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Abstract During several applications, such as search

and rescue, robots must discover new information about

the environment and, at the same time, share opera-

tional knowledge with a base station through an ad hoc

network. In this paper, we design exploration strategies

that allow robots to coordinate with teammates to form

such a network in order to satisfy recurrent connectiv-

ity constraints — that is, data must be shared with the

base station when making new observations at the as-

signed locations. Current approaches lack in flexibility

due to the assumptions made about the communication

model. Furthermore, they are sometimes inefficient be-

cause of the synchronous way they work: new plans are

issued only once all robots have reached their goals.

This paper introduces two novel asynchronous strate-

gies that work with arbitrary communication models.
In this paper, ‘asynchronous’ means that it is possible

to issue new plans to subgroups of robots, when they

are ready to receive them. First, we propose a single-

stage strategy based on Integer Linear Programming

for selecting and assigning robots to locations. Second,

we design a two-stage strategy to improve computa-

tional efficiency, by separating the problem of locations’

selection from that of robot-location assignments. Ex-

tensive testing both in simulation and with real robots

show that the proposed strategies provide good situa-
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tion awareness at the base station while efficiently ex-

ploring the environment.

Keywords Multirobot systems · Exploration ·
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1 Introduction

Exploration of unknown environments through the de-

ployment of multirobot systems is a task required in

many applications, including map building (Thrun, 2002)

and search and rescue (Tadokoro, 2010). In such scenar-

ios, the process of discovering unknown features of the

environment can be generally modeled with the follow-

ing operations iteratively undertaken by each robot:

(a) perceive the surrounding environment,

(b) integrate perceived data in a map representing the

environment known so far,

(c) decide the next locations to reach, and

(d) move to the selected locations.

In the basic and most common formulation, the choice

of where to sense next (Step (c)) is guided by the se-

lected exploration strategy. Moreover, it is often assumed

that robots can always communicate with each other

with high-bandwidth, e.g., (Quattrini Li et al, 2016;

Yamauchi, 1998).

However, such a strong assumption is not neces-

sarily satisfied in real-life applications and has an im-

pact on the performance of the system, as it has been

shown by Tuna et al (2013). This holds true especially

when exploration is performed in disaster mitigation

domains (Ochoa and Santos, 2015), where centralized

situational awareness at a base station (BS) is often re-

quired for the effective supervision of the mission; see
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Fig. 1 Six robots with a supervising base station, with the
task to explore an environment.

Fig. 1 for an experimental setup where the BS over-

looks six exploring robots. One important consequence

is that robots not only have to efficiently explore, but

also need to report and share the data they gather by

communicating with each other and with the BS. Dif-

ferent types of connectivity constraints are assumed in

literature, as reported in the short taxonomy provided

in (Banfi et al, 2015). Loose connectivity constraints al-

low robots to explore the environment more efficiently,

but reduce the situational awareness at the BS. On

the other hand, strict connectivity constraints — e.g.,

requiring the whole team to be always globally con-

nected — restrict the explored area but increase mis-

sion awareness at the BS. The literature proposes multi-

robot exploration strategies that take into account dif-

ferent types of connectivity constraints (Pei et al, 2013;

Rooker and Birk, 2007; Spirin et al, 2013; Stump et al,

2011). Among them, recurrent connectivity constraints

can provide a good trade-off between situation aware-

ness and exploration efficiency. With recurrent connec-

tivity, robots have to connect with each other and with

the BS each time they gather new information. This

entails an online constraint scheme, where robots can

disconnect for arbitrarily long periods, but they must

be able to coordinate in order to report to the base

station as soon as new information is acquired.

This paper addresses the problem of multirobot ex-

ploration under recurrent connectivity in a novel asyn-

chronous way: new plans can be computed for arbitrary

groups of θ robots (where θ is a parameter) as soon

as they become ready. Readiness can be defined as the

state when robots have reached their goal locations and

transmitted all the information acquired therein. The

exploration strategy we propose is fundamentally cen-

tralized: new plans are computed at the BS, which can

monitor the readiness status of each robot. Once a suf-

ficient number of robots becomes ready, the BS issues

a new plan.

Within this framework, we formulate the problem

of computing the optimal set of locations robots should

reach during the exploration of an environment. The

solution should achieve efficient exploration, while ac-

counting for recurrent connectivity constraints. We pro-

pose two strategies for solving this problem. In the

first strategy, robots’ locations are selected with an

exact method based on Integer Linear Programming

(ILP). In the second strategy, planning is decomposed

in two stages. First, an optimal set of connected lo-

cations is computed abstracting away from the robot-

location assignments. Then, the most efficient assign-

ment of robots to the locations found in the first stage

is computed. For this second approach, we propose an

exact (ILP-based) method and an approximation algo-

rithm.

Experimental results, obtained both in simulation

and with a real team of TurtleBot 2 robots, show that

the first approach can provide better deployments, but

with limited scalability in highly asynchronous settings

(with low θ). As the number of ready robots increases,

the two-stage approach turns out to be the preferred

choice. In general, results show that this latter approach

is able to achieve a good trade-off in terms of explored

area, traveled distance, and situation awareness at the

BS. The proposed approach is also competitive com-

pared to a state-of-the-art exploration strategy (Spirin

et al, 2013) not imposing any strict connectivity con-

straint, with which robots can acquire an arbitrary amount

of information before sharing it with the BS.

The contributions of this paper significantly extend

the preliminary results from (Banfi et al, 2016), adding

the design of the single-stage approach and a richer ex-

perimental analysis both in simulation and with real

robots.

