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Abstract In this paper we propose a new bidirectional

invariant motion descriptor of a rigid body. The pro-

posed invariant representation is not affected by rota-

tions, translations, time, linear and angular scaling. In-

variant properties of the proposed representation enable

to recognize gestures in realistic scenarios with unex-

pected variations (e.g., changes in user’s initial pose,

execution time or an observation point), while Carte-

sian trajectories are sensitive to these changes. The pro-

posed invariant representation also allows reconstruc-

tion of the original motion trajectory, which is useful

for human-robot interaction applications where a robot

recognizes human actions and executes robot’s proper

behaviors using same descriptors. By removing the de-

pendency on absolute pose and scaling factors of the

Cartesian trajectories the proposed descriptor achieves
flexibility to generate different motion instances from

the same invariant representation. In order to illus-

trate the effectiveness of our proposed descriptor in mo-

tion recognition and generation, it is tested on three

datasets and experiments on a NAO humanoid robot

and a KUKA LWR IV+ manipulator and compared

with other existing invariant representations.
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1 Introduction

Future robotic applications will require a close collabo-

ration between humans and robots. To ensure a smooth

and effective cooperation, there is a need of represent-

ing human and robot actions in a compact and robust

way that facilitates the understanding of performed mo-

tions as well as the generation of motions which flexibly

adapt to different scenarios. Examples include recog-

nizing human actions [44], gesture-based human-robot

interaction [38, 4, 18], learning human activities [14],

tasks learning by demonstration [1, 17, 33]. Aforemen-

tioned applications usually adopt Cartesian trajectories

as task descriptors. Cartesian trajectories describe the

spatial motion of one or multiple points attached to the

human (robot) body. In real scenarios, Cartesian tra-
jectories are affected by two kinds of motion variations,

depending on how and where the same motion is ex-

ecuted [37], which limit the applicability of Cartesian

task descriptors in motion recognition and reproduc-

tion.

Consider a case where a human takes a bottle from a

table with the right hand and a marker attached to the

hand is tracked by a camera. The motion is described

by the Cartesian trajectory of the hand expressed in

camera (reference) frame. There are motion variations

depending on how the motion is executed:

• Execution time and speed - The human can reach

the bottle faster or slower.

• Amplitude - The bottle can be far or close, hence

the trajectory of the hand can be longer or shorter.

There are variations on where the motion takes place:

• Starting pose - The initial pose of the human can

considerably change across different executions.
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Fig. 1 System overview. In the recognition phase human mo-
tions are transformed in invariant trajectories to increase the
recognition rate. During the reproduction, invariant trajecto-
ries are converted in Cartesian references and passed to the
robot’s controller.

• Reference frame - The camera can be accidentally

or voluntarily moved.

• Reference point - The marker (a tracking target) can

be attached slightly differently to the hand across

the motion capturing sessions.

Described motion variations make the problem of ges-

ture recognition hard to solve. Hence, to increase the

recognition performance, it is desirable to have an in-

variant form of motion trajectories, i.e. a representation

of motion which is coordinate-free and invariant to time

and amplitude scaling. Invariant forms of motion tra-

jectories help to focus on essential aspects of the motion

and are beneficial also for a flexible generation of robot

motions (see Sec. 8.2). The invariance to the starting

pose and the amplitude of motion can be exploited to

take the bottle from different starting locations, with-

out providing further demonstrations.

We propose to overcome limitations of Cartesian

trajectories by using a novel invariant representation

of motion trajectories, namely the Denavit-Hartenberg

inspired Bidirectional (DHB) invariant representation.

DHB is a numerically robust representation of rigid

body motions consisting of six values (three for the po-

sition and three for the orientation), which is a min-

imal representation of rigid body motions. The pro-

posed representation is invariant to affine transforma-

tions (rotation, translation, linear and angular scaling),

time scalings and viewpoints. The invariant represen-

tation is also bidirectional, i.e. it allows to transform

the Cartesian space into the invariant space and vice-

versa, without losing information. Invariance proper-

ties, numerical robustness and bi-directionality make

DHB representation an useful task descriptor to rec-

ognize human actions robustly and to generate robot

behaviors flexibly (see Fig. 1). In gesture recognition

problems, DHB representation can be effectively used

as a feature vector to increase the recognition rate of

classification algorithms [2]. Indeed, the same motion,

observed from different perspectives, executed in differ-

ent positions or scaled in time and space, has always

the same DHB representation. In motion generation

problems, different affinely transformed instances of a

Cartesian trajectory can be retrieved from the same

DHB representation, which allows a flexible generation

of robotic tasks in different situations. In this work, we

present theoretical foundations and properties of DHB

representation, together with an extensive evaluation

on both synthetic and real datasets. Experimental re-

sults show the effectiveness of the proposed approach

in recognizing human gestures and in reproducing and

generalizing observed behaviours on real robots1.

The rest of the paper is organized as follows. Sec-

tion 2 presents related work. The DHB representation

is proposed in Sec. 3. The reconstruction algorithm of

Cartesian trajectory from its invariant representation is

described in Sec. 4. Invariance properties of our repre-

sentation are discussed in Sec. 5, singular cases are an-

alyzed in Sec. 6. DHB invariants are theoretically com-

pared with state-of-the-art approaches in Sec. 7. Sec-

tion 8 presents experimental results and comparisons.

Section 9 states the conclusions.

2 Related Work

2.1 Unidirectional invariant representations

Gesture recognition [44] is a classification problem in

which motion trajectories have to be assigned to a cer-

tain action class. As discussed in Sec. 1, motion varia-

tions of Cartesian trajectories complicate the problem

of gesture recognition. An effective solution to increase

the recognition rate is to create a feature space with in-

variant properties, such as roto-translations and scale

invariance.

In [3] human motions are modeled as temporal tra-

jectories of estimated parameters (state) over time. The

state controls stretching, scaling and translations of the

gesture model with respect to the incoming data. The

condensation algorithm [12] is used to incrementally

1 This work is based on our preliminary results presented
in [36]. Our previous work has been extended in several ways:
(i) we provide more theoretical insights including a compact
closed form of DHB invariants; (ii) we theoretically com-
pare DHB with existing invariant representations, in order
to underline differences and similarities; (iii) we compare the
recognition performance of DHB invariants with several state-
of-the-art approaches; (iv) we report several experiments to
show that DHB invariants can be adopted as flexible motion
descriptors to execute complex tasks.
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match trajectory models to the multi-variate input data.

The condensation algorithm does not make any para-

metric assumption about the state probability distribu-

tion and requires a large set of densities to estimate cur-

rent parameters. To reduce the computational cost of

the prediction, in [25] Hidden Markov Models (HMM)

[26] are used to learn the prior distribution of both the

observation covariance and the state transition proba-

bilities.

Action descriptors invariant to affine transforma-

tions are directly computed from image coordinates in

[23, 24, 47, 41]. The representation in [23, 24] is in-

variant under affine and projective transformations. In-

variant values are computed by considering five fixed

points on the rigid body and by tracking them in the

image during the whole motion. Three dimensional in-

variants under affine transformations are proposed in

[47, 41]. Their computation requires to track the same

six points in all frames.

Alternative approaches focus on Euclidean group

invariants. In [27, 28] gestures are represented by the

spatio-temporal curvature of the Cartesian trajectory,

that is invariant to roto-translations. This representa-

tion is useful to capture the dynamic instants of a tra-

jectory, i.e. points where the velocity and/or the direc-

tion of motion change sign.

The invariant descriptor in [32] consists of two val-

ues, which describe respectively the linear and angular

part of the motion, and is invariant to roto-translations

and linear scaling. In this case, the scale invariance is

not obtained by introducing an artificial scale depend-

ing on the motion length, but it holds for each frame.

This approach is used in [20] to recognize human tasks

by fusing gesture and object recognition into a dynamic

Bayesian network [2].

The Fourier transform is leveraged in [39] to com-

pute a view and scale invariant representation. Carte-

sian trajectories are partitioned into a temporal pyra-

mid and the Fourier transform is computed for each seg-

ment at each level. Low-frequency Fourier coefficients

are chosen as feature vectors.

In order to recognize full-body motions, some re-

searchers focused on creating full-body motion descrip-

tors. The 4D Action Feature Model (4D-AFM) is pro-

posed in [46] to recognize full-body gestures observed

from arbitrary views. Given a multi-view video sequence,

a 3D shape for each frame is computed by projecting the

multi-view 2D silhouettes into the 3D space. For each

silhouette, a set of features (action sketch) describing

changes in direction, speed and shape of the contour is

computed. The 4D-AFM consists of a sequence of 3D

shapes with actions sketches attached. Even if it is pos-

sible to recognize actions from a single view, multi-view

video sequences are required to construct the model in

the training process.

In [19] actions are modeled as a graph, where each

node represents a salient posture. Salient postures are

described by a set of 3D points belonging to the human

body. In [45] a histogram of 3D joint locations (HOJ3D)

is created by dividing the space into bins. The HOJ3D

is then projected into a lower dimensional space us-

ing linear discriminant analysis [2] and clustered into k

classes. HMMs are used for gesture recognition. Recog-

nition performances of DHB and approaches in [19, 45]

are compared in Sec. 8.1.3.

