Skip to main content
Log in

Velocity obstacle based local collision avoidance for a holonomic elliptic robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper addresses the local collision avoidance problem for a holonomic elliptic robot, where its footprint and obstacles are approximated with the minimum area bounding ellipses. The proposed algorithm is decomposed into two phases: linear and angular motion planning. In the former phase, the ellipse-based velocity obstacle is defined as a set of all linear velocities of the robot that would cause a collision with an obstacle within a finite time horizon. If the robot’s new linear velocity is selected outside of the velocity obstacle, the robot can avoid the obstacle without rotation. In the latter phase, the angular velocity is selected at which the robot can circumvent the obstacle with the minimum possible deviation by finding the collision-free rotation angles and the preferred angular velocities. Finally, the performance of the suggested algorithm is demonstrated in simulation for various scenarios in terms of travel time, distance, and the number of collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alonso-Mora, J., Naegeli, T., Siegwart, R., & Beardsley, P. (2015). Collision avoidance for aerial vehicles in multi-agent scenarios. Autonomous Robots, 39(1), 101–121. doi:10.1007/s10514-015-9429-0.

    Article  Google Scholar 

  • Chakravarthy, A., & Ghose, D. (1998). Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 28(5), 562–574. doi:10.1109/3468.709600.

    Article  Google Scholar 

  • Chakravarthy, A., & Ghose, D. (2011). Generalization of the collision cone approach for motion safety in 3-D environments. Autonomous Robots, 32(3), 243–266. doi:10.1007/s10514-011-9270-z.

    Article  Google Scholar 

  • Choi, Y. K., Liu, Y., & Kim, M. S. (2006). Continuous collision detection for two moving elliptic disks. IEEE Transactions on Robotics, 22(2), 213–224. doi:10.1109/TRO.2005.862479.

    Article  Google Scholar 

  • Choi, Y. K., Chang, J. W., Wang, W., Kim, M. S., & Elber, G. (2009). Continuous collision detection for ellipsoids. IEEE Transactions on Visualization and Computer Graphics, 15(2), 311–325. doi:10.1109/TVCG.2008.80.

    Article  Google Scholar 

  • Etayo, F., Gonzalez-Vega, L. del Rio, N. (2006). A new approach to characterizing the relative position of two ellipses depending on one parameter. Computer Aided Geometric Design, 23(4), 324–350. doi:10.1016/j.cagd.2006.01.002.

  • Fiorini, P., & Shiller, Z. (1993). Motion planning in dynamic environments using the relative velocity paradigm. IEEE International Conference on Robotics and Automation (Vol. 1, pp. 560–566). Atlanta, GA: IEEE. doi:10.1109/ROBOT.1993.292038.

  • Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research, 17(7), 760–772. doi:10.1177/027836499801700706.

    Article  Google Scholar 

  • Fujimura, K., & Samet, H. (1989). Time-minimal paths among moving obstacles. In: IEEE International Conference on Robotics and Automation (ICRA) (pp. 1110–1115). Scottsdale, AZ: IEEE. doi:10.1109/ROBOT.1989.100129.

  • Fujimura, K., & Samet, H. (1993). Planning a time-minimal motion among moving obstacles. Algorithmica, 10(1), 41–63. doi:10.1007/BF01908631.

    Article  MathSciNet  MATH  Google Scholar 

  • Giese, A., Latypov, D., & Amato, NM. (2014). Reciprocally-rotating velocity obstacles. In: 2014 IEEE International Conference on Robotics and Automation (pp. 3234–3241). Hong Kong: IEEE. doi:10.1109/ICRA.2014.6907324.

  • Goerzen, C., Kong, Z., & Mettler, B. (2010). A survey of motion planning algorithms from the perspective of autonomous uav guidance. Journal of Intelligent and Robotic Systems: Theory and Applications, 57(1–4), 65–100. doi:10.1007/s10846-009-9383-1.

    Article  MATH  Google Scholar 

  • Guy, SJ., Chhugani. J., Kim. C., Satish, N., Lin, M., Manocha, D., Dubey, P. (2009). ClearPath: Highly parallel collision agent simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation-SCA ’09 (pp. 177–187). New Orleans, LA: ACM Press. doi:10.1145/1599470.1599494.

  • Jeon, J. D., & Lee, B. H. (2014). Ellipse-based velocity obstacles for local navigation of holonomic mobile robot. Electronics Letters, 50(18), 1279–1281. doi:10.1049/el.2014.1592.

    Article  Google Scholar 

  • Jia, X., Choi, Y. K., Mourrain, B., & Wang, W. (2011). An algebraic approach to continuous collision detection for ellipsoids. Computer Aided Geometric Design, 28(3), 164–176. doi:10.1016/j.cagd.2011.01.004.

