big [4\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) \mathbf{I}+8(x_c-x_t)(x_c-x_t)^\intercal \Big ] \; \hat{v} \nonumber \\&\quad =4\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) + 8 \,\hat{v}^\intercal \; (x_c-x_t)(x_c-x_t)^\intercal \; \hat{v} \nonumber \\&\quad =4\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) +8 \left( \hat{v}^\intercal (x_c-x_t)\right) ^2, \end{aligned}$$
(23)

where \(\mathbf I\) denotes the identity matrix, and plug (20) into (23), to express \(\hat{v}^\intercal \; \nabla ^2J \; \hat{v}\) in the form

$$\begin{aligned}&4\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) \nonumber \\&\qquad +\, 8\left| \hat{v}^\intercal \, \frac{\epsilon \left( \Vert x_c-x_t\Vert ^2-r_t^2\right) }{4C_k}\Big (2\frac{x_c-o_i}{\beta _i}+\frac{\alpha _i}{\bar{\beta }_i} \Big )\right| ^2 \nonumber \\&\quad =4\sqrt{J}+\frac{2\epsilon \sqrt{J}\; |\hat{v}^\intercal \alpha _i|^2}{C_k\bar{\beta }_i}. \end{aligned}$$
(24)

where \(\hat{v}^\intercal (x_c-o_i)=0\) and \(\sqrt{J}\) is substituted for \(\Vert x_c-x_t\Vert ^2-r_t^2\) (for brevity), since in \(\mathcal {F}_0(\epsilon )\) it holds \(\Vert x_c-x_t\Vert >r_t\).

Given now that the second term in (22) can be made arbitrarily small by choosing \(\epsilon > \beta _i\), one can establish the negative definiteness of (22) by ensuring that the first term is strictly below zero. The second factor in the first term in (22) can be expanded

$$\begin{aligned}&\frac{\hat{v}^\intercal \; \nabla ^2J \; \hat{v}}{16\Vert x_c-x_t\Vert ^2}\; \nabla \beta _i^\intercal \,\nabla J-2J \\&\quad \mathop {=}\limits ^{(24)} \frac{2\sqrt{J}+\frac{\epsilon \sqrt{J}}{C_k\bar{\beta }_i}|\hat{v}^T\alpha _i|^2}{8\Vert x_c-x_t\Vert ^2}\; 2(x_c-o_i) \, 4(x_c-x_t)\sqrt{J}-2J \\&\quad = 2J\left[ \frac{(x_c-o_i)^\intercal (x_c-x_t)}{ \Vert x_c-x_t \Vert ^2}-1\right] \\&\qquad + \,\frac{\epsilon J|\hat{v}^\intercal \alpha _i|^2}{C_k\bar{\beta }_i\Vert x_c-x_t\Vert ^2}\;(x_c-o_i)^\intercal (x_c-x_t)\\&\quad =\frac{ 2J (x_t-o_i)^\intercal (x_c-x_t)}{\Vert x_c-x_t\Vert ^2}+ \frac{\epsilon J |\hat{v}^\intercal \alpha _i|^2\; (x_c-o_i)^\intercal (x_c-x_t)}{C_k\bar{\beta }_i\Vert x_c-x_t\Vert ^2} \end{aligned}$$

and by applying known relations (Koditschek and Rimon 1990, Lemma 3.5) one arrives at

$$\begin{aligned}&\frac{\hat{v}^\intercal \; \nabla ^2J \; \hat{v}}{16\Vert x_c-x_t\Vert ^2}\; \nabla \beta _i^\intercal \,\nabla J-2J \nonumber \\&\quad \le \frac{2J \Vert x_t-o_i\Vert \, \left( \sqrt{\epsilon +\rho _i^2}-\Vert x_t-o_i\Vert \right) }{\Vert x_c-x_t\Vert ^2}\nonumber \\&\qquad +\, \epsilon \sup _{\mathcal {F}_0(\epsilon )} \frac{J|\hat{v}^T\alpha _i|^2\;(x_c-o_i)^\intercal (x_c-x_t)}{C_k\bar{\beta }_i\Vert x_c-x_t\Vert ^2} . \end{aligned}$$
(25)

At this point, (25) is used in (22) to upper bound the left hand side of (22)