The availability of large computational power and

big data has made deep neural networks popular re-

cently. CNNs are effectively used in [40] to recognize

human actions from input depth maps. In [9] the stan-

dard CNN is extended with four extra layers (slice,

pool, roll and stack) which realize local invariance to

rotations. Inspired by the recognition process in the

visual cortex, LeCun [16] presents a hierarchical ar-

chitecture to learn, from visual inputs, features invari-

ant to affine transformations and illumination. Invari-

ant features are learned in an unsupervised manner us-

ing sparse auto-encoders. Jaderberg et al [13] propose

to learn warping transformations from input data and

this extra learnable layer can be inserted into CNNs

to improve the recognition performance. Deep learn-

ing approaches have shown high recognition accuracy in

typical computer vision problems, like object recogni-

tion and scene parsing. Although they have good poten-

tial in action recognition problems, motion generation

problems remains largely open. Moreover, deep learning

approaches require long training time, big amount of

training data, and high computational power. This lim-

its their applicability on autonomous robotic systems

with limited computational power. On the contrary, the

proposed bidirectional DHB features can be extracted

in a computationally efficient manner and their invari-

ance properties are mathematically guaranteed for any

Cartesian trajectory.

2.2 Bidirectional invariant representations

Besides improving the recognition rate, bidirectional in-

variant representations are flexible motion descriptors

which allow the generation of different trajectory in-

stances from the same descriptor (see Sec. 8.2). Unidi-

rectional invariant representations in Sec. 2.1 are not

suitable for motion reproduction, since the invariant

trajectory cannot be transformed into a Cartesian one.

Frenet-Serret (FS) invariants [15] are the first ex-

ample of a bidirectional invariant representation. FS

representation uses the curvature, the torsion and their



4 Dongheui Lee et al.

first-order derivatives to describe the motion of a spa-

tial curve. In [42], a method is proposed to calculate

FS invariants without using high-order derivatives. The

resulting approximate FS representation is numerically

robust, invariant to affine transformations and changes

in the speed of execution. Original positions are re-

trieved by numerically integrating the Frenet-Serret equa-

tions [43].

FS invariants and their robust version in [42] ne-

glect the orientation part of the motion, which is of

importance for recognition and reproduction of com-

plex motion. This limitation is overcome in [37], where

Extended Frenet-Serret invariants (EFS) is proposed

by considering also the orientation part of the motion.

The EFS is not affected by affine transformations, time,

linear and angular scale and motion profile. EFS invari-

ants are compared with the bidirectional representation

in [6], which is constructed by means of the Instanta-

neous Screw Axis (ISA). The comparison shows a supe-

rior recognition rate of the EFS invariants, due to the

higher noise sensitivity of [6].

EFS invariants and the representation in [6] depend

on high-order time derivatives of the velocity. The nu-

merical computation of high-order derivatives on real

non-smooth signals is sensitive to noise and round-off

errors [5]. As experimentally shown in Sec. 8, the sen-

sitivity of numerical derivatives makes difficult to esti-

mate reliably the invariant values in [37, 6] and gener-

ates a non-negligible reconstruction error. On the con-

trary, the proposed DHB representation does not re-

quire high-order time derivatives. Moreover, the Carte-

sian trajectory is exactly reconstructed from its DHB

representation. The resulting numerical robustness makes

our invariants applicable in realistic human-robot in-

teraction scenarios, where humans are monitored using

noisy sensors, as RGB-D cameras.

3 DHB Invariant Representation of Motion

In this section we present the proposed DHB invariant

representation of rigid body motions. Position-based in-

variants are firstly introduced. Then, velocity-based in-

variants are described and the relation between the two

representations is detailed.

3.1 Theoretical Background

Rigid body motions are usually described in the Carte-

sian space considering the position and the orientation

of a frame attached to the body (body frame) with re-

spect to a reference (world) frame in each time instant

t. The position pt is uniquely defined by the 3D vector

connecting the centers of the body and the reference

frames. For the orientation, instead, several representa-

tions exist. As discussed in Appendix A, the minimum

number of parameters needed to represent the orienta-

tion is three. This work uses a minimal representation

of the orientation, the so-called rotation vector rt.

In our representation, two frames are attached to

the rigid body (see Fig. 2). The first frame describes

the position (linear velocity) in each time instant t.

We refer to this frame as the linear frame. The sec-

ond frame describes the orientation (angular velocity)

in each t and it is referred as the angular frame. More-

over, to distinguish between the two frames, in the for-

mulas the subscript p refers to the position and r refers

to the orientation. Similarly, at velocity level v refers

to the linear velocity and ω refers to the angular ve-

locity. Once those frames are created, a minimal set of

invariants (six values) are computed. The first two in-

variants mp (mv) and mr (mω) represent respectively

the norm of the position (linear velocity) and orienta-

tion vector (angular velocity) between the consecutive

time instants t and t+ 1. Four more invariants θip (θiv)

and θir (θiω), i = 1, 2, are used to align the linear (angu-

lar) frame in t with the linear (angular) frame in t+ 1.

3.2 Position-based Invariants

3.2.1 Definition of linear and angular frames

The linear frame in Fig. 2(a) is created with the follow-

ing steps:

• The x axis is the unit vector representing the nor-
malized difference between the position vectors in
two adjacent frames:

x̂p,t =
pt+1 − pt

‖pt+1 − pt‖
=

∆pt

‖∆pt‖
. (1)

By construction ∆pt represents the linear velocity

of the body in a unitary time.
• The y axis represents the direction of the common

normal between the x axis at the current instant t
and the x axis at the next instant t+ 1:

ŷp,t =
x̂p,t × x̂p,t+1

‖x̂p,t × x̂p,t+1‖
. (2)

• The z axis is the cross product between the x axis
and the y axis:

ẑp,t = x̂p,t × ŷp,t . (3)

Following similar steps we define the angular frame in
Fig. 2(b). The x axis is defined as:

x̂r,t =
∆rt

‖∆rt‖
, (4)

where the rotation vector ∆rt represents the relative
rigid body orientation between consecutive time instants
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Fig. 2 (a) Linear and (b) angular frames in 3 consecutive time instants.

t and t + 1. Hence, it represents the angular velocity
needed to rotate the body from t to t + 1 in a unitary
time. The y axis and the z axis are then computed by:

ŷr,t =
x̂r,t × x̂r,t+1

‖x̂r,t × x̂r,t+1‖
, (5)

ẑr,t = x̂r,t × ŷr,t . (6)

The direction of the axes of the linear (angular) frames

is chosen to avoid discontinuities (jumps of±π) between

subsequent time instants. Given two consecutive axes

ât and ât+1, we check the sign of the scalar product

s = ât · ât+1, setting ât+1 = −ât+1 if s < 0.

3.2.2 Invariant values

The computation of the six invariant values, as well

as the definition of the linear and angular frames, are

inspired by the Denavit-Hartenberg (DH) notation [8].

The difference is that DH notation describes the pose of

each body in a kinematic chain. Instead, our approach

describes the motion of a rigid body in several instants.

Moreover, we separate the position and the orientation

by considering two frames, while a single frame is used

in the DH notation.
As already mentioned, two invariants represent the

norm of the relative positions and orientations between
subsequent frames:

mp,t = ‖∆pt‖ = ∆pt · x̂p,t , (7)

mr,t = ‖∆rt‖ = ∆rt · x̂r,t , (8)

where x̂p,t and x̂r,t are the axes in (1) and (4) respec-

tively. mp and mr in (7) and (8) describe the translation

of the linear and angular frames. The rotation of linear

and angular frames is described by four more values.
Let us consider the linear frame. The ŷp,t axis lies on

the common normal between x̂p,t and x̂p,t+1. According
to the Denavit-Hartenberg notation [8], only the rota-
tions about the x and y axes are needed to align the
frames at t and t + 1. As shown in Fig. 2(a), to align
x̂p,t to x̂p,t+1 the linear frame has to rotate an angle θ1p

about ŷp,t. The signed value of θ1p is computed as:

θ1p,t = arctan

(
x̂p,t × x̂p,t+1

x̂p,t · x̂p,t+1
· ŷp,t

)
= arctan

(
‖x̂p,t‖‖x̂p,t+1‖ sin(θ1p,t)ŷp,t

‖x̂p,t‖‖x̂p,t+1‖ cos(θ1p,t)
· ŷp,t

)

= arctan

(
sin(θ1p,t)

cos(θ1p,t)

)
,

(9)

where the relationships a ·b = ‖a‖‖b‖ cos(θab), a×b =
‖a‖‖b‖ sin(θab)n̂ and (2) have been used. A further ro-
tation θ2p about x̂p,t+1 is required to align ŷp,t to ŷp,t+1.

The signed value of θ2p is computed as:

θ2p,t = arctan

(
ŷp,t × ŷp,t+1

ŷp,t · ŷp,t+1
· x̂p,t+1

)
. (10)

Following the same reasoning it is possible to align
the angular frames between t and t+ 1 and to compute
the last two invariants as:

θ1r,t = arctan

(
x̂r,t × x̂r,t+1

x̂r,t · x̂r,t+1
· ŷr,t

)
, (11)

θ2r,t = arctan

(
ŷr,t × ŷr,t+1

ŷr,t · ŷr,t+1
· x̂r,t+1

)
. (12)

Note that (9) and (11), as well as (10) and (12), are

formally the same. For the completeness, full equations

are given.

3.3 Velocity-based Invariants

In some cases the linear v and angular ω velocities are

directly available from the sensors. Instead of integrat-

ing the velocity to compute the position-based invari-

ants, it is possible to calculate an invariant set directly

from the velocity data. We refer to this set as velocity-

based invariants. The approach used to calculate the

velocity-based invariants is conceptually similar to the

one used for the position-based invariants in Sec. 3.2.

