Skip to main content
Log in

Knowledge-enabled parameterization of whole-body control strategies for compliant service robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Compliant manipulation is one of the grand challenges for autonomous robots. Many household chores in human environments, such as cleaning the floor or wiping windows, rely on this principle. At the same time these tasks often require whole-body motions to cover a larger workspace. The performance of the actual task itself is thereby dependent on a large number of parameters that have to be taken into account. To tackle this issue we propose to utilize low-level compliant whole-body control strategies parameterized by high-level hybrid reasoning mechanisms. We categorize compliant wiping actions in order to determine relevant control parameters. According to these parameters we set up process models for each identified wiping action and implement generalized control strategies based on human task knowledge. We evaluate our approach experimentally on three whole-body manipulation tasks, namely scrubbing a mug with a sponge, skimming a window with a window wiper and bi-manually collecting the shards of a broken mug with a broom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. commonly summarized as geometric parameters in the automated planning community.

References

  • Albu-Schäffer, A., Ott, C., Frese, U., & Hirzinger, G. (2003). Cartesian impedance control of redundant robots: Recent results with the DLR-light-weight-arms. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3704–3709.

  • Albu-Schäffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimböck, T., et al. (2008). Soft robotics. IEEE Robotics Automation Magazine, 15(3), 20–30.

    Article  Google Scholar 

  • Antonelli, G. (2009). Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Transactions on Robotics, 25(5), 985–994.

    Article  Google Scholar 

  • Bartels, G., Kresse, I., & Beetz, M. (2013). Constraint-based movement representation grounded in geometric features. In Proceedings of the IEEE/RAS International Conference on Humanoid Robots (ICHR), pp. 547–554.

  • Bloomfield, A., Deng, Y., Wampler, J., Rondot, P., Harth, D., McManus, M., & Badler, N. (2003). A taxonomy and comparison of haptic actions for disassembly tasks. In Proceedings of the Virtual Reality Conference, pp. 225–231.

  • Borst, C., Wimböck, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano, P. R., Konietschke, R., Sepp, W., & Fuchs, S., et al. (2009). Rollin’justin-mobile platform with variable base. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1597–1598.

  • Bullock, I. M., & Dollar, A. M. (2011). Classifying human manipulation behavior. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6.

  • Bullock, I. M., Ma, R. R., & Dollar, A. M. (2013). A hand-centric classification of human and robot dexterous manipulation. IEEE Transactions on Haptics, 6(2), 129–144.

    Article  Google Scholar 

  • Cakmak, M., & Takayama, L. (2013). Towards a comprehensive chore list for domestic robots. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 93–94.

  • Cutkosky, M. R. (1989). On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269–279.

    Article  MathSciNet  Google Scholar 

  • Diankov, R. (2010). Automated construction of robotic manipulation programs. Ph.D. Thesis, Carnegie Mellon University, Robotics Institute.

  • Dietrich, A., Wimböck, T., & Albu-Schäffer, A. (2011a). Dynamic whole-body mobile manipulation with a torque controlled humanoid robot via impedance control laws. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3199–3206.

  • Dietrich, A., Wimböck, T., Täubig, H., Albu-Schäffer, A., & Hirzinger, G. (2011b). Extensions to reactive self-collision avoidance for torque and position controlled humanoids. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 3455–3462.

  • Dietrich, A., Albu-Schäffer, A., & Hirzinger, G. (2012a). On continuous null space projections for torque-based, hierarchical, multi-objective manipulation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2978–2985.

  • Dietrich, A., Wimböck, T., Albu-Schäffer, A., & Hirzinger, G. (2012b). Reactive whole-body control: Dynamic mobile manipulation using a large number of actuated degrees of freedom. IEEE Robotics & Automation Magazine, 19(2), 20–33.

    Article  Google Scholar 

  • Dietrich, A., Ott, C., & Albu-Schäffer, A. (2013). Multi-objective compliance control of redundant manipulators: Hierarchy, control, and stability. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3043–3050.

  • Dietrich, A., Ott, C., & Albu-Schäffer, A. (2015). An overview of null space projections for redundant, torque-controlled robots. International Journal of Robotics Research, 34(11), 1385–1400.