This paper is structured as follows. The next sec-

tion reviews communication-constrained multirobot ex-

ploration. Section 3 formalizes the multirobot explo-

ration framework considered in this paper. Section 4

introduces the proposed one-stage solution for finding

optimal connected robots’ locations, while Section 5

describes the two-stages approach. Section 6 discusses

robot readiness in the proposed context of asynchronous

planning. Section 7 and Section 8 present the experi-

mental results in simulation and with real robots, re-

spectively. Section 9 discusses the experimental results

more in depth, trying to draw some conclusions of gen-

eral validity. Finally, Section 10 concludes the paper.

2 Related work

The problem of online multirobot exploration in pres-

ence of a fixed BS to which the gathered information is
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transmitted has been investigated in different variants.

Most of the works are built upon the seminal paper

of Yamauchi (1998) on multirobot frontier-based ex-

ploration, where the idea is to have robots moving to-

wards the boundaries (frontiers) of the known free space

without any communication constraint. A multitude of

approaches have been proposed during the years, not

explicitly considering communication constraints, e.g.,

(Basilico and Amigoni, 2011; Quattrini Li et al, 2016;

Rekleitis, 2013; Simmons et al, 2000; Wurm et al, 2008).

The survey by Julia et al (2012) provides an overview

of exploration strategies.

More recently, research has also been focusing on

how robots should coordinate to satisfy some commu-

nication constraints. An experimental analysis on the

effects of communication constraints on the exploration

has been presented in (Banfi et al, 2015). In the follow-

ing, we group relevant works according to the enforced

connectivity requirements.

2.1 Continous connectivity

A first way to address communication constraints is

to maintain continuous connectivity between all the

robots and the BS, either directly or in a multi-hop

fashion. This could be useful, for instance, in situations

where real-time image streaming is important (e.g., in

search and rescue). The algorithm proposed by Mukhija

et al (2010) constructs a connected exploration tree in

which the robots are organized as explorers and link

stations: explorers are placed at the leaves of the tree,

while the link stations are at the inner nodes and ensure

the connectivity of the BS (the root) with the explorers.

Rooker and Birk (2007) devise a local search method

where the utility of a team configuration is computed

in terms of distances from the closest frontiers: a config-

uration that does not satisfy full connectivity is highly

penalized and is never chosen by the algorithm. Reich

et al (2012) propose a distributed protocol so that the

physical layer connectivity of a mobile wireless network

is maintained. Clearly, guaranteeing continuous connec-

tivity can introduce non-negligible costs for the explo-

ration performance. Therefore, if such a requirement is

not strictly needed, other approaches are usually pre-

ferred.

2.2 Periodic connectivity

Several exploration strategies allow robots to explore

regions in autonomy, but force them to communicate

their discoveries to the BS under a more or less strict

periodic regime. Therefore, we can say that such ap-

proaches enforce a periodic reconnection scheme. Hollinger

and Singh (2012) consider a general mission scenario in

which robots must synchronously regain global connec-

tivity with the BS after a fixed time interval. The au-

thors prove the inapproximability of the problem and

propose a heuristic algorithm based on planning robots’

paths in turns. The best path is chosen from a pool of

samples according to a utility function which, in an ex-

ploration context, is typically related to the information

gain of the path.

Some works also consider periodic connectivity as

an asynchronous condition that, although desired, is

not enforced as a hard constraint. In some cases, con-

nections are established as the result of an emergent

behavior of the algorithms. For example, Visser and

Slamet (2008) include a criterion in the exploration

strategy that takes the communication probability into

account in order to favor locations in which it is high.

de Hoog et al (2009) propose the so-called Role-Based

exploration, a distributed strategy in which robots are

allowed to explore without considering communication

limits. Rendezvous points, namely selected locations

where exploring robots can communicate to the BS

(possibly through relays), allow asynchronous updates

of the environment map at the BS. In (Spirin et al,

2013), the robots’ behavior is regulated by a utility

function, which considers the amount of information

not delivered yet by a robot to the BS and the predicted

amount of information known by the BS. Tuning a pa-

rameter, the mission planner is able to specify strate-

gies ranging from a completely greedy exploration, with

no returns to the BS, to an exploration ensuring the

maximum update frequency at the BS. Stronger forms

of asynchronous connectivity are investigated by the

works of Arkin and Diaz (2002) and Jensen et al (2016).

The former focuses on line-of-sight connectivity. A behavior-

based architecture is proposed and tested in exploration

scenarios with increasing prior information about the

environment. The latter, although not explicitly con-

sidering a fixed BS, is able to fully explore an unknown

environment in a distributed way. The proposed ar-

chitecture relies on a small set of behaviors and mes-

sages exchanged between robots and dropped beacons.

In both these last works, lost connectivity triggers an

appropriate recovery behavior.