The main differences are illustrated as follows.
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3.3.1 Definition of linear and angular frames

Also in this case two frames are used to describe the
trajectory of the linear/angular velocity vectors in dif-
ferent time instants. The axes of the linear frame are
computed as:

x̂v,t =
vt

‖vt‖
, (13)

ŷv,t =
x̂v,t × x̂v,t+1

‖x̂v,t × x̂v,t+1‖
, (14)

ẑv,t = x̂v,t × ŷv,t . (15)

The axes of the angular frame are computed as:

x̂ω,t =
ωt

‖ωt‖
, (16)

ŷω,t =
x̂ω,t × x̂ω,t+1

‖x̂ω,t × x̂ω,t+1‖
, (17)

ẑω,t = x̂ω,t × ŷω,t . (18)

Note the strong similarities between (1)-(3) and (13)-

(15), as well as between (4)-(6) and (16)-(18).

3.3.2 Invariant values

Once the frames are defined, velocity-based invariants
can be computed. The first two invariants represent the
norm of the linear and angular velocities:

mv,t = ‖vt‖ = vt · x̂v,t , (19)

mω,t = ‖ωt‖ = ωt · x̂ω,t . (20)

Following the same reasoning in Sec. 3.2.2, four other
values are used to align the linear and angular frames in
two consecutive time instants. The resulting invariants
for the linear velocity are:

θ1v,t = arctan

(
x̂v,t × x̂v,t+1

x̂v,t · x̂v,t+1
· ŷv,t

)
, (21)

θ2v,t = arctan

(
ŷv,t × ŷv,t+1

ŷv,t · ŷv,t+1
· x̂v,t+1

)
. (22)

The invariants for the angular velocity are:

θ1ω,t = arctan

(
x̂ω,t × x̂ω,t+1

x̂ω,t · x̂ω,t+1
· ŷω,t

)
, (23)

θ2v,t = arctan

(
ŷω,t × ŷω,t+1

ŷω,t · ŷω,t+1
· x̂ω,t+1

)
. (24)

Note that θ1v,t and θ2v,t are calculated by substituting

x̂p,t with x̂v,t and ŷp,t with ŷv,t in (9) and (10). In the

same manner, θ1ω,t and θ2ω,t are calculated by substitut-

ing x̂r,t with x̂ω,t and ŷr,t with ŷω,t in (11) and (12).

3.4 Relation between position- and velocity-based

DHB Representations

Recalling that ∆p and ∆r are the linear and angu-
lar velocities between two consecutive frames in a uni-
tary time, a simple relation holds between position and

velocity-based invariants in the discrete time domain.
Indeed, from (7) and (8), we have:

mv,t = ‖vt‖ =
‖∆pt‖
∆t

=
mp,t

∆t
, (25)

mω,t = ‖ωt‖ =
‖∆rt‖
∆t

=
mr,t

∆t
, (26)

where ∆t is the sample time. Moreover, from (1) and

(13) it is easy to verify that x̂v,t = x̂p,t, while from

(4) and (16) it comes that x̂ω,t = x̂r,t. Finally, com-

paring (21)-(24) with (9)-(12) and considering that the

y axis definitions are formally the same for all the in-

variants, it is possible to prove that [θ1v, θ
2
v, θ

1
ω, θ

2
ω] =

[θ1p, θ
2
p, θ

1
r , θ

2
r ].

3.5 DHB Representation in Closed Form

We presented DHB invariants considering the definition

of linear and angular frames and their spatial motion.

This formulation is useful to understand the physical

meaning of each invariant and the reconstruction pro-

cedure in Sec. 4. To simplify the formulation, we provide

a closed form of DHB invariants, i.e. a set of equations

that map positions (velocities) to the invariant space.
Recalling that x̂v,t = vt

‖vt‖ , the expression of ŷv,t in

(14) can be rewritten as:

ŷv,t =
vt × vt+1

‖vt‖‖vt+1‖
‖vt‖‖vt+1‖
‖vt × vt+1‖

=
vt × vt+1

‖vt × vt+1‖
. (27)

Considering (21) and (27), θ1v,t can be rewritten as:

θ1v,t = arctan

(
vt × vt+1

‖vt‖‖vt+1‖
‖vt‖‖vt+1‖
vt · vt+1

· ŷv,t

)
= arctan

(
vt × vt+1

vt · vt+1
·

vt × vt+1

‖vt × vt+1‖

)
= arctan

(
‖vt × vt+1‖

vt · vt+1

)
.

(28)

Following similar steps, one can see that closed forms

for θ1p,t, θ
1
r,t, θ

1
ω,t are formally the same as (28).

To express θ2v,t in a closed form, let us first focus on
the division in (22). Considering (27), it is straightfor-
ward to derive that:

ŷv,t × ŷv,t+1

ŷv,t · ŷv,t+1
=

(vt × vt+1)× (vt+1 × vt+2)

(vt × vt+1) · (vt+1 × vt+2)

=
− (vt+1 × vt)× (vt+1 × vt+2)

− (vt+1 × vt) · (vt+1 × vt+2)

=
[vt+1 · (vt × vt+2)] vt+1

(vt+1 × vt) · (vt+1 × vt+2)
,

(29)

where the relationships a× b = −b× a and (a× b)×
(a × c) = a · (b × c)a have been used. By multiplying
(29) by x̂v,t+1 and taking the arc tangent, we obtain
the closed form expression:

θ2v,t = arctan

(
‖vt+1‖vt+1 · (vt × vt+2)

(vt+1 × vt) · (vt+1 × vt+2)

)
. (30)
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Algorithm 1 DHB Invariant Representation
Position-based invariants
Input: a set of relative positions {∆p}t and rotation
vectors {∆r}t, t = 1, . . . , N
return cartesianToDHB({∆p}t, {∆r}t)

Velocity-based invariants
Input: a set of linear {v}t and angular {ω}t, t = 1, . . . , N
velocities
return cartesianToDHB({v}t, {ω}t)

cartesianToDHB({l}t, {a}t)
1. [{ml}t, {θ1l }t, {θ2l }t] = computeInvariants({l}t)
2. [{ma}t, {θ1a}t, {θ2a}t] = computeInvariants({a}t)

return {ml}t, {θ1l }t, {θ2l }t, {ma}t, {θ1a}t, {θ2a}t

computeInvariants({u}t):
3. for each t ∈ [1, N − 2] do
4. mu,t = ‖ut‖
5. θ1u,t = arctan

(
‖uu,t×uu,t+1‖

uu,t·uu,t+1

)
6. θ2u,t = arctan

(
‖uu,t+1‖uu,t+1·(uu,t×uu,t+2)
(uu,t+1×uu,t)·(uu,t+1×uu,t+2)

)
7. end for

return {mu}t, {θ1u}t, {θ2u}t

Following similar steps, it is easy to show that closed

forms for θ2p,t, θ
2
r,t, θ

2
ω,t are formally the same as (30).

The procedure to calculate position and velocity

based invariants is summarized in Algorithm 1. The

procedure is analogous for both the position and veloc-

ity based invariants. The function computeInvariants

takes as input a set of vectors (positions, rotation vec-

tors, linear or angular velocities) and returns the related

set of three invariants. The function cartesianToDHB

just calls twice computeInvariants to compute the com-

plete set of invariant values (six for each time instant).

Note that, in Algorithm 1, u refers to a generic vector,

l stands for linear and a stands for angular.

4 Trajectory Reconstruction

4.1 Pose Reconstruction

The reconstruction of the pose (position and orienta-
tion) of the rigid body in a reference (world) frame
requires three steps. First, the pose of the linear and
angular frames in each instant t is computed as:

Hp,t =

[
Ry(θ1p)Rx(θ2p) mp

0T 1

]
, (31)

Hr,t =

[
Ry(θ1r)Rx(θ2r) mr

0T 0

]
, (32)

where mp = [mp 0 0]T , mr = [mr 0 0]T , Ry(α) and

Rx(α) are the elementary rotations of an angle α about

the y and x axis [35], and 0T = [0 0 0]. Note that the

matrices in (31) and (32) are formally the same except

for the fourth value of the fourth column. The reason

will be clarified later.
Secondly, with the known pose of the linear Hp,1 and

angular Hr,1 frames with respect to the world frame in
the first time instant, it is possible to calculate:

Hw
p,t = Hp,1 ·Hp,2 · . . . ·Hp,t , (33)

Hw
r,t = Hr,1 ·Hr,2 · . . . ·Hr,t , (34)

where Hw
p,t and Hw

r,t represent the pose of the linear

and angular frames with respect to the reference frame

in a time instant t.

Finally, the original position in a generic time in-

stant t is computed as

pt = Rw
p,1∆p1 + . . .+ Rw

p,t∆pt = Hw
p,t[1 : 3, 4], (35)

where Rw
p,i is the rotation of the linear frame with re-

spect to the world frame at t = i and Hw
p,t[1 : 3, 4] are

the first three elements of the fourth column of Hw
p,t in

(33). The same approach does not directly apply to re-

construct the absolute orientation of the rigid body, be-

cause ∆rt +∆rt+1 6= rt+1. Having chosen Hr,t[4, 4] = 0

in (32), we can extract the relative rotation vector

∆rt = Hw
r,t[1 : 3, 4] (36)

from (34). The orientation of the rigid body with re-

spect to the world frame in a time instant t is com-

puted as Rw
t = exp(∆r1) · . . . · exp(∆rt), where exp(r)

transforms a rotation vector into a rotation matrix (see

Appendix A).