    Article  MathSciNet  MATH  Google Scholar 

  • John, F. (2014). Extremum problems with inequalities as subsidiary conditions. In G. Giorgi & T. H. Kjeldsen (Eds.), Traces and emergence of nonlinear programming (pp. 197–215). Basel: Springer.

    Chapter  Google Scholar 

  • Ju, MY., Liu, JS., Shiang, SP., Chien, YR., Hwang, KS., Lee, WC. (2001). A novel collision detection method based on enclosed ellipsoid. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164) (Vol. 3, pp. 2897–2902). Seoul: IEEE. doi:10.1109/ROBOT.2001.933061.

  • Karamouzas, I., Guy, SJ. (2015). Prioritized group navigation with formation velocity obstacles. In: IEEE International Conference on Robotics and Automation (ICRA) (Vol. 2015, pp. 5983–5989). IEEE. doi:10.1109/ICRA.2015.7140038.

  • Lennerz, C., Schomer, E. (2002). Efficient distance computation for quadratic curves and surfaces. In: Geometric modeling and processing, 2002. Proceedings (pp. 60–69). doi:10.1109/GMAP.2002.1027497.

  • Lozano-Pérez, T. (1983). Spatial planning: A configuration space approach. IEEE Transactions on Computers C, 32(2), 108–120. doi:10.1109/TC.1983.1676196.

    Article  MathSciNet  MATH  Google Scholar 

  • Miloh, T. (1983). Game of two elliptical ships. Optimal Control Applications and Methods, 4(1), 13–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Moler, C. B. (1991). ROOTS-of polynomials, that is. The MathWorks Newsletter, 5(1), 8–9.

    Google Scholar 

  • Moler, C. B., & Stewart, G. W. (1973). An algorithm for generalized matrix eigenvalue problems. SIAM Journal on Numerical Analysis, 10(2), 241–256. doi:10.1137/0710024.

    Article  MathSciNet  MATH  Google Scholar 

  • Pellegrini, S., Ess, A., Schindler, K., van Gool, L. (2009). You’ll never walk alone: Modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision (pp. 261–268). Kyoto: IEEE. doi:10.1109/ICCV.2009.5459260.

  • Rimon, E., & Boyd, S. P. (1997). Obstacle collision detection using best ellipsoid fit. Journal of Intelligent and Robotic Systems: Theory and Applications, 18(2), 105–126.

    Article  MATH  Google Scholar 

  • Sohn, KA., Juttler, B., Kim, MS., Wang, W. (2002). Computing distances between surfaces using line geometry. In: Computer Graphics and Applications, 2002. Proceedings 10th Pacific Conference on (pp. 236–245). doi:10.1109/PCCGA.2002.1167866.

  • Takahashi, M., Suzuki, T., Matsumura, T., & Yorozu, A. (2013). Dynamic obstacle avoidance with simultaneous translational and rotational motion control for autonomous mobile robot. In J. L. Ferrier, A. Bernard, O. Gusikhin, & K. Madani (Eds.), Informatics in control, automation and robotics (pp. 51–64)., Lecture notes in electrical engineering Berlin: Heidelberg. doi:10.1007/978-3-642-31353-0.

    Chapter  Google Scholar 

  • Van Den Berg, J., Lin, M., Manocha, D. (2008). Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation (ICRA) (pp. 1928–1935), Pasadena, CA: IEEE. doi:10.1109/ROBOT.2008.4543489.

  • Van Den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance. In C. Pradalier, R. Siegwart, & G. Hirzinger (Eds.), Robotics research, springer tracts in advanced robotics (pp. 3–19). Heidelberg: Springer.

    Google Scholar 

  • Wang, W., Wang, J., & Kim, M. S. (2001). An algebraic condition for the separation of two ellipsoids. Computer Aided Geometric Design, 18(6), 531–539. doi:10.1016/S0167-8396(01)00049-8.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., Choi, YK., Chan, B., Kim, MS., Wang, J. (2004). Efficient collision detection for moving ellipsoids using separating planes. In: Computing (Vol. 72, pp. 235–246). New York.

  • Zheng, X., & Palffy-Muhoray, P. (2007). Distance of closest approach of two arbitrary hard ellipses in two dimensions. Physical Review E, 75(6), 1–6. doi:10.1103/PhysRevE.75.061709.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant to Bio-Mimetic Robot Research Center Funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD130070ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae D. Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.H., Jeon, J.D. & Oh, J.H. Velocity obstacle based local collision avoidance for a holonomic elliptic robot. Auton Robot 41, 1347–1363 (2017). https://doi.org/10.1007/s10514-016-9580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9580-2

Keywords

Navigation