Now choosing \(\epsilon \) appropriately small, the second term can be made sufficiently small so that the sign of the first term dominates. The sign of the latter is determined by the expression \(\sqrt{\epsilon +\rho _i^2}-\Vert x_t-o_i\Vert \), which for small \(\epsilon \) approaches \(\rho _i-\Vert x_t-o_i\Vert \), which is guaranteed negative by the validity of the workspace. (The target \(x_t\) is \((r_t+\rho _i)\) away from the center of obstacle i.) \(\square \)

Proposition 7

If \(k \ge \frac{C_k}{\epsilon }\), then there exists an \(\epsilon _1 >0\) such that \(\hat{\varphi }=\frac{J^k}{\beta }\) has no critical points on \(\mathcal {F}_1(\epsilon )\), as long as \(\epsilon < \epsilon _1\).

Proof

The set \(\mathcal {F}_1(\epsilon )\) expresses the neighborhood of the workspace (outer) boundary. Select \(\epsilon \) small enough so that the \(\mathcal {B}_0(\epsilon )\) neighborhood of the outer boundary is disjoint from the \(r_t\)-neighborhood of the target: \( \beta _0 < \epsilon <\rho _0^2-(\Vert x_t\Vert +r_t)^2 \). Then any critical point \(x_c \in \mathcal {F}_1(\epsilon )\) will satisfy \( \beta _0(x_c)= \rho _0 ^2-\Vert x_c\Vert ^2<\epsilon \), implying \( \Vert x_c\Vert >\Vert x_t\Vert +r_t \). Then in \(\mathcal {B}_0(\epsilon )\)

$$\begin{aligned} \nabla J^\intercal \, \nabla \beta _0 =&\,4\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) (x_c-x_t)^\intercal \, (-2x_c) \nonumber \\ =&\,8\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) \left( x_t^\intercal \,x_c - \Vert x_c\Vert ^2\right) \nonumber \\ \le&\,8\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) \left( \Vert x_c\Vert \Vert x_t\Vert - \Vert x_c\Vert ^2 \right) \nonumber \\ =&\, 8\left( \Vert x_c-x_t\Vert ^2-r_t^2\right) \,\Vert x_c\Vert \, ( \Vert x_t\Vert - \Vert x_c\Vert ) \nonumber \\ <&\,0. \end{aligned}$$

By choosing \(\epsilon \) small enough, we can ensure that \(\nabla \hat{\varphi }\) does not vanish in \(\mathcal {F}_1(\epsilon )\). Here is why:

$$\begin{aligned} \nabla \hat{\varphi }^\intercal \,\nabla J= & {} \Big [ \frac{kJ^{k-1}}{\beta } \nabla J - \frac{J^k}{\beta ^2} \nabla \beta \Big ]^\intercal \,\nabla J \\= & {} \frac{J^k (16k \beta \, \Vert x_c-x_t\Vert ^2 - \nabla \beta ^\intercal \,\nabla J) }{\beta ^2} \\= & {} \frac{J^k [16k \beta \Vert x_c-x_t\Vert ^2 - (\beta _0 \; \nabla \bar{\beta }_0^\intercal \nabla J+ \bar{\beta }_0 \; \nabla \beta _0^\intercal \nabla J)] }{\beta ^2}\\&\mathop { >}\limits ^{(\nabla J^\intercal \nabla \beta _0 < 0)} \frac{J^k\beta _0(16k\bar{\beta }_0\Vert x_c-x_t\Vert ^2 - \nabla \bar{\beta }_0^\intercal \nabla J ) }{\beta ^2} \end{aligned}$$

and thus any \(\epsilon \) small enough to make \( k> \frac{\nabla \bar{\beta }_0^\intercal \, \nabla J }{ 16 \bar{\beta }_0\Vert x_c-x_t\Vert ^2} \), will also make \( \nabla \hat{\varphi }^\intercal \,\nabla J \) positive. In fact, the choice utilized earlier, i.e., \(k = \frac{C_k}{\epsilon }\) suffices. To see this,