2.3 Recurrent connectivity

A third way in which the communication constraints

can be defined is to ensure global connectivity only at

the deployment locations of the robots, thus enforc-

ing recurrent connectivity each time a robot collects
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new data. Such communication constraints constitute

the main focus of our work. This is motivated by the

fact that, typically, new information is gathered at the

robots’ goal locations, and robots can get disconnected

for arbitrarily long periods of time while traveling to

them. Howard et al (2002) study the problem of mo-

bile sensors placement for maximizing the coverage of

an unknown area while keeping each node connected to

a BS via a multi-hop mutual-visibility constraint. The

algorithm proceeds by sequentially deploying nodes af-

ter selecting the best goal locations. More recent work

related to communication nodes deployment has been

presented by Stump et al (2011). Here, a set of agents is

assumed to be already present in an environment (e.g.,

exploring), and two problems are tackled: (i) finding a

deployment of relay nodes, which ensures global con-

nectivity between each agent and the BS (again stated

in terms of mutual visibility), and (ii) given the cur-

rent deployment and new locations agents should reach,

finding the redeployment that minimizes robots’ travel-

ing time. The former problem is reduced to the compu-

tation of a minimum Steiner tree with the agents’ loca-

tions as terminal set, while the latter is solved by using

a (generally sub-optimal) dynamic programming algo-

rithm. Finally, the problem setting addressed in (Pei

et al, 2013) shares some basic features with the one

considered in this paper. That work proposes an ap-

proach that takes into account bandwidth constraints

over the robots relay chain under the “disk” commu-

nication model — i.e., two robots can communicate if

they are within a given maximum distance. New plans

are computed once the whole network has been formed.

The general optimization problem is split into sub-problems:

explorers placement, relays placement, and robot path

generation. In particular, given a set of candidate loca-

tions to be connected, relays placement is achieved by

solving variations of the Steiner minimum tree problem

with minimum number of Steiner points and bounded

edge length (Cheng et al, 2008). However, this choice is

intimately related to the adoption of the disk commu-

nication model under a synchronous planning setting.

The contributions of our paper lie on a complementary

direction: our proposed methods do not depend on a

specific communication model and do not require syn-

chronous coordination among robots.

3 Problem definition

In this section, we formalize the problem considered in

this paper, which has the same setup as the one con-

sidered in (Banfi et al, 2016). Table 1 summarizes the

notation used in the paper.

3.1 Assumptions

An initially-unknown, two-dimensional, continuous, and

bounded environment Env ⊂ R2 is considered. The in-

terior points of the environment can belong to obstacles

of arbitrary shape, whose set is denoted by Envo, or can

belong to the free space, denoted by Envf = Env\Envo.

A supervising control center called base station (BS) is

deployed in Env at a fixed location, along with a team

of m mobile robots R = {r1, r2, . . . , rm}. Each mobile

robot is equipped with a finite-range sensors able to

perceive the surrounding free space and outer bound-

aries of obstacles (e.g., laser range scanners or RGB-D

sensors) and is capable of exchanging data with other

robots or with the BS over an ad hoc network. The BS

and the robots maintain and update a map represent-

ing the portion of environment discovered so far, repre-

sented as an occupancy grid. Note that the BS can also

receive other types of data from the robots, such as a

video feed in a search and rescue scenario. In particular,

each robot is endowed with its own Simultaneous Lo-

calization and Mapping (SLAM) system (Thrun et al,

2005), so that temporary disconnections from the rest

of the team do not result in loss of autonomy. The BS

updates the map of the explored area each time new

information is sent by the robots. Note that the choice

of adopting a particular SLAM algorithm is orthogonal

to the exploration strategy we present in this paper.

For simplicity, we assume that time evolves in dis-

crete steps t ∈ {1, 2, . . . , T}, where T denotes the last

step of the exploration mission. Upon the grid-based

map known at a generic time step t, the BS is able

to construct a graph-based representation of the envi-

ronment Gt = (V t, Ct), where vertices in V t encode

some discretization of the portion of Envf known so

far. Such a discretization should represent a reason-

able trade-off between the ability to represent the most

salient communication features of the environment and

the size of the graph. Each vertex v ∈ V t is associated

with a candidate robots’ goal location, except for the

vertex b which denotes the fixed position of BS. A set

F t ⊆ V t \ {b} denotes the exploration frontiers, that is,

vertices corresponding to locations of Envf lying on the

boundary between explored and unexplored portions of

Env. As customarily done in robotic exploration, each

vertex v ∈ V t is associated with a numerical value g(v)

representing the (expected) information gain obtain-

able by taking a perception from v. Typically, the in-

formation gain is 0 when v 6∈ F t, and proportional to

the new area expected to be seen from v, otherwise.

Each pair of vertices i, j ∈ V t is associated with a

value d(i, j), representing the distance between them as

known by the BS and the robots. The edge set Ct en-
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codes the communication features of the environment.

In particular, this set is determined by link-detection

mechanisms in charge of recognizing the availability of

a communication link between any two known vertices.

Link-detection methods range from simple visibility-

based criteria — that is, two vertices can communi-

cate if in direct line of sight within a maximum range

— to more sophisticated approaches considering mod-

els of signal decay through distance and obstacles. As

in (Hollinger and Singh, 2012; Pei et al, 2013; Stump

et al, 2011), we make three assumptions. First, edges

in Ct are static. Second, the link-detection mechanism

is not affected by false positives. Third, if the BS and

one or more robots form a connected component in Ct,

then any of such robots can exchange data with the

BS using some protocol. The bandwidth is assumed to

be large enough to allow data transfer between robots.

Such assumptions are validated in Section 8 through

experiments with real robots.

3.2 Exploration process

Within the framework described above, the exploration

mission under recurrent connectivity constraints evolves

as follows. New robots’ deployments in the known por-

tion of space are dictated by the BS and issued at se-

lected time steps. In particular, at any t ∈ {1, 2, . . . , T},
a new deployment

πt = 〈pt1, pt2, . . . , ptm〉,

where ptr ∈ V t \ {b}, can be computed. This means
that planning is performed at selected time steps in

{1, 2, . . . , T}. The new deployment specifies the goal

vertices each robot r is headed to. Each deployment πt

implicitly defines also a configurationQt = {qt1, . . . , qtm},
Qt ⊆ V t \ {b}, containing the m vertices that will be

occupied by the robots and abstracting away from the

robot-location assignment. Thus, a deployment πt can

be thought as an assignment of robots to goal locations

taken from a configuration Qt, that is πt(r) = ptr ∈ Qt.
Note that multiple deployments πt can be obtained

from the same configuration Qt.