4.2 Velocity Reconstruction

The reconstruction of the velocity of the rigid body is
similar to the reconstruction of the position. Firstly,
the pose of the linear and angular frames in each time
instant is computed as:

Hv,t =

[
Ry(θ1v)Rx(θ2v) mv

0T 0

]
, (37)

Hω,t =

[
Ry(θ1ω)Rx(θ2ω) mω

0T 0

]
, (38)

where mv = [mv 0 0]T , mω = [mω 0 0]T . Secondly,
knowing the pose of the linear Hv,1 and angular Hω,1
frames with respect to the world frame in the first time
instant, it is possible to calculate:

Hw
v,t = Hv,1 · . . . ·Hv,t, Hw

ω,t = Hω,1 · . . . ·Hω,t . (39)

Finally, the velocity in a time instant t is computed as

vt = Hw
v,t[1 : 3, 4] and ωt = Hw

ω,t[1 : 3, 4].
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4.3 Variations of Trajectory Reconstruction

The proposed reconstruction algorithm can be extended

to generate affine transformed instances of a Cartesian

trajectory from the same invariant descriptor. For sim-

plicity, let us focus on the reconstruction of the Carte-

sian position. In order to generate shorter or longer tra-

jectories, the vector mp in (31) can be defined with a

scaling factor, i.e. ms
p = [spmp 0 0]T . In order to gen-

erate roto-translated instances of the Cartesian trajec-

tory, the initial pose Hp,1 in (33) can be chosen ac-

cordingly. Note that a similar approach applies for the

reconstruction of the orientation, as well as for the re-

construction of linear and angular velocities.

The flexibility of the reconstruction procedure is

useful to reproduce various trajectory instances from

a single invariant trajectory as well as to reproduce

human demonstrations on different robotics systems.

Cartesian trajectories, in fact, depend on the absolute

pose of the rigid body in the chosen reference frame.

To reproduce demonstrations on a robot, one has to

express Cartesian data in the robot reference frame.

Even when the reference frame is not given in a public

database, DHB invariants can reconstruct the Cartesian

trajectory directly by using the current robot reference

frame as the initial frame.

5 Invariance Properties

Invariance properties of DHB representations are illus-

trated in this section. The same properties are valid for

both position and velocity-based invariants. Hence, we

use u to refer to a generic vector, the subscript l to refer

to linear invariants and a to refer to angular invariants.

Reference frame - Cartesian trajectories are affected
by the choice of the reference frame. The reference frame
can be, for example, the frame attached to a camera ob-
serving the scene (viewpoint). It is interesting to show
that DHB is a coordinate-free representation of rigid
body motions. Translations of the reference frame (view-
point) do not affect the relative position between two
frames, the orientation of the rigid body, as well as its
linear and angular velocities. To prove the invariance
to rotations, let us assume the vector u is rotated by
applying an arbitrary rotation matrix R. Recalling that
rotations do not change the norm of a vector we have:

mRn = ‖Run‖ = ‖R‖ ‖un‖ = ‖un‖ = mn, n = l, a (40)

where the property ‖R‖ = 1 is used. The vector un

in (40) represents one of ∆p, v, ∆r or ω. The other

four invariant values θin, n = l, a, i = 1, 2 represent the

angle between two vectors. It is easy to verify that:

θ1Rl = arctan

(
Rx̂l,t ×Rx̂l,t+1

Rx̂l,t ·Rx̂l,t+1
·Rx̂l,t

)
= arctan

(
(x̂l,t × x̂l,t+1)

T

x̂T
l,tR

T ·Rx̂l,t+1
RT ·Rŷl,t

)
= θ1l ,

(41)

Following the reasoning in (41) one can show the in-

variance of θ2l , θ1a and θ2a.

Time, linear and angular scale - Motions executed

at different speeds have different time scales. Hence,

time scale invariance is of importance to compare mo-

tions performed at different velocities. As suggested in

[6], a dimensionless time is defined as t′ = t/tf , where tf
is the total duration of the motion. Invariants are made

independent on the time scale by multiplying each mi
n

and θin by tf and by substituting t with t′.

In order to recognize motions performed by different

users it is of importance to guarantee the invariance to

scaling factors [32]. It is known that the scaling of two

vectors does not affect the angle between them. Since

the four θin represent angles between unit vectors, they

are independent on linear and angular scales. The two

mi
n, n = l, a, i = 1, 2 values are made invariant to

scaling factors by:

m′l,t =
ml,t∫ tf

t=0
|ml,t|

, m′a,t =
ma,t∫ tf

t=0
|ma,t|

, (42)

where
∫ tf
t=0
|ml,t| and

∫ tf
t=0
|ma,t| are respectively the lin-

ear and angular scale of motion and tf is the total du-

ration of the motion2.

Speed invariance - The invariance to the motion pro-

file, or the speed of execution, can be obtained by ex-

pressing DHB invariants as a function of a degree of

advancement, as described in [37]. Speed invariance can

be achieved in theory. In practice, however, the discrete

sampling time of real sensors strongly affects motions

executed at different speeds and the resulting invari-

ants. This is common for all invariant representations.

Reverse motion - It can be useful, especially for

recognition purposes, to have the same representation

for motions executed in a direction or in the opposite di-

rection. Invariance to the direction of motion for ml and

ma is achieved by considering them in the reverse order,

i.e. mrev
l,t = ml,(tf−t) and mrev

a,t = ma,(tf−t), where tf is

the total duration of the motion. The four θin invariants

have to be considered in the reverse order and they have

to be shifted by 1 or 2 samples, i.e. θ1,revn,t = θ1n,(tf−t+1),

θ2,revn,t = θ2n,(tf−t+2) for n = l, a.

2 In the discrete time case, the integral
∫ tf
t=0 | • | in (42) is

replaced by
∑tf

t=0 | • |.
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Reference point - Analogously to Cartesian trajec-

tories, ml,t, θ
1
l,t and θ2l,t depend on the reference point

used to describe the translation. Hence, for different

reference points, the above invariants will be different

for the same motion. To overcome this limitation, one

has to ensure that the reference point is kept the same

(or slightly varying) during the entire motion3. Note

that the invariance to the reference point is achieved in

[6], while EFS invariants also depend on the reference

point.

6 Special Motions

In some cases one of the axes of the linear (angular)

frame cannot be uniquely defined. We refer to these

situations as singular cases or singularities. Considering

the definition of linear and angular frames in Sec. 3, it is

clear that singularities occur when the axes cannot be

normalized because the norm (denominator) drops to

zero. Singular cases are analyzed and effective solutions

are proposed accordingly. The invariant representation

of the singular cases is summarized in Tab. 1.

Table 1 Invariant representation of special motions.

Pure translation ml θ1l θ2l 0 0 0

Pure rotation 0 0 0 ma θ1a θ2a

Translation str. line ml 0 0 ma θ1a θ2a

Rotation par. axes ml θ1l θ2l ma 0 0

Planar motion ml θ1l 0 ma 0 0

Pure translations - In the case of pure translations,

the x axis of the angular frame becomes the null vec-

tor from eq. (4) or eq. (16). When there is no angu-

lar motion between two consecutive instants, the an-

gular frame is kept unchanged from the previous an-

gular frame: x̂a,t = x̂a,t−1, ŷa,t = ŷa,t−1. Since the

angular frame in the first instant can be easily known

(see Sec. 4), we can always find the angular frame.

The resulting invariants for the angular part become

{ma}t = {θ1a}t = {θ2a}t = {0}t.
Pure rotations - In the case of pure rotations, the

x axis of the linear frame becomes the null vector from

eq. (1) or eq. (13). Thus the linear frame cannot be

defined uniquely. When there is no translational motion

between two consecutive instants, the linear frame is

kept unchanged from the previous linear frame: x̂l,t =

x̂l,t−1, ŷl,t = ŷl,t−1. Since the linear frame in the first

3 As shown in Sec. 8.1.1 and Sec. 8.1.3, the proposed DHB
descriptor works reasonably well with kinect sensors, which
does not ensure tracking of the perfectly same point of a body
part.

Table 2 EFS and DS Representations

EFS invariants [37]

e1ω = ±‖ω‖
e2ω = ±‖ω×ω̇‖‖ω‖2

e3ω = ±‖(ω×ω̇)×(ω×ω̈)‖
‖ω×ω̇‖2

e1v = ±‖v‖
e2v = ±‖v×v̇‖

‖v‖2

e3v = ±‖(v×v̇)×(v×v̈)‖
‖v×v̇‖2

DS invariants [6]

d1ω = ±‖ω‖
d2ω = ±‖ω×ω̇‖‖ω‖2

d3ω = ± ‖ω‖
‖ω×ω̇‖2 |(ω × ω̇) · ω̈|

d1v = ± v·ω
‖ω‖

d2v = ± ω×ω̇
‖ω×ω̇‖ ·

[
‖ω‖2(ω̇×v+ω×v̇)−2(ω×v)·(ω·ω̇)

‖ω‖4

]
d3v = ∓

{
[ω̇×(ω×ω̇)+ω×(ω×ω̈)]

‖ω‖3·‖ω×ω̇‖2 ·
‖ω‖2(ω̇×v+ω×v̇)−2ω·ω̇·(ω×v)

‖ω‖3·‖ω×ω̇‖2

}
∓ {[ω × (ω × ω̇)]·[

‖ω‖2(ω̈×v+2ω̇×v̇+ω×v̈)

‖ω‖3·‖ω×ω̇‖2 − 2(‖ω̇‖2+ω·ω̇)(ω×v)

‖ω‖3·‖ω×ω̇‖2

]}
±
{[

3(ω·ω̇)

2‖ω‖2 + (ω×ω̇)·(ω×ω̈)

‖ω×ω̇‖2

]
· [ω × (ω × ω̇)]·[

‖ω‖2(ω̇×v−ω×v̇)−2(ω·ω̇(ω×ω̇)

‖ω‖3·‖ω×ω̇‖2

]}

instant is known, we can always find the linear frame.