$$\begin{aligned} \frac{\nabla \bar{\beta }_0^\intercal \nabla J }{ 16 \bar{\beta }_0\Vert x_c-x_t\Vert ^2}\le & {} \frac{\Vert \nabla \bar{\beta }_0\Vert \Vert \nabla J \Vert }{ 16 \bar{\beta }_0\Vert x_c-x_t\Vert ^2} = \frac{\frac{\sqrt{J}}{\beta } \sum _{i=1}^M \bar{\beta }_i \Vert \nabla \beta _i\Vert }{4\Vert x_c-x_t\Vert } \\< & {} \frac{1}{\epsilon }\sup _\mathcal {W}\left\{ \frac{\sqrt{J}}{2\Vert x_c-x_t\Vert }\right\} \sum _{i=1}^M\sup _\mathcal {W}\Vert x_c-o_i\Vert , \end{aligned}$$

and compare to

$$\begin{aligned} k := \frac{C_k}{\epsilon }= & {} \frac{1}{\epsilon }\sup _\mathcal {W}\left\{ \frac{\sqrt{J}}{2\Vert x_c-x_t\Vert }\right\} \left( \rho _0\!+\! \sum _{i=1}^M\sup _\mathcal {W}\Vert x_c-o_i\Vert \right) \\> & {} \frac{1}{\epsilon }\sup _\mathcal {W}\left\{ \frac{\sqrt{J}}{2\Vert x_c-x_t\Vert }\right\} \sum _{i=1}^M\sup _\mathcal {W}\Vert x_c-o_i\Vert . \end{aligned}$$

It thus suffices to pick \( \epsilon < \epsilon _1=(\rho _0)^2-(\Vert x_t\Vert +r_t)^2 \) to ensure that no critical points are in \(\mathcal {F}_1(\epsilon )\).\(\square \)

Proposition 8

Critical points in the interior of \(\mathcal {F}_0(\epsilon )\) are non-degenerate.

Proof

One way to establish such a claim [Koditschek and Rimon (1990, Proposition 3.9)] is to partition the tangent space of \(\hat{\varphi }\) into a subspace that yields positive values for the quadratic form constructed with \(\nabla ^2 \hat{\varphi }\), and a subset that yields negative values. The negative case is established by Proposition 6. The positive case, again along the lines of [Koditschek and Rimon (1990, Proposition 3.9)], is established here by taking a test direction \({{\mathrm{\widehat{\nabla {\beta }}}}}_i =\frac{\nabla \beta _i}{\Vert \nabla \beta _i \Vert }\), and picking \(\epsilon \) small enough to obtain \({{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; \nabla ^2 \hat{\varphi }\; {{\mathrm{\widehat{\nabla {\beta }}}}}_i>0\). Note that for a given i, \({{\mathrm{\widehat{\nabla {\beta }}}}}_i\) defines one subspace, and all the vectors \(\hat{v}\) form its orthogonal complement. To verify the sign of \({{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; \nabla ^2 \hat{\varphi }\; {{\mathrm{\widehat{\nabla {\beta }}}}}_i\), expand the expression

$$\begin{aligned}&\frac{\beta ^2}{J^{k-1}} \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; \nabla ^2 \hat{\varphi } \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i\nonumber \\&\quad = {{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; k\beta \nabla ^2J \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i \nonumber \\&\qquad + \frac{J(1-\frac{1}{k}) }{\beta } \; (\nabla \beta ^\intercal \, {{\mathrm{\widehat{\nabla {\beta }}}}}_i)^2 - J \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; \nabla ^2 \beta \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i . \end{aligned}$$
(26)

We know [Koditschek and Rimon (1990, Proposition 3.9)] that for small enough \(\epsilon \),

$$\begin{aligned} \frac{J \Vert \nabla \beta \Vert ^2}{2k\beta } \!+\! \frac{J(1-\frac{1}{k})}{\beta } (\nabla \beta ^\intercal \, {{\mathrm{\widehat{\nabla {\beta }}}}}_i)^2 \!-\! J\; {{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; \nabla ^2 \beta \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i>0 \end{aligned}$$

And although different J function is used here, the same derivation in [Koditschek and Rimon (1990, Proposition 3.9)] holds here. So to set the sign of (26), it suffices to make

$$\begin{aligned} {{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; k\beta \, \nabla ^2J \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i \ge \frac{J\Vert \nabla \beta \Vert ^2}{2k\beta } \end{aligned}$$
(27)