Each robot follows the directives coming from the

BS. In particular, once a deployment πt is computed,

the robot r travels to the corresponding goal vertex

ptr. Once there, if ptr ∈ F t, then r must take a new

range scan — e.g., execute a complete rotation to max-

imize the explored area, and transmit the newly gath-

ered data (and/or forward data received by others) to-

wards the BS. Instead, if ptr 6∈ F t, then r just acts as

a relay to convey information back to the BS. Notice

that all the robots transmit to the BS also the sens-

ing data they have acquired while going to the assigned

locations.

A robot r is marked ready if (a) it has reached its

previous goal vertex and completed its sensor measure-

ments in case of frontier vertex and (b) it has trans-

mitted to the BS its perceived data and no other robot

still requires it as a relay. Rte denotes the set of ready

robots at step t. Note that, to declare a robot to have

completed its service as relay, several specific conditions

could be defined, either offline or online — i.e., jointly

specified with new deployments and fixed, or change-

able according to suitable policies. Section 6 discusses

a possible implementation of the readiness condition.

Finally, let Rtc ⊇ Rte be the set of robots connected

with the BS at time t.

The following constraints are posed for a deploy-

ment πt:

(I) Qt ∪ {b} must form a single connected component

in Gt;

(II) if F t 6= ∅, then Qt ∩ F t 6= ∅, that is at least one

frontier must be reached by a robot;

(III) for each robot r /∈ Rte it must hold that pt̄r ∈ Qt,

where t̄ < t denotes the time step of the last issued

deployment;

(IV) πt must not change the robot-goal assignments for

each robot r /∈ Rtc (i.e., non-connected robots).

Constraint I imposes recurrent connectivity, by forc-

ing robots to be able to exchange data with the BS when

they occupy their goal vertices. Constraint II requires

a minimum exploration progress rate: if no frontier can

be further visited, then no additional space can be ex-

plored and the mission ends. (Note that, in this case,

exploration can progress only by relaxing the connec-

tivity constraint.) Constraints III and IV define feasible

asynchronous re-deployments. Specifically, Constraint

III allows the BS to accommodate a number of new

goals equal to that of ready robots. That is, preemption

at configuration level for unreached goals is forbidden.

Instead, robots’ preemption is allowed in favor of a new

deployment. This might be preferred in the presence of

new goals. Finally, by Constraint IV, a robot’s deploy-

ment can be changed only if it is able to receive data

from the BS (so, a non-ready robot’s assignment could

be modified if more convenient). To guarantee the cor-

rect reception of a new plan, a temporary halt of all the

non-ready, connected robots can be enforced.

The above constraints do not model the feasibility

of the transition between one configuration to another.

For instance, it might be possible that the path plan-

ning module of a robot fails to produce a plan allowing

to reach the assigned goal due to, e.g., interference with
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Table 1 Summary of the notation used in the paper.

t ∈ {1, 2, . . . , T} , Generic mission time step

R = {r1, r2, . . . , rm} , Team of robots

Gt = (V t, Ct) , Planning graph at time t
(V t = locations, Ct = links)

b ∈ V t , BS vertex (fixed)

F t ⊆ V t \ {b} , Frontier vertices at time t

g(v) , Information gain of vertex
v ∈ V t

d(i, j) , Distance between vertices i
and j (i, j ∈ V t)

Rte , Ready robots at time t

Rtc , Robots connected with the
BS at time t

πt = 〈pt1, pt2, . . . , ptm〉 , Robots deployment com-
puted at time t (ptr ∈ V t\{b}
is the goal vertex of r)

Qt = {qt1, . . . , qtm} , Configuration (occupied ver-
tices) computed at time t,
Qt ⊆ V t \ {b}

wd, wg , Weights of the objective
function (one-stage ap-
proach)

α , Parameter used to express
wd and wg

C+, C−(v) , Arcs leaving (+) or entering
(-) vertex v in the directed
version of Gt

δ+(S), δ−(S) , Directed cuts induced by S ⊆
V t \ {b} in the directed ver-
sion of Gt

U(f), U(S) , Utility of frontier f and ver-
tices S ⊆ V t \ {b} (two-stage
approach)

δ , Parameter of the approxima-
tion algorithm (two-stage ap-
proach)

Pf , The first forming path con-
necting frontier f and the BS
in a new deployment

θ , Parameter representing the
number of ready robots re-
quired to compute a new plan

paths of other robots, or noise in the map. If this hap-

pens, a suitable procedure must be in charge of detect-

ing the problem and computing a new plan. We think

that such an approach is much simpler than trying to in-

corporate into the above constraints a multirobot path

planning subproblem, which is very difficult per se; see,

e.g., (Yu, 2016).

In principle, the computation of new deployments

can be triggered by different conditions. This general-

izes the approach adopted in (Pei et al, 2013), where

new plans are issued only when all robots have reached

their goal locations. While performing a deployment,

some robots could become ready before others, hence

becoming able to receive a new location to reach. As

it will be shown in the next sections, new deployments

Fig. 2 Exploration snapshot. Blue and red: not ready and
ready robots, respectively. Black-edged squares: vertices of
Gt. Green: current communication links. Purple: frontiers of
the last issued plan. Image from (Banfi et al, 2016).

involving only part of the robot team can exploit com-

munication links that will be made available by robots

currently not ready to establish communication links

with the BS. Fig. 2 shows a snapshot of an exploration

process with ready and not ready robots.

