Skip to main content

Advertisement

Log in

Spinal joint compliance and actuation in a simulated bounding quadruped robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Spine movements play an important role in quadrupedal locomotion, yet their potential benefits in locomotion of quadruped robots have not been systematically explored. In this work, we investigate the role of spinal joint actuation and compliance on the bounding performance of a simulated compliant quadruped robot. We designed and conducted extensive simulation experiments, to compare the benefits of different spine designs, and in particular, we compared the bounding performance when (i) using actuated versus passive spinal joint, (ii) changing the stiffness of the spinal joint and (iii) altering joint actuation profiles. We used a detailed rigid body dynamics modeling to capture the main dynamical features of the robot. We applied a set of analytic tools to evaluate the bounding gait characteristics including periodicity, stability, and cost of transport. A stochastic optimization method called particle swarm optimization was implemented to perform a global search over the parameter space, and extract a pool of diverse gait solutions. Our results show improvements in bounding speed for decreasing spine stiffness, both in the passive and the actuated case. The results also suggests that for the passive spine configuration at low stiffness values, periodic solutions are hard to realize. Overall, passive spine solutions were more energy efficient and self-stable than actuated ones, but they basically exist in limited regions of parameter space. Applying more complex joint control profiles reduced the dependency of the robot’s speed to its chosen spine stiffness. In average, active spine control decreased energy efficiency and self-stability behavior, in comparison to a passive compliant spine setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander, R. M. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.

    Article  Google Scholar 

  • Alexander, R. M. (1984). Elastic energy stores in running vertebrates. American Zoologist, 24(1), 85–94.

    Article  Google Scholar 

  • Alexander, R. M., Dimery, N. J., & Ker, R. F. (1985). Elastic structures in the back and their role in galloping in some mammals. Journal of Zoology, 207(4), 467–482.

    Article  Google Scholar 

  • Andrews, B., Miller, B., & Schmitt, J. (2011). Running over unknown rough terrain with a one-legged planar robot. Bioinspiration & Biomimetics, 6(2), 026009.

    Article  Google Scholar 

  • Blickhan, R. (1989). The spring-mass model for running and hopping. Journal of Biomechanics, 22(11), 1217–1227.

    Article  Google Scholar 

  • Blickhan, R., & Full, R. (1993). Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A, 173(5), 509–517.

    Article  Google Scholar 

  • Brown, B., & Zeglin, G. (1998). The bow leg hopping robot. In IEEE International conference on robotics and automation (vol. 1).

  • Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., & Yamazaki, K. (1998). SCOUT: A simple quadruped that walks, climbs, and runs. In IEEE international conference on robotics and automation (Vol. 2).

  • Cao, Q., & Poulakakis, I. (2012). Passive quadrupedal bounding with a segmented flexible torso. In IEEE/RSJ international conference on intelligent robots and systems.

  • Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.

    Article  Google Scholar 

  • Culha, U., & Saranli, U. (2011). Quadrupedal bounding with an actuated spinal joint. In IEEE international conference on robotics and automation.

  • Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210(4469), 492–498.

    Article  Google Scholar 

  • Estremera, J., & Waldron, K. (2008). Thrust control, stabilization and energetics of a quadruped running robot. International Journal of Robotics Research, 27, 1135–1151.

    Article  Google Scholar 

  • Faraji, S., Pouya, S., Moeckel, R., & Ijspeert, A. (2013). Compliant and adaptive control of a planar monopod hopper in rough terrain. In IEEE international conference on robotics and automation.

  • Folkertsma, G. A., Kim, S., & Stramigioli, S. (2012). Parallel stiffness in a bounding quadruped with flexible spine. In IEEE/RSJ international conference intelligent robots and systems.

  • Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202(23), 3325–3332.

    Google Scholar 

  • Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer.

    Book  MATH  Google Scholar 

  • Hurmuzlu, Y., & Basdogan, C. (1994). On the measurement of dynamic stability of human locomotion. Journal of Biomechanical Engineering, 116, 30–36.

    Article  Google Scholar 

  • Iida, F., Gomez, G., & Pfeifer, R. (2005). Exploiting body dynamics for controlling a running quadruped robot. In International conference on advanced robotics.

  • Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642–653.