    Article  Google Scholar 

  • Do, M., Schill, J., Ernesti, J., & Asfour, T. (2014). Learn to wipe: A case study of structural bootstrapping from sensorimotor experience. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1858–1864.

  • Dornhege, C., & Hertle, A. (2013). Integrated symbolic planning in the tidyup-robot project. In AAAI Spring Symposium Series.

  • Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2012). Semantic attachments for domain-independent planning systems. In: Towards service robots for everyday environments, Springer, Berlin, pp. 99–115.

  • Feix, T., Pawlik, R., Schmiedmayer, H. B., Romero, J., & Kragic, D. (2009). A comprehensive grasp taxonomy. Robotics (pp. 2–3). Workshop on Understanding the Human Hand for Advancing Robotic Manipulation: Science and Systems.

  • Florek-Jasinska, M., Wimböck, T., & Ott, C. (2014). Humanoid compliant whole arm dexterous manipulation: Control design and experiments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1616–1621.

  • Ghallab M, Howe A, Christianson D, McDermott D, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL—the planning domain definition language. AIPS98 planning committee, 78(4):1–27.

  • Giordano, P. R., Fuchs, M., Albu-Schäffer, A., & Hirzinger, G. (2009). On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4080–4087.

  • Gravot, F., Cambon, S., & Alami, R. (2005). Asymov: A planner that deals with intricate symbolic and geometric problems. In The Eleventh International Symposium Robotics Research, Springer, Berlin, pp. 100–110.

  • Helmert, M. (2006). The fast downward planning system. Journal of Artifcial Intelligence Research, 26, 191–246.

    MATH  Google Scholar 

  • Hess, J.M., Tipaldi, G.D., & Burgard, W. (2012). Null space optimization for effective coverage of 3d surfaces using redundant manipulators. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 1923–1928.

  • Hogan, N. (1985). Impedance control: An approach to manipulation: Part I—theory, Part II—implementation, Part III—applications. Journal of Dynamic Systems, Measurement, and Control, 107, 1–24.

    Article  MATH  Google Scholar 

  • Kaelbling, L. P., & Lozano-Pérez, T. (2013). Integrated task and motion planning in belief space. The International Journal of Robotics Research, 32, 1–60.

    Article  Google Scholar 

  • Kallmann, M., & Thalmann, D. (1999). Modeling objects for interaction tasks. In Computer animation and simulation, 98. Springer, Berlin, pp. 73–86.

  • Kapandji, I. A., & Honoré, L. H. (1970). The physiology of the joints: Annotated diagrams of the mechanics of the human joints (Vol. 1). Livingstone, London: E. & S.

    Google Scholar 

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation RA, 3(1), 43–53.

    Article  Google Scholar 

  • Kronander, K., & Billard, A. (2014). Learning compliant manipulation through kinesthetic and tactile human-robot interaction. IEEE Transactions on Haptics, 7(3), 367–380.

    Article  Google Scholar 

  • Kunze, L., Dolha, M. E., Guzman, E., & Beetz, M. (2011). Simulation-based temporal projection of everyday robot object manipulation. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 107–114.

  • Leidner, D., & Borst, C. (2013). Hybrid reasoning for mobile manipulation based on object knowledge. In Workshop on AI-based robotics at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Leidner, D., Borst, C., & Hirzinger, G. (2012). Things are made for what they are: Solving manipulation tasks by using functional object classes. In Proceedings of the IEEE/RAS International Conference on Humanoid Robots (ICHR), pp. 429–435.

  • Leidner, D., Dietrich, A., Schmidt, F., Borst, C., & Albu-Schäffer, A. (2014). Object-centered hybrid reasoning for whole-body mobile manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1828–1835.

  • Levison, L. (1996). Connecting planning and acting via object-specific reasoning. Ph.D. Thesis, University of Pennsylvania.

  • Moro, F. L., Gienger, M., Goswami, A., Tsagarakis, N. G., & Caldwell, D. G. (2013). An attractor-based whole-body motion control (WBMC) system for humanoid robots. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (ICHR), pp. 42–49.