3.3 Method overview

Given the setting described above, the objective is to

compute robots’ deployments πt(·) allowing the mul-

tirobot system to incrementally achieve efficient explo-

ration of the environment in terms of explored area and

traveled distance. At the same time, such a deployment

should comply to recurrent connectivity constraints. In

the following, we present two approaches for computing

a new deployment.

The first is described in Section 4. The optimal de-

ployment under Constraints I-IV is computed by solving

a single bi-objective Integer Linear Program (ILP). The

proposed ILP maximizes the information gain g(v) col-

lected from the vertices to be visited while, at the same

time, minimizes the distance traveled by the robots.

In Section 5, we present our second approach. In

general, it is less computationally demanding and, as a

consequence, could be more suitable for real online set-

tings. The main idea is to solve the planning problem

in two stages. The first stage computes an optimal con-

figuration Qt under a given utility function defined on

the information gain of the frontier vertices. The second

stage finds an optimal deployment πt(·) that minimizes

the traveled distance, given the optimal configuration

Qt.
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Fig. 3 An example of Gt and its directed version. Directed
cuts induced by a set of vertices S is shown too.

4 Optimal one-stage approach

The first approach we propose finds the optimal robots’

deployment πt(·) for a set of ready robots Rte by solving

a single Integer Linear Program (ILP). For this reason,

we refer to it as an optimal one-stage approach. Our

ILP is such that its optimal solution encodes a deploy-

ment that maximizes a weighted combination of the

information gains and traveling costs.

Our ILP is inspired by (Álvarez-Miranda et al, 2013),

where a related problem, called Rooted Maximum Node-

Weight Connected Subgraph with Budget Constraint (B-

RMWCS), is solved. The formulation works on a di-

rected version of Gt obtained as follows: each undirected

communication edge is replaced by two symmetric arcs

except for the edges incident to the BS vertex b, which

are replaced by outgoing arcs. With a slight overload of

notation, we call Ct the set of arcs obtained after such
replacements.

Each ILP solution is a robot deployment πt(·) that

is encoded by the following decision variables:

– zrv, taking value 1 if and only if robot r is associ-

ated with vertex v ∈ V t \ {b} (number of variables:

|R|(|V t| − 1));

– yv, taking value 1 if and only if vertex v ∈ V t\{b} is

selected in the solution (number of variables: |V t|);
– xij , taking value 1 if and only the directed arc (i, j)

is selected in the solution (number of variables: |Ct|).

In any feasible solution, variables zrv and yv encode a

well-formed deployment πt and the associated configu-

rationQt, respectively. Variables xij , instead, encode an

arborescence rooted at the BS and spanning the vertices

of Qt (those selected with variables yv). By definition,

an arborescence guarantees the existence of a unique di-

rected path (a connected sequence of selected arcs) from

the BS to each selected vertex. The existence of such

paths implies that, in the original undirected graph, the

deployment encoded by variables zrv is connected.

Let us call, with a slight overload of notation, d(r, v)

the distance between the current pose of robot r ∈ Rtc
and vertex v ∈ V t estimated at the time the ILP is

instantiated to be solved. (Notice that d(r, v) can be

accurately computed at the BS, since r ∈ Rtc is in com-

munication by definition.) The objective function we

optimize reads as follows:

maximize
∑
r∈Rt

c

∑
v∈V t

[wgg(v)− wdd(r, v)]zrv (1)

This function balances the cumulative information

gain g(·) robots can get from a joint perception and the

cost as the total traveled distance d(·). The trade-off

between the two is given by the parameters wd, wg. In

particular,

wd =
α

maxr∈Rtcv∈V t d(r, v)
and wg =

1− α
maxv∈V t g(v)

,

with α ∈ [0, 1], so that the contribution given by each

robot in the deployment is a number varying between

1 and −1. Note that the contributions given by the

robots currently not in communication with the BS are

excluded from the objective function, as they will be

equal in all the candidate solutions.

Now, to introduce the set of constraints, we de-

note with C+(v) and C−(v) the arcs leaving (+) or

entering (-) vertex v ∈ V t, respectively. The directed

cuts induced by the set of vertices S ⊆ V t are de-

fined as δ+(S) = {(i, j) ∈ Ct | i ∈ S, j /∈ S} and

δ−(S) = {(i, j) ∈ Ct | i /∈ S, j ∈ S}. In Fig. 3 we

report a simple example of a graph Gt and the asso-

ciated directed version where an example of directed

cuts is depicted. Also, let πt̄ = 〈pt̄1, pt̄2, . . . , pt̄m〉 be the

deployment associated to the last issued plan (or to

the starting position of the robots if exploration is just

starting). The maximization of Eq. (1) is subject to the

following set of constraints:

∑
(i,j)∈C−(v)

xij = yv ∀v ∈ V t \ {b} (2)

∑
(i,j)∈δ−(S)

xij ≥ yv ∀S ⊆ V t \ {b},
∀v ∈ S (3)∑

r∈R
zrv = yv ∀v ∈ V t \ {b} (4)

∑
v∈V t\{b}

zrv = 1 ∀r ∈ R (5)

∑
f∈F t

yf ≥ 1 (6)

ypt̄
r

= 1 ∀r ∈ R \Rte (7)

zrpt̄
r

= 1 ∀r ∈ R \Rtc (8)
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Constraints (2) and (3), whose number is |V t| − 1

and (|V t| − 1)2|V
t|−2, respectively, force the new de-

ployment to be connected in the form of an arbores-

cence rooted at the BS, formalizing Constraint I of Sec-

tion 3. Constraints (4), whose number is |V t| − 1, im-

pose that each vertex belonging to Qt must be occupied

by exactly one robot. Constraints (5), whose number

is |R|, imposes the allocation of each robot to exactly

one vertex in the new deployment. Constraint (6) im-

poses the inclusion in the new deployment of at least

one frontier vertex (Constraint II of Section 3). Con-

straints (7), which are at most |R|, force to include in

the new configuration those vertices representing goal

locations of non-ready robots (Constraint III of Sec-

tion 3). Finally, Constraints (8), again at most |R|, en-

force not to change vertex allocation for robots cur-

rently not in communication with the BS (Constraint

IV of Section 3).