Recalling (23), and that \(\Vert x_c-x_t\Vert ^2-r_t^2 = \sqrt{J}\) since \(x_c\) is a critical point, the left hand side of (27) is

$$\begin{aligned} {{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \; k\beta \, \nabla ^2J \; {{\mathrm{\widehat{\nabla {\beta }}}}}_i = 4k\beta \sqrt{J}+8k\beta |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal (x_c-x_t) |^2 \end{aligned}$$
(28)

and because \(x_c\) is a critical point, taking squared norms of both sides of \( k\beta \,\nabla J = J \,\nabla \beta \) yields

$$\begin{aligned} \big (4k\beta \sqrt{J}\, \Vert x_c-x_t\Vert \big )^2=J^2\,\Vert \nabla \beta \Vert ^2 \end{aligned}$$

from which one extracts that

$$\begin{aligned} 4k\beta =\frac{J\Vert \nabla \beta \Vert ^2}{4k\beta \Vert x_c-x_t\Vert ^2} . \end{aligned}$$
(29)

Plugging now (29) back into (28) yields

$$\begin{aligned}&{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal k\beta \nabla ^2J {{\mathrm{\widehat{\nabla {\beta }}}}}_i \\&\quad =\frac{J^{3/2}\,\Vert \nabla \beta \Vert ^2}{4k\beta \Vert x_c-x_t\Vert ^2} +\frac{J\Vert \nabla \beta \Vert ^2\; \big |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \,(x_c-x_t)\big |^2}{2k\beta \Vert x_c-x_t\Vert ^2}. \end{aligned}$$

Now (27) takes the form

$$\begin{aligned}&\frac{J^{3/2}\,\Vert \nabla \beta \Vert ^2}{4k\beta \Vert x_c-x_t\Vert ^2} +\frac{J\Vert \nabla \beta \Vert ^2\; \big |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal \,(x_c-x_t)\big |^2}{2k\beta \Vert x_c-x_t\Vert ^2} \ge \frac{J\Vert \nabla \beta \Vert ^2}{2k\beta } \nonumber \\&\iff \frac{J^{1/2}}{2\Vert x_c-x_t\Vert ^2}+\frac{\big |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal (x_c-x_t)\big |^2}{\Vert x_c-x_t\Vert ^2} \ge 1 \nonumber \\&\iff \frac{ \Vert x_c-x_t\Vert ^2-r_t^2 +2\,\big |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal (x_c-x_t)\big |^2}{2\Vert x_c-x_t\Vert ^2} \ge 1 \nonumber \\&\iff 2\;\big |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal (x_c-x_t)\big |^2 \ge \Vert x_c-x_t\Vert ^2+r_t^2 \end{aligned}$$
(30)

For \(x_c \in \mathcal {B}_i(\epsilon )\) (guaranteed by Proposition 6), \( \Vert x_c-x_t\Vert > r_t \). Now let \(r_t\) assume the form \(r_t=\zeta \inf _{\mathcal {B}_i(\epsilon )} \Vert x_c-x_t\Vert \) for an appropriate \(\zeta <1\), and recall that \({{\mathrm{\widehat{\nabla {\beta }}}}}_i =\frac{\nabla \beta _i}{\Vert \nabla \beta _i \Vert }\), where \(\nabla \beta _i = 2 (x-o_i)\). With this in mind, one satisfies (30) by ensuring that

$$\begin{aligned} \frac{1+\zeta ^2}{2}&\le \left( \frac{(x_c-o_i)^\intercal (x_c-x_t)}{\Vert x_c-o_i\Vert \, \Vert x_c-x_t\Vert } \right) ^2 \\&\implies 2\; \big |{{\mathrm{\widehat{\nabla {\beta }}}}}_i^\intercal (x_c-x_t)\big |^2 \ge \Vert x_c-x_t\Vert ^2+r_t^2 . \nonumber \end{aligned}$$
(31)