  • Mosenlechner, L., & Beetz, M. (2011). Parameterizing actions to have the appropriate effects. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4141–4147.

  • Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. International Journal of Robotics Research, 6(2), 3–15.

    Article  Google Scholar 

  • Okada, K., Ogura, T., Haneda, A., Fujimoto, J., Gravot, F., & Inaba, M. (2005). Humanoid motion generation system on hrp2-jsk for daily life environment. In Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1772–1777.

  • Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., & Inaba, M. (2006). Vision based behavior verification system of humanoid robot for daily environment tasks. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (ICHR), pp. 7–12.

  • Ott, C. (2008). Cartesian impedance control of redundant and flexible-joint robots, Springer tracts in advanced robotics (Vol. 49). Berlin: Springer.

  • Ott, C., Albu-Schäffer, A., Kugi, A., Stramigioli, S., & Hirzinger, G. (2004). A passivity based cartesian impedance controller for flexible joint robots—Part I: Torque feedback and gravity compensation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 2659–2665.

  • Ott, C., Albu-Schäffer, A., Kugi, A., & Hirzinger, G. (2008). On the passivity-based impedance control of flexible joint robots. IEEE Transactions on Robotics, 24(2), 416–429.

    Article  Google Scholar 

  • Sadeghian, H., Villani, L., Keshmiri, M., & Siciliano, B. (2014). Task-space control of robot manipulators with null-space compliance. IEEE Transactions on Robotics, 30(2), 493–506.

    Article  Google Scholar 

  • Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2(4), 505–518.

    Article  Google Scholar 

  • Siciliano, B., & Slotine, J. J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of the International Conference on Advanced Robotics (ICAR), pp. 1211–1216.

  • Tan, J., Xi, N., & Wang, Y. (2003). Integrated task planning and control for mobile manipulators. The International Journal of Robotics Research, 22(5), 337–354.

    Article  Google Scholar 

  • Tenorth, M., Klank, U., Pangercic, D., & Beetz, M. (2011). Web-enabled robots. IEEE Robotics & Automation Magazine, 18(2), 58–68.

    Article  Google Scholar 

  • Tenorth, M., Perzylo, A., Lafrenz, R., & Beetz, M. (2012). The roboearth language: Representing and exchanging knowledge about actions, objects, and environments. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1284–1289.

  • Urbanek, H., Albu-Schäffer, A., & van der Smagt, P. (2004). Learning from demonstration: Repetitive movements for autonomous service robotics. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3495–3500.

  • Vanthienen, D., Robyns, S., Aertbeliën, E., De Schutter, J. (2013). Force-sensorless robot force control within the instantaneous task specification and estimation (iTaSC) framework. In Benelux Meeting on Systems and Control.

  • Wimböck, T. (2013). Controllers for compliant two-handed dexterous manipulation. Ph.D. Thesis, Vienna University of Technology.

  • Wolfe, J., Marthi, B., & Russell, S. J. (2010). Combined task and motion planning for mobile manipulation. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 254–258.

  • Yamamoto, Y., & Yun, X. (1992). Coordinating locomotion and manipulation of a mobile manipulator. In Proceedings of the IEEE Conference on Decision and Control (CDC), pp. 2643–2648.

  • Yoshikawa, T. (1990). Foundations of robotics: Analysis and control. Cambridge: The MIT Press.

    Google Scholar 

  • Zacharias, F., Borst, C., & Hirzinger, G. (2007). Capturing robot workspace structure: Representing robot capabilities. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3229–3236.

Download references

Acknowledgments

This work was partially funded by the European Community’s Seventh Framework Programme under Grant Agreement No. 608849 EuRoC and partially by the Helmholtz Association Project HVF-0029 RACE-LAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Leidner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 50479 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leidner, D., Dietrich, A., Beetz, M. et al. Knowledge-enabled parameterization of whole-body control strategies for compliant service robots. Auton Robot 40, 519–536 (2016). https://doi.org/10.1007/s10514-015-9523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9523-3

Keywords

Navigation