We complete the description of the ILP we solve to

find an optimal deployment with the following observa-

tions:

– Our problem formulation is such that, in presence

of non-ready and/or non-connected robots, the new

deployment of ready robots can exploit communi-

cation links that are made available by the former,

due to the constraints imposed on the yv variables.

– ILPs are NP-hard, thus modern solvers have expo-

nential worst-case running times; however, on the

average case, good efficiency is often achieved (as

we show in our experiments).

– The number of Constraints (3) is exponential in

the size of the input. Therefore, as detailed in Sec-
tion 7, to optimally solve the model, a Branch&Cut

approach similar to that used in (Álvarez-Miranda

et al, 2013) is employed. The idea is to gradually

introduce violated inequalities (3) as soon as the so-

lution of a new LP relaxation is available. The prob-

lem of recognizing such violated constraints can be

solved in polynomial time.

5 Optimal and approximate two-stage

approaches

The second approach we present was originally intro-

duced in (Banfi et al, 2016) and, differently from the

previous one, exploits a decomposition into two sub-

problems. Each sub-problem is then solved in a sepa-

rate stage. The first stage (Section 5.1) is the optimal

configuration problem, in which we seek for the config-

uration Qt that maximizes a utility function defined on

frontiers and that satisfies the recurrent connectivity

constraints. The second stage (Section 5.2) is the opti-

mal deployment problem, in which, given the optimal

configuration calculated in the previous stage, we com-

pute the robot-location assignment πt that minimizes

the traveling costs.

5.1 First stage: optimal configurations

Configurations are evaluated by using the cumulative

information gain achievable by acquiring sensor data

from the selected locations. Instead of explicitly ac-

counting for the traveled distance in this first stage

of planning, the information gain of each frontier is

heuristically weighted by a measure of distance (a lower

bound) that any ready robot will need to travel to reach

it. In particular, the utility U(·) of a frontier vertex f

combines the estimated information gain g(f) and its

minimum traveling cost (Pei et al, 2013; Spirin et al,

2013) as:

U(f) =
g(f)

min
r∈Rte

d2(r, f)
,

where d(r, f) denotes the current estimated distance of

robot r to frontier f , and gains and distances can be

thought as normalized with respect to their maximum

value. Non-frontier vertices have null utility and, with a

slight overload of notation, U(S) =
∑
v∈S U(v) denotes

the utility of any subset of vertices S ⊆ V t.
The goal is to find a configuration Qt of size at

most |Rte| (the number of ready robots) on Gt that

is optimal, i.e., that maximizes U(Q) while maintain-

ing connectivity with the BS and accounting for the

presence of non-ready and non-connected robots. This

problem, in case all robots are ready, can be seen as

particular case of known NP-hard problems such as the

Constrained Maximum-Weight Connected Graph prob-

lem (CMCG) (Lee and Dooly, 1996), the Rooted Budget

Prize-Collecting Steiner Tree problem (B-RPCST) (John-

son et al, 2000), and the Rooted Maximum Node-Weight

Connected Subgraph with Budget Constraint (B-RMWCS)

(Álvarez-Miranda et al, 2013). In particular, the prob-

lem of computing an optimal configuration can be shown

to be NP-hard with a simple adaptation of the reduc-

tion outlined in (Hochbaum and Pathria, 1994) for the

unconstrained version of CMCG. Moreover, notice that

the computation of the optimal configuration can be

thought as a particular case of computing an optimal

deployment as formalized in Section 4, where all the

distances robots have to travel are equal to a fixed con-

stant. In the following, two alternative approaches to

find the optimal configuration are presented.
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5.1.1 Finding the optimal configuration

Similarly to the formulation presented in Section 4, an

ILP formulation can be derived by simplifying that dis-

cussed in (Álvarez-Miranda et al, 2013) for solving B-

RMWCS. The idea is to find the best connected con-

figuration in the form of an arborescence computed on

the directed version of Gt (generated as in Section 4).

First, Gt is further modified by removing the vertices

assigned to non-ready robots and introducing fictitious

communication edges directly connecting the neighbors

of the removed vertices with the vertex b of the BS.

This modification clearly simplifies the problem while

it encodes the fact that non-ready robots already have

a goal assigned. Such robots could be relays for the cur-

rent replanning robots. The following binary variables

are defined:

– yf , taking value 1 if and only if frontier f ∈ F t is

selected in the configuration (number of variables:

|F t|);
– xij , taking value 1 if and only if the directed arc

(i, j) ∈ Ct is selected in the configuration (number

of variables: |Ct|).

Notice that, contrary to the ILP model in Section 4,

vertex variables yf are defined only for frontier vertices.