An appropriately small choice of \(\epsilon \) can establish (31), as the following derivation shows:

$$\begin{aligned}&\frac{(x_c-o_i)^\intercal (x_c-x_t)}{\Vert x_c-o_i\Vert \, \Vert x_c-x_t\Vert }\\&\quad \ge \frac{ \frac{\sqrt{J}}{4k}\left[ \left( 2\Vert x_c-o_i\Vert ^2\right) /\beta _i+\left[ \alpha _i^\intercal (x_c-o_i)\right] /\bar{\beta }_i \right] }{\frac{\sqrt{J}}{4k}\left[ (2\Vert x_c-o_i\Vert )/\beta _i+\Vert \alpha _i\Vert /\bar{\beta }_i \right] \Vert x_c-o_i\Vert } \\&\quad \ge \frac{ \left( 2\Vert x_c-o_i\Vert ^2\right) /\beta _i-(\Vert \alpha _i\Vert \Vert x_c-o_i\Vert )/\bar{\beta }_i}{\left( 2\Vert x_c-o_i\Vert ^2\right) /\beta _i+(\Vert \alpha _i\Vert \Vert x_c-o_i\Vert )/\bar{\beta }_i} \\&\quad = \frac{1-(\beta _i \Vert \alpha _i\Vert )/(2\bar{\beta }_i \Vert x_c-o_i\Vert )}{1+(\beta _i\Vert \alpha _i\Vert )/(2\bar{\beta }_i \Vert x_c-o_i\Vert )} \\&\quad = 1-\frac{(\beta _i \Vert \alpha _i\Vert )/(\bar{\beta }_i \Vert x_c-o_i\Vert )}{1+(\beta _i\Vert \alpha _i\Vert )/(2\bar{\beta }_i \Vert x_c-o_i\Vert )} \\&\quad \ge 1-\frac{\beta _i \Vert \alpha _i\Vert }{\bar{\beta }_i \Vert x_c-o_i\Vert } \ge 1-\frac{\epsilon \,\Vert \alpha _i\Vert }{\bar{\beta }_i\Vert x_c-o_i\Vert } \end{aligned}$$

and thus to satisfy (27), it sufficies to pick

$$\begin{aligned} \epsilon&< \left( 1-\sqrt{\frac{1+\zeta ^2}{2}}\right) \frac{\inf _i \rho _i^m}{\sup _{ {\mathcal {F}_0(\epsilon )}} \Vert \alpha _i\Vert } \\&\implies \epsilon < \left( 1-\sqrt{\frac{1+\zeta ^2}{2}}\right) \frac{\bar{\beta }_i\Vert x_c-o_i\Vert }{\Vert \alpha _i\Vert } \end{aligned}$$

\(\square \)

Proposition 9

There exists \(k_0>0\) such that for any \(k>k_0\), any critical point \(x_c \in \mathcal {B}_{x_t}(\delta _t)\) is a local maximum of \(\frac{J^k}{\beta }\).

Proof

To study the critical points in \(\mathcal {B}_{x_t}(\delta _t)\), we work on the two cases:

Case I: \(\nabla \beta |_{x_t} = 0\), \(x_c = x_t\),

\(\nabla J|_{x_t} = 0 \Rightarrow k\beta (x_t)\nabla J|_{x_t} = J(x_t)\nabla \beta |_{x_t}=0\), we shall have \(x_t\) as one of the critical points in \(\mathcal {B}_{x_t}(\delta _t)\). In this case, for any unit vector \(q\in \mathbb {R}^n\):

$$\begin{aligned}&\frac{\beta ^2}{J^{k-2}}q^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_t}q\\&\quad =q^\intercal \left( k \beta J \nabla ^2 J + k(k-1)\beta \nabla J \nabla J^\intercal - J^2 \nabla ^2\beta \right) q\\&\quad =q^\intercal \big (-4 J^{1.5}k \beta \mathbf {I} - J^2 \nabla ^2 \beta \big )q \\&\quad =-\,4r_t^6k\beta - r_t^8q^\intercal \nabla ^2\beta q \end{aligned}$$

Recall that to make the workspace valid, \(\mathcal {B}_{x_t}(r_t)\) should not intersect \(\partial \mathcal {F}\), then at \(x_t\), \(\beta _i>r_t^2\) for \(i \in \{0\ldots m\} \Rightarrow \beta >r_t^{2m}\). So as long as

$$\begin{aligned} k > k_1 = \frac{1}{4}r_t^{(2-2m)}\sup _q(|q^\intercal \nabla ^2\beta q|) \end{aligned}$$

\(q^\intercal \nabla ^2(\frac{J^k}{\beta })|_{x_t}q\) is guaranteed to be negative for any unit vector \(q\in \mathbb {R}^n\) and the critical point \(x_t\) is a local maximum of \(\frac{J^k}{\beta }\).