    Article  Google Scholar 

  • Jung, Ch. (1986). Poincaré map for scattering states. Journal of physics A, 19(8), 1345.

    Article  MathSciNet  MATH  Google Scholar 

  • Khoramshahi, M., Spröwitz, A., Tuleu, A., Ahmadabadi, M., & Ijspeert, A. (2013). Benefits of an active spine supported bounding locomotion with a small compliant quadruped robot. In IEEE international conference on robotics and automation.

  • Kimura, H., Fukuoka, Y., & Cohen, A. (2004). Biologically inspired adaptive dynamic walking of a quadruped robot. In International symposium on adaptive motion of animals and machines (AMAM).

  • Leeser, K. (1996). Locomotion experiments on a planar quadruped robot with articulated spine, Master’s thesis, MIT.

  • Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.

    Article  Google Scholar 

  • Moeckel, R., Perov, Y. N., Nguyen, A. T., Vespignani, M., Bonardi, S., Pouya, S., Sproewitz, A., Kieboom, J., Wilhelm, F., & Ijspeert, A. J. (2013). Gait optimization for roombots modular robotsMatching simulation and reality. In IEEE International Conference on Robotics and Automation.

  • Owaki, D., Kano, T., Nagasawa, K., Tero, A., & Ishiguro, A. (2013). Simple robot suggests physical interlimb communication is essential for quadruped walking. Journal of The Royal Society Interface 10(78).

  • Poulakakis, I., & Smith, J. A. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. International Journal of Robotics Research, 24, 239–256.

    Article  Google Scholar 

  • Pouya, S., van den Kieboom, J., Spröwitz, A., & Ijspeert, A. J. (2010). Automatic gait generation in modular robots:to oscillate or to rotate; that is the question. In IEEE/RSJ international conference on intelligent robots and systems.

  • Pusey, J. L., Duperret, J. M., Haynes, G. C., Knopf, R., & Koditschek, D. E. (2013). Free-standing leaping experiments with a power-autonomous elasticspined quadruped. In SPIE defense, security, and sensing, international society for optics and photonics.

  • Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). the BigDog Team, BigDog, the rough-terrain quaduped robot. In The international federation of automatic control. Seoul, Korea.

  • Raibert, M. (1985). Legged robots that balance. Cambridge, MA: The MIT Press.

    MATH  Google Scholar 

  • Raibert, M. (1991). Trotting, pacing, and bounding by a quadruped robot. Journal of Biomechanics, 23, 79–98.

    Article  Google Scholar 

  • Remy, D. (2011). Optimal exploitation of natural dynamics in legged locomotion, Ph.D. thesis, ETHZ, Zurich.

  • Remy, C. D., Buffinton, K., & Siegwart, R. (2011). A Matlab framework for efficient gait creation. In IEEE/RSJ international conference on intelligent robots and systems.

  • Revzen, S., Guckenheimer, J., & Full, R. (2009). Study of neuromechanical control of rhythmic behaviors by floquet analysis, integrative and comparative biology (Vol. 49). Oxford: oxford University Press.

    Google Scholar 

  • Roos, F., Johansson, H., & Wikander, J. (2006). Optimal selection of motor and gearhead in mechatronic applications. Mechatronics, 16(1), 63–72.

    Article  Google Scholar 

  • Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics modelling, planning and control. New York: Springer.

    Google Scholar 

  • Spröwitz, A., Badri, E., Khoramshahi, M., Tuleu, A., & Ijspeert, A. (2013). Use your spine! effect of active spine movements on horizontal impulse and cost of transport in a bounding, quadruped robot. In Proceedings of dynamic walking.

  • Spröwitz, A., Moeckel, R., Maye, J., & Ijspeert, A. J. (2008). Learning to move in modular robots using central pattern generators and online optimization. The International Journal of Robotics Research, 27(3–4), 423–443.

    Article  Google Scholar 

  • Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of Robotics Research, 32(8), 932–950.

    Article  Google Scholar 

  • Tsujita, K., & Miki, K. (2011). A study on trunk stiffness and gait stability in quadrupedal locomotion using musculoskeletal robot. In International conference on advanced robotics (ICAR) (pp. 316–321).