The resulting invariants for the linear part are {ml}t =

{θ1l }t = {θ2l }t = {0}t.
Translations along a straight line - In this case, the

x axes of the linear frame are always aligned and the

y axes becomes singular from eq. (2) or eq. (14). For

translations along a straight line between two consecu-

tive instants t and t+ 1, we set ŷl,t = ŷl,t−1 and obtain

θ1l,t = θ2l,t = 0.

Rotations about parallel axes - In the case of ro-

tations about parallel axes, the x axes of the angular

frame are always parallel and the y axis becomes singu-

lar. For rotations about parallel axes in two consecutive

instants t and t + 1, we set ŷa,t = ŷa,t−1 and obtain

θ1a,t = θ2a,t = 0.

Planar motions - In the case of planar motions, the

rigid body translates on a plane π and rotates about an

axis orthogonal to π. By construction, the y axes of the

linear frame are orthogonal to π, and of course parallel

to each other. As a consequence we obtain {θ2l }t = {0}t.
The angular motion is a rotation about parallel axes

(orthogonal to π), resulting in {θ1a}t = {θ2a}t = {0}t.

7 Comparison with Existing Representations

This section describes theoretical relationships and dif-

ferences between DHB and two state-of-the-art bidi-
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rectional invariant representations: EFS [37] and DS4

[6]. To the best of our knowledge, EFS and DS are the

only bidirectional representations which consider also

the orientation part of the motion. EFS and DS rep-

resentations transform velocities and their time deriva-

tives into invariants, as shown in Tab. 25. They are com-

pared with velocity-based DHB invariants, since posi-

tion and velocity-based DHB invariants are practically

the same and the same properties hold for both the

representations, as stated in Sec. 3.4. Several properties

are compared and following analysis are summarized in

Tab. 3.

7.1 DHB and DS representations

DS [6] is a bidirectional invariant representation of rigid

body motions, constructed by means of the Instanta-

neous Screw Axis (ISA) [21]. Two invariants represent

the translational velocity along the ISA and the rota-

tional velocity about the ISA. Four other invariant val-

ues describe the motion of the ISA between two consec-

utive time instants. Given the twist, i.e. linear vt and

angular ωt velocities, in each time instant, the six in-

variants are computed as shown in Tab. 2, where the

sign of each invariant is chosen in a way that it avoids

discontinuities between consecutive time instants.

In the continuous time domain (∆t −→ 0), the re-

lationships between DHB and DS are mω = d1ω, θ1ω ≈
d2ω∆t and θ2ω ≈ d3ω∆t (see Appendix B for the proofs).

Hence, DHB invariant values related to the angular ve-

locity represent the angular motion of the ISA in the

discrete time domain. DHB invariants describe the mo-

tion of the ISA using angular velocities sampled at con-

secutive time instants, while DS invariants use high-

order time derivatives. DS invariant values related to

the linear velocity are obtained by projecting the linear

velocity along the ISA, which guarantees the invariance

to the reference point used to describe the translation

[6]. As discussed in Sec. 5, the invariance to the refer-

ence point is not guaranteed by DHB and EFS repre-

sentations.

7.2 DHB and EFS representations

The original Frenet-Serret (FS) representation [15] con-

sists of three invariant values, corresponding to e1v, e2v
and e3v in Tab. 2. e1v represents the linear velocity along

the tangent axis of the Frenet-Serret frame, e2v and e3v
describe the changing orientation of the FS frame. e2v

4 For simplicity, the acronym of the author name (DS) is
used to refer the representation in [6].
5 Time dependencies are omitted to simplify the notation.

and e3v are closely related to the curvature κ and torsion

τ of a space curve, i.e. e2v = ±κ‖v‖ and e3v = ±τ‖v‖.
Recall that the curvature describes the change of the

orientation angle of the tangent of a space curve per

unit arc length, while the torsion describes the change

of the orientation of the tangent plane of a space curve

per unit arc length [15].

EFS [37] extends the FS representation by consid-

ering the orientation of the rigid body. In EFS a second

FS frame is attached to the rigid body and three more

invariants (e1ω, e2ω and e3ω in Tab. 2) are used to describe

the rotation of the rigid body. The original trajectory

can be reconstructed from EFS invariants by applying

the method in [43] to both the FS frames. From Tab.

2, it is straightforward to show that d1ω = e1ω, d2ω = e2ω
and d3ω = e3ω. Another interesting property is that EFS

and DS are exactly the same representation in case of

pure translations. In this case, in fact, ω = 0 and only

three invariants are defined. According to [6] and Tab.

2 it holds that d1v = e1v, d2ω = e2v and d3ω = e3ω. Note that

the representation in [32] uses a subset (e2v and e2ω) of

EFS invariants.

In the continuous time domain, DHB and EFS are

almost same apart from a scaling factor: mu = e1u,

θ1u ≈ e2u∆t and θ2u ≈ e3u∆t for u = v, ω (see Appendix C

for the proofs). The difference is that DHB is a discrete

time version of EFS. EFS invariants describe the mo-

tion of the two FS frames assuming a continuous time

domain and the effects of the numerical implementa-

tion are simply neglected. In contrast, DHB invariants

describe the motion of the two (FS) frames directly as-

suming a discrete time domain: using velocities sam-

pled at consecutive time instants instead of high order

time derivatives. DHB and EFS share the same invari-

ance properties (see Tab. 3), because both describe the

motion of the two FS frames. In addition, DHB rep-

resentation is also numerically robust because there is

a one-to-one mapping between the representation and

its numerical implementation. This methodological dif-

ference makes DHB invariants robust for practical use

(see Sec. 8).

In [42], a robust discrete time approximation of FS

invariants is proposed. Compared to [42], DHB rep-

resentation considers also the orientation of the rigid

body, uses less consecutive samples (3 instead of 5) and

provides an accurate approach to reconstruct the mo-

tion.

One can see that θ1v, θ2v, θ1ω and θ2ω depend on the

sampling time ∆t. The sampling time dependency does

not cause problems in usual cases, where most sensors

receives data with relatively constant sampling time.

In a special case where trajectories are sampled at very
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Table 3 Overview and Properties of DS, EFS and DHB Representations.

Numerically Invariant to

Representation Physical meaning Bidirectional robust Initial pose reference point viewpoint time/linear/angular scale

DS Motion along ISA and motion of ISA X − X X X X/ X/X

EFS Velocities (magnitude), orientation of FS frames X − X − X X/X/X

DHB Discrete time approximation of EFS X X X − X X/X/X

different rates, one can simply divide these invariants

by the sampling time ∆t.

7.3 Sample delay

To compute position-based invariants in a time instant

t one has to know the Cartesian trajectory from t to

t+ 3, introducing a delay of three samples. Indeed, the

angles in (10) and (12) depend on ŷt+1, which depends

on x̂t+2. From (1) and (4) it is clear that x̂t+2 depends

on the position (orientation) of the rigid body in t+ 3.

Following a similar reasoning, one can see from (13)

and (16), that the velocity-based invariants in t require

the velocities from t to t + 2. Hence, a delay of two

samples is introduced. Note that, when velocities are

numerically computed, both DHB representations have

the same delay of three samples.

Representations in [6, 37], instead, depend only on

the current time instant, but they require the third-

order derivative of position and orientation. When deriva-

tives are numerically computed, the same delay of three

samples is introduced. Thus, DS, EFS and DHB have

same sample delay.

7.4 Computational cost

The computational cost of DHB invariant representa-

tion is6 O(N(M(n)(96 + 4 log(n)))), where M(n) is the

computational cost of the multiplication (division), that

depends on the number of digits n used to represent real

numbers. N is the number of samples in the Cartesian

trajectory. For comparison, the algorithm in [6] has a

complexity of O(N(180M(n))), while EFS invariants

have a complexity of O(N(100M(n))).

7.5 Trajectory reconstruction error

DHB, DS and EFS are bidirectional invariant represen-

tations, i.e. Cartesian twists can be retrieved from their

representations. Original velocities are reconstructed from

DHB descriptor by applying the algorithm in Sec. 4.2.

6 The result is obtained from Algorithm 1 by neglecting the
summation and subtraction operations.
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Fig. 3 Synthetic twist trajectory: vx = 0.01 exp(t), vx =
5 + 1.5 sin(t), vx = cos(t), ωx = 0.5 sin(t), ωy = cos(t) and
ωz = 0.1t, t = 0, . . . , 4 s.
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Velocity Reconstruction Errors

Fig. 4 Errors between the twists in Fig. 3 and the twists
reconstructed from DS, EFS and DHB representations for
different sampling times ∆t. Note the logarithmic scale on
the ordinate axis.

The reconstruction result of EFS is obtained by the al-

gorithm in [43]7.

We test the reconstruction performance for all rep-

resentations by using the synthetic twist trajectory in

Fig. 3. The reconstruction error is computed as the root

mean square error (RMSE) between original twists in

Fig. 3 and twists reconstructed from each invariant rep-

resentation. The results are shown in Fig. 4 using three

different sampling times (∆t = 0.1, 0.01 and 0.001 s).

7 The reconstruction procedure in Sec. 4 can also be applied
to EFS descriptor. Both reconstruction methods ([43] and
Sec. 4) reproduce similar reconstruction errors.
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One can see a non-negligible error with DS and EFS de-

scriptors (see also Sec. 8.2.3). The accuracy of DS and

EFS depends on the sampling time, i.e. the smaller the

sampling time the smaller the error. DS and EFS rep-

resentations, in fact, use high-order derivatives which

are affected by round-off errors. Moreover, the numer-

ical integration step is required to retrieve Cartesian

twists from both DS and EFS representations. The lin-

ear RMSE for DS representation is always bigger than

the linear RMSE for EFS invariants. This is because

d2v and d3v are an approximated representation of the

kinematics of the ISA [6].