Case II: For any \(x_c \ne x_t, x_c\in \mathcal {B}_{x_t}(\delta _t)\):

For any unit vector \(q \in \mathbb {R}^n\), q can be presented as scaled sum of \(v_1 = \frac{\nabla J}{\Vert \nabla J\Vert }\) and \(v_2\), a unit vector perpendicular to \(v_1\), i.e. \(q = q_1 v_1+q_2 v_2, q_1^2+q_2^2=1, q_1 q_2>0\). In order to ensure that \(\nabla ^2(\frac{J^k}{\beta })\) is negative definite at \(x_c\), a critical point of \(\frac{J^k}{\beta }\) in \(\mathcal {B}_{x_t}(\delta _t)\), we study the sign of \(\frac{\beta ^2}{J^{k-2}}q^\intercal \nabla ^2(\frac{J^k}{\beta })|_{x_c}q\):

$$\begin{aligned}&\frac{\beta ^2}{J^{k-2}}q^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}q \nonumber \\&\quad = \frac{\beta ^2}{J^{k-2}}\left( q_1^2 v_1^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_1 +q_2^2 v_2^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_2\right. \nonumber \\&\qquad \left. +\, q_1 q_2 v_1^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_2 + q_1 q_2 v_2^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_1\right) \nonumber \\ \end{aligned}$$
(32)

Recall that at critical point \(x_c\), \(k\beta \nabla J = J \nabla \beta \). Take the norm of both side:

$$\begin{aligned} k\beta (4J^{0.5}\Vert x_c-x_t\Vert ) =&J\Vert \nabla \beta \Vert \nonumber \\ k\Vert x_c-x_t\Vert =&J^{0.5}\frac{\Vert \nabla \beta \Vert }{4\beta } \end{aligned}$$
(33)

The first term in (32) can be expanded as:

$$\begin{aligned}&q_1^2\frac{\beta ^2}{J^{k-2}}v_1^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_1\\&\quad =q_1^2v_1^\intercal (k \beta J \nabla ^2 J + k(k-1)\beta \nabla J \nabla J^\intercal - J^2 \nabla ^2\beta ) v_1\\&\quad =q_1^2v_1^\intercal \big (k \beta J [8(x_c-x_t)(x_c-x_t)^\intercal -4 J^{0.5} \mathbf {I}] + \cdots \\&\qquad + k(k-1)\beta \nabla J \nabla J^\intercal - J^2 \nabla ^2 \beta \big )v_1 \\&\quad =q_1^2(8k(2k-1)\beta J\Vert x_c-x_t\Vert ^2 \!-\! 4k\beta J^{1.5}-J^2 v_1^\intercal \nabla ^2\beta v_1 )\\&\quad \mathop {=}\limits ^{(33)} q_1^2\left( \frac{J^2\Vert \nabla \beta \Vert ^2}{\beta } -2J^{1.5}\Vert \nabla \beta \Vert \Vert x_c-x_t\Vert \right. \\&\qquad \qquad \qquad \left. -J^2 v_1^\intercal \nabla ^2\beta v_1 -..- \,4k\beta J^{1.5}\right) \\&\quad \le q_1^2\left( \frac{J^2\Vert \nabla \beta \Vert ^2}{\beta } -J^2 v_1^\intercal \nabla ^2\beta v_1- 4k\beta J^{1.5}\right) \end{aligned}$$

Since \(v_2\) is an arbitrary unit vector that is perpendicular to \(\nabla J\), it is also perpendicular to \((x_c-x_t)\). The second term in (32) can be expanded as:

$$\begin{aligned}&q_2^2\frac{\beta ^2}{J^{k-2}}v_2^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_2\\&\quad =q_2^2v_2^\intercal (k \beta J \nabla ^2 J + k(k-1)\beta \nabla J \nabla J^\intercal - J^2 \nabla ^2\beta ) v_2\\&\quad =q_2^2v_2^\intercal \big (k \beta J [8(x_c-x_t)(x_c-x_t)^\intercal -4 J^{0.5} \mathbf {I}] + ..\\&\qquad +\, k(k-1)\beta \nabla J \nabla J^\intercal - J^2 \nabla ^2 \beta \big )v_2 \\&\quad =q_2^2(-4k\beta J^{1.5}-J^2 v_2^\intercal \nabla ^2\beta v_2) \end{aligned}$$