Again, δ+(S) and δ−(S) denote the directed cuts in-

duced by the set of vertices S ⊆ V t. The ILP model

reads as follows:

maximize
∑
f∈F t

U(f)yf (9)

subject to∑
(i,j)∈Ct

xij ≤ |Rte| (10)

∑
(i,j)∈δ−(S)

xij ≥ yf ∀f ∈ F t,∀S ⊆ V t \ {b} s.t.

f ∈ S (11)

The objective function (9) maximizes the config-

uration utility. Constraint (10) limits the size of the

new configuration to the available number of robots. If

frontier f is occupied, Constraints (11) require a con-

nected sequence of links from the BS to f . The num-

ber of this latter set of constraints is upper-bounded

by (|V t| − 1)2|V
t|−2. Note that, compared to the ILP

of the one-stage approach, this model contains signifi-

cantly less variables and constraints.

Given an optimal solution of the above ILP, the

(weakly) connected component containing b, pruned of

some possible useless arcs, represents an optimal con-

figuration from which it is easy to retrieve the final Qt.

Despite the exponential multiplicity of the last set of

constraints, the model can still be solved optimally for

instances of moderate size by the same Branch&Cut al-

gorithm introduced with the formulation of Section 4;

see Section 7 and (Álvarez-Miranda et al, 2013) for de-

tails.

5.1.2 Approximating the optimal configuration

Real operational conditions require computational ef-

ficiency and to keep the problem tractable when the

number of robots and/or the size of Gt increase. We

now discuss an approximation method, able to intro-

duce efficiency in the computation of the new Qt with a

bounded loss of optimality. The literature presents dif-

ferent studies on the approximation of CMCG (Lee and

Dooly, 1996), B-RMWCS (Moss and Rabani, 2007),

and B-RPCST (Chekuri et al, 2012). The best result

applicable to the problem of finding an optimal config-

uration is the 4+ε approximation algorithm of Chekuri

et al (2012). However, differently from the standard ap-

proach followed in optimization literature, we do not

seek for an effective solution for any instance. Instead,

we leverage our domain knowledge where vertices are

physical locations and ready robots are not so many. In

this section it is shown how, by exploiting such features,

a different approximation algorithm can be developed.

Our approach, despite not being competitive with the

best known one for general instances (as it achieves only

a non-constant approximation factor) is able to provide

a better approximation guarantee in typical exploration

settings.

The main idea is to iteratively compute the cheapest

tree (in terms of number of required robots) allowing

to connect the BS with fixed subsets of frontiers of at

most a given size. To compute such a tree, we need to

solve a Steiner tree problem, formally defined below.

Steiner tree problem: given an undirected graph G =

(V,E), a subset of terminal vertices S ⊆ V , and a non-

negative edge cost ce ≥ 0 for each edge e ∈ E, find a

minimum-cost subset of edges E′ ⊆ E such that G =

(V,E′) contains a path between each pair of vertices in

S.

Our problem maps on the Steiner tree problem as

follows: terminal vertices are associated to a particular

subset of frontiers and the BS vertex b, while edge costs

are unitary. The number of vertices in the minimum-

cost tree is then the minimum number of robots re-

quired to connect the subset of frontiers we chose. Our

algorithm is also based on two further considerations.

For any δ ∈ N:

– if the number of vertices to connect is upper bounded

by δ + 1, then the optimal Steiner tree can be com-

puted in polynomial time (Kimelfeld and Sagiv, 2006);
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let us call (δ + 1)-Steiner an algorithm perform-

ing such a task; for any instance with up to δ + 1

terminals the (δ + 1)-Steiner algorithm computes

efficiently the optimal solution; clearly, since the

Steiner tree problem is NP-hard (even when edge

costs are equal) (Garey and Johnson, 1979), this

does not imply an efficient algorithm for the general

case (any number of terminals), for which (δ + 1)-

Steiner cannot be applied;

– the enumeration of the subsets of at most δ frontiers

can be done in polynomial time.

The proposed approximation algorithm works on a

modified version of Gt, where vertices assigned to non-

ready robots are removed as previously explained. Also,

it operates by fixing to δ the maximum number of fron-

tiers that can be occupied by the configuration (thus

allowing suboptimalities). Then, for each subset Fδ of

at most δ frontiers, the algorithm searches for the opti-

mal Steiner tree T ∗ connecting Fδ ∪ {b} by employing

the (δ+ 1)-Steiner algorithm. If the number of vertices

in T ∗ does not exceed the budget of robots |Rte|, then

T ∗ is considered a feasible configuration and checked

against the best configuration found so far. Otherwise,

if T ∗ exceeds the budget, then, being T ∗ the cheapest

tree, no feasible configuration exists for Fδ.

Algorithm 1 formally presents the steps of the pro-

posed method. The genNewSubset() function is used to

retrieve the next subset of frontiers to examine (Step 2).

It returns a subset Fδ of at most δ frontiers such that

no other F ′δ ⊆ Fδ has already been determined as non-

feasible; this simple pruning rule is applied by main-

taining a closed list of discarded solutions in Steps 7

and 13. Subsets are heuristically ranked by decreasing
utility and increasing size. Notice that, in an efficient

implementation, new subsets are generated lazily, and

they need to be checked only against the newly added

discarded solution; alternatively, the algorithm can be

easily adapted for a recursive implementation not need-

ing any closed list.