On the other hand, the DHB invariants offer a high

reconstruction accuracy for each value of ∆t. Fig. 4

shows a negligible increase of reconstruction error for

smaller sampling times, which is due to the finite pre-

cision of the computing machine8.

7.6 Noise sensitivity

To show the noise sensitivity of invariant descriptors,

a Gaussian noise with increasing power Pnoise is added

to the data in Fig. 3. The Gaussian noise is generated

by considering a decreasing signal noise ratio (snr) from

100 dB to 50 dB, where snr = Psignal/Pnoise. To mea-

sure the noise sensitivity of each representation, we first

compute the invariant representation {in}t of the noisy

twist trajectories. The invariant representation {i}t of

the noiseless trajectories is then point-wise subtracted

to {in}t. The resulting set of samples {rn}t represent

the residual noise. The residual signal to noise ratio, i.e.

the ratio between the original signal power P{i} and the

residual noise power P{rn}, is used to compactly repre-

sent the noise sensitivity.

The described procedure is repeated 100 times for

each value of the snr and for each invariant representa-

tion. Figure 5 shows the mean and standard deviation

of the residual snr. The DHB representation exhibits

a reduced noise sensitivity, compared to DS and EFS

representations. The reason is that DHB invariants lie

at velocity level, while DS and EFS invariants lie at jerk

level. The numerical computation of high order deriva-

tives is sensitive to the noise in the data and round-off

errors [5]. DS invariants show the highest noise sensi-

tivity. Indeed, the projection of the linear velocity (and

its time derivatives) along the ISA axis increases the

noise, especially in d2v and d3v in Tab. 2.

8 A smaller sampling time generates more twist samples
and more invariant values. Hence, more products have to be
computed in (39) to reconstruct the motion, which increases
errors due to the finite precision.
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Fig. 5 Noise sensitivity of DHB, DS and EFS invariant rep-
resentations when a Gaussian noise with increasing power is
applied to the twists in Fig. 3. Crosses represent the mean
and bars represent the standard deviation of the residual snr
over the 100 iterations.

8 Experimental Results

8.1 Invariant Motion Recognition

In this experiment, we aim at demonstrating the effec-

tiveness of invariant representations in gesture recogni-

tion problems. In order to focus on motion representa-

tions, we adopt a widely-used classification algorithm,

the k-Nearest Neighbour classifier [2], instead of de-

veloping a customized classification algorithm. The k-

Nearest Neighbour (k-NN) algorithm is a non-parametric

classifier that assigns the query gesture to the class most

common among its k nearest neighbors. Nearest neigh-

bors are determined in this work considering the Eu-

clidean distance among feature vectors.

Recognition performances of DHB representation is

compared with state-of-the-art representations on three

datasets (see Tab. 4). The first dataset, namely the

English letters dataset, consists of five gestures per-

formed by the same user. The dataset is relatively sim-

ple, but useful to understand how to apply invariant

representations in gesture recognition problems. The

second dataset, namely the pouring drink dataset, con-

sists of five gestures performed by five different users.

This dataset is more challenging than the first due to

multiple users. The last dataset, namely the Microsoft

research Action 3D dataset, consists of twenty actions

performed by ten users. The relatively big number of

actions/users makes this dataset a challenging bench-

mark for gesture recognition algorithms.

We show only velocity-based DHB invariants for

gesture recognition, because the two DHB representa-

tions are practically the same (shown in Sec. 3.4) and

have the same performance in term of gesture recogni-

tion.
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Table 4 Datasets characteristics.

# of # of # of # of Body Sampling

Dataset Actions Users Repetitions parts rate [Hz]

English letters 5 1 50 1 30

Pouring drink 5 5 10 1 120

MSR Action3D 20 10 3 20 30

8.1.1 English letters dataset

In this section, we compare recognition performances

of invariant and non-invariant motion descriptors using

the first dataset9, including the five capital letters A,

M, N, O, X. Each alphabet letter is drawn by one user

ten times. Motion trajectories are collected by tracking

the user’s right hand position at 30 Hz with an RGB-D

camera. Ten demonstrations of the letters O and X are

shown in Fig. 6.

O X

Original Roto-translation Scaling

O X O X

Fig. 6 Original demonstrations of O and X (left), affects by
roto-translation (middle) and by scaling (right) are visual-
ized in the x-y coordinates. Black points indicate the starting
position of each trajectory.

In real scenarios gestures can be observed or exe-

cuted from different starting poses. To simulate this sit-

uation, the dataset is extended to 250 demonstrations

(50 demonstrations × 5 letters). Random affine trans-

formations are applied to the original data and generate

40 additional demonstrations per letter, shown in Fig.

6. Time derivatives are numerically computed with the

sampling time ∆t = 1/30 s, the same frame rate at

which data are collected.

Recognition performances of different motion de-

scriptors are compared using a leave-half-out cross val-

idation approach, where a half of the dataset is used

as a training set and the rest as a test set. Training

and test sets are randomly selected 100 times. Aver-

age recognition rates for different values of k (1-NN,

3-NN and 5-NN) and with different filtering conditions

(with original data versus filterd data) are shown in

Tab. 5. Confusion matrices for DHB and DS/EFS rep-

resentations for 1-NN are displayed in Fig. 7. Results

are obtained considering all the invariant values of each

representation. Recall that EFS and DS are exactly the

same for pure translations (See Sec. 7.2).

9 Available on-line: creativedistraction.com/downloads/
gesture.zip.

Table 5 Recognition results on the English letters dataset.

Unfiltered data Filtered data

1-NN 3-NN 5-NN 1-NN 3-NN 5-NN

Twist 78.8% 72.7% 69.6% 79.3% 74.1% 70.4%

DS / EFS 79.56% 79.24% 78.92% 96.96% 96.44% 96.36%

DHB 94.76% 94.36% 94.32% 98.52% 98.32% 98.24%

A 1
M 0.966 0.034
N 1
O 1
X 0.042 0.084 0.874

A M N O X

(a) DS/EFS invariants

A 1
M 1
N 1
O 1
X 0.074 0.926

A M N O X

(b) DHB invariants

Fig. 7 Confusion matrices for the English letters dataset ob-
tained with filtered data and k = 1.

According to Tab. 5, the Cartesian twist shows poor

performance compared to DS/EFS and DHB since the

Cartesian twist is invariant only to translations. DS/EFS

are ill-conditioned on noisy signals due to the numerical

computation of high order derivatives. When a moving

average filter (window size w = 5) is applied, the per-

formance of DS/EFS is improved a lot. A more sophis-

ticated, off-line filtering technique as the linear Kalman

smoother [29] used in [37, 7] could further improve the

performance. Nevertheless, the usage of off-line filtering

techniques limits the applicability of invariant repre-

sentations in on-line gesture recognition problems and

it increases the computational cost of the recognition

procedure. The proposed DHB invariants show the best

recognition rate in all considered cases, which implies

that DHB invariants are well-conditioned also on noisy

data.

8.1.2 Pouring a drink dataset

The aim of this experiment is to show the recogni-

tion capabilities of the DHB invariants among different

users. The dataset consists of five actions, namely pour,

release, start, stop and take, performed with the right

hand ten times by five users (see Tab. 4). An expert user

shows once the gesture to perform. Users are asked to

repeat the shown action ten times in a row, arbitrar-

ily changing their pose after each repetition. Cartesian

twists of the users right hand are collected at 120 Hz us-

ing a Xsens MVN motion capture suit10. The origin of

the inertial sensor attached to the right hand is used as

reference point. Time derivatives are numerically com-

puted with the sampling time ∆t = 1/120 s, the same

frame rate of the data collection.

Since all representations performed better with fil-

tered data on the English letters dataset, we filter twist

trajectories using a moving average filter (w = 5) to im-

prove the recognition rate. Performances of DHB, DS

10 www.xsens.com/products/xsens-mvn.
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and EFS representations are compared using a leave-

half-out cross validation approach, which uses half of

the demonstrations of each user for training and the

rest for testing. Training and test sets are randomly se-

lected 100 times. Average recognition rates for different

values of k are shown in Tab. 6. If all the six invariants

values are considered, DS representation achieves poor

recognition performance compared to DHB and EFS.

DS invariants have an increased noise sensitivity due

to the projection of linear velocities (and their time

derivatives) along the ISA.

In order to illustrate the effects of jerk dependent in-

variants explicitly, another recognition test is performed

and the results are shown in Tab. 6 and Fig. 8. Therein,

the jerk depended values are removed: d3v and d3ω from

DS and e3v and e3ω from EFS. For the fair comparison, we

also remove θ2v and θ2ω, which describe similar quantities

as e3v and e3ω, from our DHB invariants. Table 6 shows

that jerk depended values of DS invariants degrade the

recognition performance and recommends to use a sub-

set instead of the full set of DS invariants. Recognition

performance of EFS and DHB invariants are compara-

ble and slightly better performance of DHB on the full

set of invariants and EFS on the subset was observed.

This means that all the six values in DHB representa-

tion contribute to make motions more distinctive.

Table 6 Recognition results on the pouring a drink dataset
(filtered data).

All invariants Without jerk dependent invariants

1-NN 3-NN 5-NN 1-NN 3-NN 5-NN

DS 77.45% 80.38% 80.59% 93.66% 92.72% 91.06%

EFS 94.02% 92.86% 91.5% 94.66% 93.24% 91.95%

DHB 95.14% 93.45% 92.08% 94.89% 93.22% 91.9%

1 0.988 0.012
2 0.945 0.055
3 0.984 0.016
4 0.05 0.091 0.859
5 0.092 0.908

1 2 3 4 5

(a) DS invariants

1 0.99 0.01
2 0.954 0.046
3 0.985 0.015
4 0.014 0.102 0.884
5 0.08 0.92

1 2 3 4 5

(b) EFS invariants

1 0.993 0.007
2 0.952 0.048
3 0.99 0.01
4 0.014 0.102 0.884
5 0.062 0.938

1 2 3 4 5

(c) DHB invariants

Fig. 8 Confusion matrices for the pouring a drink dataset.
Results are obtained with k = 1 and without considering jerk
dependant invariants in DS and EFS representations.