Similarly we shall have:

$$\begin{aligned}&q_1q_2\frac{\beta ^2}{J^{k-2}}v_1^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_2 =q_1q_2(-J^2 v_1^\intercal \nabla ^2\beta v_2) \\&q_1q_2\frac{\beta ^2}{J^{k-2}}v_2^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}v_1 =q_1q_2(-J^2 v_2^\intercal \nabla ^2\beta v_1) \\ \end{aligned}$$

And since \(\nabla ^2\beta \) is symmetric, \(v_1^\intercal \nabla ^2\beta v_2 = v_2^\intercal \nabla ^2\beta v_1\). Now (32) can be upper bounded by:

$$\begin{aligned}&\frac{\beta ^2}{J^{k-2}}q^\intercal \nabla ^2\left( \frac{J^k}{\beta }\right) \Big |_{x_c}q \\&\quad \le q_1^2\left( \frac{J^2\Vert \nabla \beta \Vert ^2}{\beta } -J^2 v_1^\intercal \nabla ^2\beta v_1- 4k\beta J^{1.5}\right) \\&\qquad +\, q_2^2\left( -4k\beta J^{1.5}-J^2 v_2^\intercal \nabla ^2\beta v_2\right) \\&\qquad +\, q_1q_2\left( -J^2 v_1^\intercal \nabla ^2\beta v_2\right) + q_1q_2\left( -J^2 v_2^\intercal \nabla ^2\beta v_1\right) \\&\quad =-\,4k\beta J^{1.5} + q_1^2\left( \frac{J^2\Vert \nabla \beta \Vert ^2}{\beta } -J^2 v_1^\intercal \nabla ^2\beta v_1\right) \\&\qquad + q_2^2\left( -J^2 v_2^\intercal \nabla ^2\beta v_2\right) + 2q_1q_2\left( -J^2 v_1^\intercal \nabla ^2\beta v_2\right) \\&\quad \le -\,4k\beta J^{1.5} \\&\qquad + J^2\left( \frac{\Vert \nabla \beta \Vert ^2}{\beta }+ |v_1^\intercal \nabla ^2\beta v_1| + |v_2^\intercal \nabla ^2\beta v_2| + |v_1^\intercal \nabla ^2\beta v_2|\right) \end{aligned}$$

Recall that to make the workspace valid, \(\mathcal {B}_{x_t}(r_t)\) should not intersect \(\partial \mathcal {F}\), then in \(\mathcal {B}_{x_t}(\delta _t)\), \(\beta _i>(r_t-\delta _t)^2\) for \(i \in \{0\ldots m\} \Rightarrow \beta >(r_t-\delta _t)^{2m}\), and \(J \le r_t^4\). So as long as

$$\begin{aligned}&k > k_2 \\&\quad = \frac{r_t^2}{4(r_t-\delta _t)^{2m}}\bigg [\sup _{x_c\in \mathcal {B}_{x_t}(\delta _t)}\Big ( \frac{\Vert \nabla \beta \Vert ^2}{\beta } \\&\qquad + |v_1^\intercal \nabla ^2\beta v_1| + |v_2^\intercal \nabla ^2\beta v_2| +\, |v_1^\intercal \nabla ^2\beta v_2|\Big )\bigg ] \end{aligned}$$

we shall satisfy \(q^\intercal \nabla ^2(\frac{J^k}{\beta })|_{x_c}q<0\) for any \(q\in \mathbb {R}^n\) and any critical point \(x_c\) in \(\mathcal {B}_{x_t}(\delta _t)\) other than \(x_t\) is guaranteed to be local maximum of \(\frac{J^k}{\beta }\).

To sum up two cases, \(k>k_0=\max \{k_1,k_2\}\) will guarantee any critical point in \(\mathcal {B}_{x_t}(\delta _t)\) to be a local maximum of \(\frac{J^k}{\beta }\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Tanner, H.G. Constrained decision-making for low-count radiation detection by mobile sensors. Auton Robot 39, 519–536 (2015). https://doi.org/10.1007/s10514-015-9468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9468-6

Keywords

Navigation