  • Williams, S. B., Tan, H., Usherwood, J. R., & Wilson, A. M. (2009). Pitch then power: Limitations to acceleration in quadrupeds. Biology Letters, 5(5), rsbl20090360.

    Article  Google Scholar 

  • Zhao, Q., Nakajima, K., Sumioka, H., Yu, X., & Pfeifer, R. (2012). Embodiment enables the spinal engine in quadruped robot locomotion. In IEEE/RSJ International conference on intelligent robots and systems.

Download references

Acknowledgments

This project has received funding from the EPFL and the European Community’s Seventh Framework Programme FP7/2007-2013 - Future Emerging Technologies, Embodied Intelligence, under the grant agreement number 231 688 (Locomorph).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soha Pouya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 2434 KB)

Supplementary material 2 (m4v 121 KB)

Appendix: Extracting equations of motion

Appendix: Extracting equations of motion

The equations of motion can be derived based on Lagrange method, through the following steps. First, the position vector of the center of mass of the front/hind trunk segments can be obtained as:

$$\begin{aligned} r_{B_f}= & {} [x+x_{O_f}, y+y_{O_f}, 0]^T \end{aligned}$$
(16)
$$\begin{aligned} r_{B_h}= & {} [x+x_{O_h}, y+y_{O_h}, 0]^T \end{aligned}$$
(17)

where subscripts f and h present front and hind segments. Similarly, we require the COM position vector for the leg’s upper segments (shown with index U):

$$\begin{aligned} r_{U_F}= & {} \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} x + l_{U_f} \sin (\theta _f) + x_{O_f} &{}\\ &{} y - l_{U_f} \cos (\theta _f) + y_{O_f} &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(18)
$$\begin{aligned} r_{U_H}= & {} \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} x + l_{U_h} \sin \theta _h + x_{O_h} &{}\\ &{} y - l_{U_h} \cos \theta _h + y_{O_h} &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(19)

and leg’s lower segments (shown with index L):

$$\begin{aligned} r_{L_f}= & {} \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} x + (l_f - l_{L_f}) \sin \theta _f + x_{O_f} &{}\\ &{} y - (l_f - l_{L_f}) \cos \theta _f + y_{O_f} &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(20)
$$\begin{aligned} r_{L_H}= & {} \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} x + (l_h - l_{L_h}) \sin \theta _h + x_{O_h} &{}\\ &{} y - (l_h - l_{L_h}) \cos \theta _h + y_{O_h} &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(21)

where \(\theta _i = \alpha _i + \psi _i\) for \(i \in \left\{ f,h \right\} \), \(\psi _i\) and \(\alpha _i\) respectively represent trunk pitch angle and the leg’s hip angle. The vector \([x_{O_f}, y_{O_f}]\) shows the position of the connection point of the front leg to the front trunk segment and can be written as:

$$\begin{aligned} \left\{ \begin{array}{@{}r@{\quad }cclr@{}} &{} x_{O_f} = l_{1_f} \cos \psi _f \\ &{} y_{O_f} = l_{1_f} \sin \psi _f \end{array} \right. \end{aligned}$$
(22)

Similarly, for the hind leg we have:

$$\begin{aligned} \left\{ \begin{array}{@{}r@{\quad }cclr@{}} &{} x_{O_h} = - l_{1_h} \cos \psi _h \\ &{} y_{O_h} = - l_{1_h} \sin \psi _h \end{array} \right. \end{aligned}$$
(23)

Now, the COM velocities for the trunk segment can be obtained as the derivative of Eqs. 16 and 17:

$$\begin{aligned} \mathbf v _{B_i} = \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} \dot{x} - l_{1_i} \dot{\psi _i} \cos \psi _i &{}\\ &{} \dot{y} + l_{1_i} \dot{\psi _i} \sin \psi _i &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(24)

with i being F for the front and H for the hind trunk segments. Similarly, for the leg upper segment COM velocities, we obtain:

$$\begin{aligned} \mathbf v _{U_i} = \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} \dot{x} + l_{2_i} \dot{\theta _i} \cos \theta _i - l_{1_i} \dot{\psi _i} sin(\psi _i) &{}\\ &{} \dot{y} + l_{2_i} \dot{\theta _i} \sin \theta _i + l_{1_i} \dot{\psi _i} sin(\psi _i)&{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(25)