Table 7 MSR action Dataset and Recognition Protocol

MSR Action3D dataset: Twenty actions are performed 3
times by 10 users. The 20 actions are highArmWave, hori-
zontalArmWave, hammer, handCatch, forwardPunch, high-
Throw, drawX, drawTick, drawCircle, handClap, twoHand-
Wave, sideBoxing, bend, forwardKick, sideKick, jogging, ten-
nisSwing, tennisServe, golfSwing, and pickUpThrow.

Action Subsets: The MSR Action3D dataset is split into
three action subsets (AS1, AS2 and AS3).

AS1 AS2 AS3
horizontalArmWave highArmWave highThrow

hammer handCatch forwardKick
forwardPunch drawX sideKick

highThrow drawTick jogging
handClap drawCircle tennisSwing

bend twoHandWave tennisServe
tennisServe sideBoxing golfSwing

pickUpThrow forwardKick pickUpThrow

Cross validations: Three tests (T1, T2 and T3) are per-
formed on each action set. In T1, 1/3 of the samples, i.e. one
demonstration for each user, are used for training and the
rest for testing. In T2, 2/3 of the samples are used as train-
ing set and the rest as test set. In T3, demonstrations from
half of the users are used for training and the rest for testing.
In T1 and T2 data from all the subjects are considered for
the training. T3 is a cross subject test.

8.1.3 MicroSoft Research (MSR) Action3D dataset

To evaluate performances in a more challenging sce-

nario, we consider a bigger dataset of full-body mo-

tions. The MSR Action3D dataset11 consists of 20 ac-

tions (see Tab. 7) performed 3 times by 10 users. Each

user is tracked using an RGB-D sensor at 30 Hz. For

each time instant, the position (pure translation) of 20

body parts is stored. Motion recognition is tested by

following the experimental protocol described in [45],

summarized in Tab. 7.

For each action, the invariant representation of each

body part is computed. The origin of the frames at-

tached to each body part is used as reference point.

Position trajectories are filtered with a moving average

filter (w = 5) before computing the invariants. Time

derivatives of the position are computed by numerical

differentiation with sampling time ∆t = 1/30 s. As un-

derlined in [32] and [39], full-body motions are better

recognized when body parts not involved in the move-

ment are not considered. Unused body parts are auto-

matically cut off by applying a thresholding method.

We consider a body part P relevant to the current ac-

tion if P is moved more than tr = 0.15 m, where the

value of tr is chosen empirically. The invariants relative

to irrelevant body parts are simply zeroed.

11 Available on-line: research.microsoft.com/en-us/um/
people/zliu/actionrecorsrc.
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Table 8 Recognition results of DHB, DS/EFS, HOJ3D [45] and Li et al. [19] on the MSR Action3D dataset.

T1 T2 T3

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average

DS/EFS 89.17% 89.17% 98.58% 92.31% 88.51% 88.73% 97.17% 91.47% 87.92% 86.85% 98.22% 91.0%

DHB 97.65% 91.84% 100% 96.49% 97.96% 93.74% 100% 97.23% 96.42% 91.3% 99.98% 95.9%

HOJ3D 98.47% 96.67% 93.47% 96.2% 98.61% 97.92% 94.93% 97.15% 87.98% 85.48% 63.46% 78.97%

Li et al. 89.5% 89.0% 96.3% 91.6% 93.4% 92.9% 96.3% 94.2% 72.9% 71.9% 79.2% 74.7%

Training and test sets are randomly selected 100

times. Average recognition rates with different motion

representations are shown in Tab. 8. Results for DHB

and DS/EFS are obtained using a 1-NN classifier and

considering all three invariant values12 for each joint.

DHB invariants have, on average, the highest recogni-

tion rate in all the considered cases. The unidirectional

HOJ3D approach in [45] performs slightly better than

DHB invariants only on AS1/AS2 in test T1/T2. Ac-

tions in AS1 and AS2 are mainly performed with the

right arm, and some actions consist of similar move-

ments executed in different directions, such as forward-

Punch and highThrow. Unlikely to DHB, DS and EFS,

HOJ3D contains information about the direction of the

human motion in Cartesian space. This could explain

why HOJ3D can distinguish slightly better similar mo-

tions in different directions of the Cartesian space on

AS1/AS2 in test T1/T2. However when it comes to the

cross subject test, the performance of HOJ3D down-

grades significantly because it is not invariant to scale.

Finally, the results in Tab. 8 show that our represen-

tation has the highest recognition rate on AS3 and in

the cross subject test T3, showing good generalization

capabilities among different users.

8.2 Invariant Motion Reproduction

The reconstruction procedure in Sec. 4 can be further

extended to generate different trajectory instances. The

first experiment shows how different instances of a Carte-

sian motion are generated from the same DHB repre-

sentation. The second experiment focuses on generat-

ing a feasible trajectory for the NAO humanoid robot13

starting from human demonstrations. The third exper-

iment shows how a complex task, consisting of three

different actions, can be effectively executed on a real

robot. The last experiment shows how full-body mo-

tions can be reproduced from the invariant trajectory

of each body part.

12 There exists 3 invariants to represent translational motion
of the MSR Action3D dataset.
13 www.aldebaran.com/en/cool-robots/nao.

8.2.1 Multiple trajectories from the same descriptor

Affine transformed instances of a Cartesian trajectory

can be generated from the same invariant descriptor

by reconstructing the Cartesian motion in an arbitrary

reference frame with an arbitrary scaling factor. Con-

sider one demonstration of the letter M in Sec. 8.1.1,

which is shown in Fig. 9(c) as a red curve. The demon-

stration is converted into the DHB descriptor and the

invariant representation can be reproduced with a var-

ious form of affine transformations, shown in Fig. 9(c)

as green lines. In Fig. 9(a), the motion is reconstructed

in a translated (t = [−0.05, 0.5, 0] m) initial frame. The

same translation t is applied in Fig. 9(b) together with

a scaling factor s = 0.5. The initial frame is rotated of

−30 deg around the z axis in Fig. 9(c).

The correspondences between the original demon-

stration and the generated trajectories are visualized

with the black dashed lines. The correspondences are

calculated by a distance metric based on dynamic time

warping (DTW) [30]. In particular multi dimensional

DTW (MD-DTW) algorithm in [31] was used to find

the optimal non-linear match (see Fig. 9).

8.2.2 English letters reproduction

This experiment illustrates how to generate a robot

hand motion from a human hand motion using the pro-

posed DHB descriptor. One human demonstration of

the letter N in Sec. 8.1.1 is reproduced by a small hu-

manoid robot NAO. The robot executes the trajectory

with the right hand (see Fig. 10). Even with unknown

camera frame, the DHB representation can directly gen-

erate the Cartesian trajectory in the robot reference

frame without any processing of the DHB representa-

tion.

Due to the physical limitations of the NAO robot,

the Cartesian velocities reconstructed considering the

“human” linear scale shum in (42) cannot be executed

by the robot. Comparing the maximum velocity of the

robot hand, as well as its arm length, with the veloc-

ity required to execute the original motion, a suitable

trajectory for NAO is generated considering a scaling

factor snao = (1/12)shum (see Fig. 10). Reconstructed

velocities are converted into joint angle references by
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Fig. 9 Affinely transformed instances (green solid lines) of the letter M generated from the same DHB representation. The or-
ange solid line is the original letter. Black dashed lines are the MD-DTW alignment between original and generated trajectories.
For a better visualization, only the x and y axes are shown.

Fig. 10 Snapshots of the reproduction of the letter N.

means of inverse kinematics algorithms [35] and sent to

the robot at 30 Hz. Note that, as for roto-translations,

scaled motion variants are generated from the same in-

variant descriptor.

The procedure to find a suitable scaling snao can be

automatized. When the physical scaling of a robot and

a human is roughly known, it is a good starting point. 14

When the relative physical scaling is unknown, a robot

scaling is started with snao = shum. With the current

snao, one generates desired velocities and positions and

check if robot constraints are violated. In case of the

constraint violations, one reduces the scaling snao and

continues until no violations occur. This procedure can

be also used to reproduce the same motion on different

robots.

8.2.3 Pouring a drink

This experiment shows how to combine different invari-

ant descriptors to execute a complex task. A pouring-

a-drink task, whose subtasks were originally demon-

strated by a human in Sec. 8.1.2, was executed by the

Kuka light-weight (LWR) manipulator [34]. The task is

a sequence of three actions: take the bottle, pour the

liquid in a cup, release the bottle. The DHB represen-

tation of each action (first demonstration from the first

user) is used as motion descriptor.

As detailed in previous experiments, the invariance

to roto-translations allows to generate the same Carte-

sian trajectory from different initial configurations. The

end-effector pose at the beginning of each action is

14 For example, for full body motions of a human/humanoid,
their heights are the reference. For hand motion, the length
of its arm/manipulation are useful.
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Fig. 11 Snapshots of the pouring a drink task. The task
consists of three consecutive actions: take, pour and release.

used to reconstruct on-line the desired velocities. In this

way, the three actions are sequentially executed with-

out jumps. Hence, the invariance to roto-translations

of DHB representation simplifies the problem of on-line

generating feasible sequential tasks.

