Skip to main content

Advertisement

Log in

An incremental nonparametric Bayesian clustering-based traversable region detection method

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Navigation capability in complex and unknown outdoor environments is one of the major requirements for an autonomous vehicle and a robot that perform tasks such as a military mission or planetary exploration. Robust traversability estimation in unknown environments would allow the vehicle or the robot to devise control and planning strategies to maximize their effectiveness. In this study, we present a self-supervised on-line learning architecture to estimate the traversability in complex and unknown outdoor environments. The proposed approach builds a model by clustering appearance data using the newly proposed incremental nonparametric Bayesian clustering algorithm. The clusters are then classified as being either traversable or non-traversable. Because our approach effectively groups unknown regions with similar properties, while the vehicle is in motion without human intervention, the vehicle can be deployed to new environments by automatically adapting to changing environmental conditions. We demonstrate the performance of the proposed clustering algorithm through intensive experiments using synthetic and real data and evaluate the viability of the traversability estimation using real data sets collected in outdoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.

    Article  Google Scholar 

  • Aherne, F. J., Thacker, N. A., & Rockett, P. I. (1998). The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika, 34(4), 363–368.

    MathSciNet  MATH  Google Scholar 

  • Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Learning slip behavior using automatic mechanical supervision. In IEEE international conference on robotics and automation, 2007 (pp. 1741–1748). IEEE.

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Blei, D. M., Jordan, M. I., et al. (2006). Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1), 121–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Bradley, D. M., Unnikrishnan, R., & Bagnell, J. (2007). Vegetation detection for driving in complex environments. In 2007 IEEE international conference on robotics and automation (pp. 503–508). IEEE.

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564–575.

    Article  Google Scholar 

  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315(5814), 972–976.

    Article  MathSciNet  MATH  Google Scholar 

  • Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11), 1231–1237.

    Article  Google Scholar 

  • Häselich, M., Arends, M., Wojke, N., Neuhaus, F., & Paulus, D. (2013). Probabilistic terrain classification in unstructured environments. Robotics and Autonomous Systems, 61(10), 1051–1059.

    Article  Google Scholar 

  • Heller, K. A., & Ghahramani, Z. (2005). Bayesian hierarchical clustering. In Proceedings of the 22nd international conference on machine learning (pp. 297–304). New York: ACM.

  • Ho, K., Peynot, T., & Sukkarieh, S. (2014). Analyzing the impact of learning inputs on near-to-far terrain traversability estimation. In Proceedings of 2014 IEEE international conference on robotics and automation (ICRA 2014).

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.

    Article  MATH  Google Scholar 

  • Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., et al. (2006). Toward reliable off road autonomous vehicles operating in challenging environments. The International Journal of Robotics Research, 25(5–6), 449–483.

    Article  Google Scholar 

  • Kim, D., Sun, J., Oh, S. M., Rehg, J. M., & Bobick, A. F. (2006). Traversability classification using unsupervised on-line visual learning for outdoor robot navigation. In Proceedings of 2006 IEEE international conference on robotics and automation (ICRA 2006) (pp. 518–525). IEEE.

  • Kjærgaard, M., Bayramoglu, E., Massaro, A. S., & Jensen, K. (2011). Terrain mapping and obstacle detection using Gaussian processes. In 2011 10th international conference on machine learning and applications and workshops (ICMLA) (Vol. 1, pp. 118–123). IEEE.

  • Kwak, K., Huber, D. F., Badino, H., & Kanade, T. (2011). Extrinsic calibration of a single line scanning lidar and a camera. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3283–3289). IEEE.

  • Lalonde, J. F., Vandapel, N., Huber, D. F., & Hebert, M. (2006). Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, 23(10), 839–862.

    Article  Google Scholar 

  • Lu, H., Jiang, L., & Zell, A. (2015). Long range traversable region detection based on superpixels clustering for mobile robots. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 546–552). IEEE.

  • MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA (Vol. 1, pp. 281–297).

  • Munoz, D., Vandapel, N., & Hebert, M. (2009). Onboard contextual classification of 3-d point clouds with learned high-order Markov random fields. In Proceedings of 2009 IEEE international conference on robotics and automation (ICRA 2009). IEEE.

  • Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.

    Google Scholar 

  • Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  MATH  Google Scholar 

  • Ott, L., & Ramos, F. (2012). Unsupervised incremental learning for long-term autonomy. In Proceedings of 2012 IEEE international conference on robotics and automation (ICRA 2012) (pp. 4022–4029). IEEE.

  • Santamaria-Navarro, À., Teniente, E. H., Morta, M., & Andrade-Cetto, J. (2015). Terrain classification in complex three-dimensional outdoor environments. Journal of Field Robotics, 32(1), 42–60.

    Article  Google Scholar 

  • Shneier, M., Chang, T., Hong, T., Shackleford, W., Bostelman, R., & Albus, J. S. (2008). Learning traversability models for autonomous mobile vehicles. Autonomous Robots, 24(1), 69–86.

    Article  Google Scholar 

  • Silver, D., Bagnell, J.A., & Stentz, A. (2012). Active learning from demonstration for robust autonomous navigation. In Proceedings of 2012 IEEE international conference on robotics and automation (ICRA 2012) (pp. 200–207). IEEE.

  • Sirinukunwattana, K., Savage, R. S., Bari, M. F., Snead, D. R., & Rajpoot, N. M. (2013). Bayesian hierarchical clustering for studying cancer gene expression data with unknown statistics. PLoS One, 8(75), 748.

    Google Scholar 

  • Sofman, B., Lin, E., Bagnell, J. A., Cole, J., Vandapel, N., & Stentz, A. (2006). Improving robot navigation through self-supervised online learning. Journal of Field Robotics, 23(11–12), 1059–1075.

    Article  Google Scholar 

  • Stavens, D., & Thrun, S. (2006). A self-supervised terrain roughness estimator for off-road autonomous driving. In In proceedings of the conference on uncertainty in AI (UAI), Citeseer.

  • Sun, J., Mehta, T., Wooden, D., Powers, M., Rehg, J., Balch, T., et al. (2006). Learning from examples in unstructured, outdoor environments. Journal of Field Robotics, 23(11–12), 1019–1036.

    Article  Google Scholar 

  • Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al. (2007). Stanley: The robot that won the darpa grand challenge. In The 2005 DARPA grand challenge (pp. 1–43). Berlin: Springer.

  • Trautmann, E., & Ray, L. (2011). Mobility characterization for autonomous mobile robots using machine learning. Autonomous Robots, 30(4), 369–383.

    Article  Google Scholar 

  • Tse, R., Ahmed, N. R., & Campbell, M. (2015). Unified terrain mapping model with Markov random fields. IEEE Transactions on Robotics, 31(2), 290–306.

    Article  Google Scholar 

  • Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., et al. (2008). Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics, 25(8), 425–466.

    Article  Google Scholar 

  • Wang, Q., Fang, J., & Yuan, Y. (2015). Adaptive road detection via context-aware label transfer. Neurocomputing, 158(C), 174–183.

    Article  Google Scholar 

  • Wellington, C., Courville, A., & Stentz, A. T. (2006). A generative model of terrain for autonomous navigation in vegetation. The International Journal of Robotics Research, 25(12), 1287–1304.

    Article  Google Scholar 

  • Zhou, S., Xi, J., McDaniel, M. W., Nishihata, T., Salesses, P., & Iagnemma, K. (2012). Self-supervised learning to visually detect terrain surfaces for autonomous robots operating in forested terrain. Journal of Field Robotics, 29(2), 277–297.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the MOTIE (The Ministry of Trade, Industry and Energy), Korea, under the Technology Innovation Program supervised by KEIT (Korea Evaluation Institute of Industrial Technology),10045252, Development of robot task intelligence technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kiho Kwak or Sungho Jo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 19016 KB)

Supplementary material 2 (mp4 22310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kwak, K. & Jo, S. An incremental nonparametric Bayesian clustering-based traversable region detection method. Auton Robot 41, 795–810 (2017). https://doi.org/10.1007/s10514-016-9588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9588-7

Keywords

Navigation