and for the leg lower segment COM velocities:

$$\begin{aligned} \mathbf v _{L_i} = \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} \dot{x} - (l_i - l_{3_i} \dot{\theta _i} \cos \theta _i + \dot{l}_i \sin \theta _i - l_{1_i} \dot{\psi _i} \sin \psi _i) &{}\\ &{} \dot{y} - (l_i - l_{3_i} \dot{\theta _i} \sin \theta _i - \dot{l}_i \sin \theta _i + l_{1_i} \dot{\psi _i} \cos \psi _i) &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(26)

Furthermore, we require rotational velocities for different segments. It can be written for the trunk segment as follows:

$$\begin{aligned} \varvec{\varOmega }_{m_i} = [0, ~0, ~\dot{\psi _i}]^T \end{aligned}$$
(27)

and for the leg upper/lower segments:

$$\begin{aligned} \varvec{\varOmega }_{U_i} = \varvec{\varOmega }_{L_i} = [0, ~0, ~\dot{\theta _i}]^T \end{aligned}$$
(28)

Now, by using the COM position and velocity vectors, we can provide the kinetic energy of the system:

$$\begin{aligned} T = \sum \limits _{i=1}^n \left( \dfrac{1}{2} m_i \dot{r}_i^T \dot{r}_i + \dfrac{1}{2} I_i \varOmega _i^T \varOmega _i\right) \end{aligned}$$
(29)

Based on the Lagrange formulation, the mass matrix can be derived via the following partial derivation of the kinetic energy:

$$\begin{aligned} M = \dfrac{\delta \left( \frac{\delta T}{\delta \dot{q}}\right) }{\delta \dot{q}} \end{aligned}$$
(30)

The centrifugal and Coriolis terms can be derived as:

$$\begin{aligned} b = \dfrac{\delta \left( \frac{\delta T}{\delta \dot{q}}\right) }{\delta \dot{q}} \dfrac{dq}{dt} - \dfrac{dT}{dq} \end{aligned}$$
(31)

The gravity term can be derived as the partial derivative of the potential energy to the general coordinates:

$$\begin{aligned} g = \dfrac{\delta V}{\delta q}^T \end{aligned}$$
(32)

and the potential energy can be obtained as:

$$\begin{aligned} V = \sum \limits _{i=1}^n \left( r_i^T F_i^g\right) \end{aligned}$$
(33)

where \(F_i^g\) is the gravitational force exerted on segment i:

$$\begin{aligned} F_i^g = [0,~ -m_ig,~0]^T \end{aligned}$$
(34)

To simulate the system dynamics, one requires matrices M, b, and g from Eqs. 30, 31 and 32. However, this system is a hybrid dynamical system, where the external forces vary during flight and stance phases. To account for the discontinuous dynamics, the contact forces on the right hand side of the Eq. 2 should be updated per phase. To do so, we first extract the contact point position vector as:

$$\begin{aligned} r_{c_i} = \left[ \begin{array}{@{}r@{\quad }cclr@{}} &{} x + x_{O_i} + l_i \sin \theta _i &{}\\ &{} y + y_{O_i} - l_{i} \cos \theta _H - r_{foot} &{}\\ &{} 0 &{} \end{array} \right] \end{aligned}$$
(35)

where \(i \in \left\{ f,h \right\} \), and \(r_{foot}\) is the foot radius. The contact Jacobian can then be derived as:

$$\begin{aligned} J_c = \left[ \dfrac{d r_{c_F}}{d q}, \dfrac{d r_{c_H}}{d q}\right] \end{aligned}$$
(36)

and the contact force can be computed as follows:

$$\begin{aligned} F_c = J_c M^{-1} J_c^T \left\{ J_c M^{-1}(b+g-\tau _{act}) \right\} \end{aligned}$$
(37)

For more details please see Remy (2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouya, S., Khodabakhsh, M., Spröwitz, A. et al. Spinal joint compliance and actuation in a simulated bounding quadruped robot. Auton Robot 41, 437–452 (2017). https://doi.org/10.1007/s10514-015-9540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9540-2

Keywords

Navigation