The desired Cartesian pose is directly sent to the

LWR through the fast research interface [34]. The de-

sired pose is computed by numerically integrating the

reconstructed velocity. The robot is controlled at 1 KHz

while data are sampled at 120 Hz, which is the data col-

lection sampling rate of the Xsens MVN motion capture

suit. To match the time difference between the control

loop and the data sampling, consecutive poses are lin-

early interpolated. Thirty extra samples are added in

each time interval to match the maximum velocity in-

crement that the robot allows. Different scaling factors

slwr, as well as the invariance to roto-translations, are

used to reach the bottle (cup) placed in different lo-

cations. A suitable affine transformation can be auto-

matically selected by recognizing and tracking the bot-

tle (cup) using an external camera sensor. The execu-

tion of the pouring task is shown in Fig. 11. Note that,

since orientation control is needed to execute the pour-

ing task, the approach in [43] is not applicable for this

task.

In order to grasp the bottle and to pour the liquid

into the cup, reaching the desired positions, in other

words accurate motion generation, is of importance.
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Hence, in this case, it is interesting to compare the re-

construction errors of different bidirectional represen-

tations. As a proof of concepts, we consider the action

take. For simplicity, the same reference frame used to

collect the data was used and the orientation is ne-

glected. The accuracy of motion generation is measured

by considering the distance between the final recon-

structed position and the original one (the desired cup

location). Three filtering techniques are tested, namely

the moving average filter, the anisotropic diffusion [22]

and the linear Kalman smoother [29]. The action con-

sists of 295 velocities sampled at 120 Hz.

As shown in Tab. 9, the proposed reconstruction

algorithm showed high accuracy. This is another em-

pirical proof of the numerical robustness of DHB repre-

sentation. Although the moving average filter improves

the reproduction performance of the DS and EFS in-

variants, its error was larger than 141 mm and it is

still not accurate enough for the pouring task. The

anisotropic diffusion, which iteratively smooths the tra-

jectory with a Gaussian kernel, is more effective. It-

erating 1000 times, the error drops down to 1.15 mm.

Our Matlab implementation of the anisotropic diffu-

sion takes about 0.4 s to perform 1000 iterations over

the 295 samples of the considered action, which implies

its limited on-line use. The best result for DS/EFS in-

variants is obtained with the Kalman smoother, which

is an off-line filtering technique.

Table 9 Norm of the reconstruction errors [mm] for the take
action obtained with different filtering techniques.

Moving average filter DS / EFS DHB
w=5 464 2.7e-12
w=10 191 3e-12
w=50 148 2e-12
w=100 141 1.5e-12

Anisotropic diffusion DS / EFS DHB
i=10 178 2.7e-12
i=100 14.5 3.7e-12
i=1000 1.15 2.3e-12

Linear Kalman smoother 0.56 2.9e-12

8.2.4 Full-body motion reproduction

Full-body motion transfer from a human demonstrator

to a humanoid robot is more complicated than repro-

ducing the motion of a single rigid body. Humans and

robots have different kinematic structures. The number

of joints, the joint limits and the length of each body

part can vary significantly. Mapping human motions to

a humanoid robot considering differences in kinematics,

dynamics and balancing stability is beyond the scope of

this work but can be found in [10, 11]. Since this work
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(c) Reconstructed action - Scaling (s = 2).

Fig. 12 Different instances of the twoHandWave action gen-
erated from the same DHB representation. The black bullets
indicates the 20 body parts.

focuses on motion representations, we consider a sim-

plified skeleton model: the same kinematic model of a

human and a robot but with the different length scaling

between them.

For a given motion in the dataset we directly com-

pute the position of each body part from the relative

invariant representation. Different motion instances can

be generated from the same invariant representation of

each body part. The experimental results with twoHand-

Wave action of the MSRAction3D dataset are shown in

Fig. 12. The original twoHandWave action of a human

is visualized in Fig. 12(a). The same action performed

by a robot using a different baselink pose can be repro-

duced from the same DHB descriptor. Fig. 12(b) shows

the obtained results by applying to the reference frame

a rotation of 45 deg along the z axis. Similarly the same

action for a different size can be planned. Fig. 12(c) is

reconstructed with a scaling factor of 2 (twice the orig-

inal one) applied to all the body parts.
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9 Conclusion

We presented an extended study on Denavit-Hartenberg

inspired Bidirectional (DHB) invariants, a novel repre-

sentation of rigid body motions. Two representations

are described, namely position and velocity-based in-

variants. Position-based invariants are useful when the

Cartesian pose is directly available from the sensors.

If the Cartesian velocity can be measured, velocity-

based invariants directly apply without a preliminary

numerical integration. A clear separation is introduced

between position (linear velocity) and orientation (an-

gular velocity) of the rigid body motion, which makes

these representations suitable for various applications.

Singular cases can be easily detected and solved. The

DHB representations have the following properties:

• minimal representation (six values)

• invariance to affine transformations

• invariance to time scale

• invariance to the direction of execution (reverse mo-

tions)

• numerical robustness

• bi-directionality

We have analytically proven the invariance properties

of the proposed DHB representations. The DHB invari-

ants are theoretically compared with other state-of-the-

art representations, including the analytical similarity

between DHB and EFS. An extensive evaluation and

comparison is conducted on synthetic and real datasets.

In the motion recognition tests using three datasets,

the proposed DHB descriptor showed better recognition

performance in most of the cases compared to existing

uni- and bi-directional representations. The effective-
ness and flexibilities of the DHB descriptor for robot

motion generation were demonstrated by experiments

with NAO, KUKA LWR robot, and a humanoid robot.

Moreover the numerical robustness of DHB was shown

with synthetic and real sensor data.

A Rigid Body Motion Representation

To represent rigid body motions it is convenient to attach an
orthogonal frame to the rigid body (body frame) and to de-
scribe the pose (position and orientation) of the body frame
wrt a fixed frame (world frame). In each time instant the posi-
tion of the rigid body is represented by the vector p connect-
ing the origin of the body frame with the origin of the world
frame. The axes of the body frame can be projected along
the axes of the world frame by the means of the direction
cosines. Hence, the orientation of the rigid body is described
by collecting the direction cosines into a 3×3 rotation matrix
R. It is possible to show that a minimal representation of the
orientation consists of 3 values [35]. In this work, we use the
rotation vector to represent the orientation.

The rotation vector r = θr̂ is computed from R as:

θ = arccos

(
trace (R)− 1

2

)
, r̂ =

1

2 sin θ

R (3, 2)−R (2, 3)
R (1, 3)−R (3, 1)
R (2, 1)−R (1, 2)


The rotation matrix R is computed from r as:

R = exp(r) = I +
S(r)

θ
sin(θ) +

S2(r)

θ2
(1− cos(θ)) ,

where the skew-symmetric matrix S(r) is given by:

S(r) =

 0 −rz ry
rz 0 −rx
−ry rx 0

 .

B Proofs of the relationships in Sec. 7.1

1) mω = d1ω derives from (20) and d1ω in Tab. 2.
2) θ1ω ≈ d2ω∆t. For ∆t −→ 0, we can neglect the arc tangent
in (28). Hence, we can rewrite θ1ω in (23) as:

θ1ω ≈
‖ωt × ωt+1‖
ωt · ωt+1

=
‖ωt × (ωt +∆ωt)‖
ωt · (ωt +∆ωt)

≈
‖ωt ×∆ωt‖
‖ωt‖2

∆t

∆t
≈
‖ωt × ω̇t‖
‖ωt‖2

∆t = d2ω∆t .

(43)

3) θ2ω ≈ d3ω∆t. Recall that a×b = −b×a and that a·(b×c) =
c · (a× b). θ2ω in (23) can be re-written as:

θ2ω = arctan

(
‖ωt+1‖ωt+2 · (ωt+1 × ωt)

(ωt+1 × ωt) · (ωt+1 × ωt+2)

)
= arctan

(
‖ωt+1‖ (ωt × ωt+1) · ωt+2

(ωt × ωt+1) · (ωt+1 × ωt+2)

) (44)

The denominator of (44) can be re-written as:

(ωt × ωt+1) · (ωt+1 × ωt+2)

≈ (ωt ×∆ωt) · [(ωt ×∆ωt)× (ωt × 2∆ωt)]

= (ωt ×∆ωt) · [2(ωt ×∆ωt)− (ωt ×∆ωt)]
∆t2

∆t2

≈ (ωt × ω̇t) · (ωt × ω̇t)∆t
2 = ‖ωt × ω̇t‖2∆t2

(45)

Considering that ät ≈ (at+2 + at)/∆t2, the numerator of
(44) can be re-written as:

‖ωt+1‖ (ωt × ωt+1) · ωt+2 ≈ ‖ωt‖ (ωt ×∆ωt) ·
(ω̈t∆t

2 − ωt) ≈ ‖ωt‖ (ωt × ω̇t) · ω̈t∆t
3

(46)

Finally, combining (45), (46) and (44), and neglecting the arc
tangent, we obtain that θ2ω ≈ d3ω∆t for ∆t −→ 0.

C Proofs of the relationships in Sec. 7.2

1) mv = e1v derives from (19) and e1v in Tab. 2. mω = e1ω
derives from (20) and e1ω in Tab. 2.
2) θ1ω ≈ e2ω∆t derives from (43) recalling that e2ω = d2ω.
θ1v ≈ e2v∆t can be proven by following similar steps as in (43)
and considering e2v in Tab. 2.
3) θ2v ≈ e3v∆t and θ2ω ≈ e3ω∆t. Following similar steps as
in (45) and (46), and recalling that (a × b) × (a × c) =
[a · (b× c)] a, it is possible to prove that θ2v ≈ e3v∆t and
θ2ω ≈ e3ω∆t.
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