For each returned subset Fδ, two simple tests are

performed to determine if it can be discarded without

running (δ+1)-Steiner on it. First, the longest frontier-

frontier or frontier-BS shortest path in Gt (Step 6) is

checked: subtracting 1 to the number of spanned ver-

tices, we have a simple lower bound on the minimum

dimension of the Steiner tree connecting Fδ and b. If the

value computed exceeds |Rte|, Fδ is discarded. Then,

U(Fδ) is evaluated (Step 10). This is a simple lower

bound of the total utility possible: if it does not ex-

ceed the current best solution, then Fδ is discarded.

Note that this jump in the search is safe. The reason

is that those frontiers not explicitly considered in Fδ,

but potentially part of the “phantom” solution that

could have been obtained by solving the Steiner tree

on F and b (i.e., frontier nodes not considered as ter-

minals when building the Steiner tree), will necessarily

be taken into account later in the search in a subse-

quent set F ′δ s.t. Fδ ⊂ F ′δ. The Steiner tree problem on

Fδ∪{b} is solved in Step 11, and in Step 12 budget feasi-

bility is checked. At the end of the while loop, it may be

possible that some unoccupied frontiers are still reach-

able from the newly created connected configuration T ∗

with the remaining budget of robots. In this case, the

completeConfiguration() function (Step 21) greed-

ily adds branches from T ∗ to the unoccupied frontier

with the highest utility, until no other frontier can be

reached.

Algorithm 1 Compute approximate optimal configu-

rations.
1: while True do
2: Fδ = genNewSubset(F t, u, δ, closedList)
3: if Fδ = ∅ then
4: break
5: end if
6: if lowerbound(Gt, Fδ, b) > |Rte| then
7: closedList.add(Fδ)
8: continue
9: end if

10: if U(Fδ) > z∗ then
11: T = (δ + 1)-Steiner(Gt, Fδ ∪ {b})
12: if |T | > |Rte| then
13: closedList.add(F )
14: continue
15: else if U(T ) > z∗ then
16: z∗ = U(T )
17: T∗ = T
18: end if
19: end if
20: end while
21: completeConfiguration(Gt, b, F t, U , |Rt|, T∗)

Theorem 1 Let k = min (|Rte|, |F t|). For δ ∈ {1, . . . , k},
Algorithm 1 is a k/δ-approximation algorithm for the

problem of finding the new connected configuration. Its

running time is bounded by

O(|F t|δ[3δ+1|V t|+ 2δ+1|Ct| log |V t|]).

Proof For the definition of the genNewSubset() func-

tion, it is ensured that all the possible subsets of fron-

tiers containing at most δ elements and able to im-

prove the current solution can be generated. There-

fore, at the end of the while loop, it is guaranteed that

the computed tree T ∗ is connecting, within the bud-

get limit, the BS vertex b with Fδ-BEST — i.e., the

set of frontiers, possibly bigger than δ, when the com-

puted Steiner tree makes use of other frontiers as non-

terminal vertices, collecting the maximum utility. Let

FOPT = {f1, f2, . . . , f|FOPT|} be the set of frontiers in-

cluded in the optimal solution where OPT = U(FOPT).

Clearly, if δ ≥ |FOPT|, then the algorithm finds the

optimal solution.
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If instead δ < |FOPT|, let us assume, without loss

of generality, that frontiers in FOPT are labeled such

as U(fi) ≥ U(fi+1) and let β = b|FOPT|/δc and γ =

|FOPT| mod δ. Moreover, to ease the notation, rename

frontiers fβδ+1, . . . , f|FOPT| as f̄1, . . . , f̄γ , respectively

(these are the γ least-utility frontiers in FOPT). Then

we have:

OPT =

β−1∑
i=0

[U(fiδ+1) + . . .+ U(f(i+1)δ)] +

γ∑
i=1

U(f̄i),

where the first summation iterates over subsets of fron-

tiers of size δ and the second summation covers the

possibly remaining frontiers. Since terms are ordered

according to non-increasing utilities, we have that:

OPT ≤ βU(Fδ-BEST) + γU(fδ)

by definition of Fδ-BEST and since U(fδ) ≥ U(f̄1). If

γ = 0, then the first part of the claim directly follows

since |FOPT| ≤ min (|Rte|, |F t|). Otherwise, notice that

[U(f1) + . . .+ U(fδ)]/δ ≥ U(fδ). This implies that

OPT ≤ βU(Fδ-BEST) + (γ/δ)U(Fδ-BEST) =

=
|FOPT|
δ

U(Fδ-BEST)

and the first part of the claim again follows.

The asymptotic running time is obtained by notic-

ing that the while loop performs at most
∑δ
i=1

(|F t|
i

)
=

O(|F t|δ) calls to the (δ+1)-Steiner algorithm of Kimelfeld

and Sagiv (2006), whose running time is bounded by

O(3δ+1|V t|+ 2δ+1|Ct| log |V t|). The greedy completion

of T ∗ does not influence neither the approximation nor

the running time bound. ut

It is easy to show that such an approximation bound,

for suitable choices of δ, can yield a better approxi-

mation than the one provided by the best general al-

gorithm presented in literature (Chekuri et al, 2012),

which has an approximation factor of 4+ε. For example,

with a team of 10 robots and δ = 5 an approximation

factor of 2 can be obtained. Also, our algorithm is much

more simple than that of Chekuri et al (2012), whose

detailed complexity analysis is not straightforward.

Finally, notice that, when the algorithm is run with

δ > min (|Rte|, |F t|), an optimal solution is always ob-

tained.

5.2 Second stage: optimal deployments

Given a new connected configuration Qt calculated as

described in the previous section, it must be decided

which robot goes to which vertex. Since we are not only

interested in completing the whole deployment in the

shortest time, instead of minimizing the maximum dis-

tance a robot has to travel, as in (Pei et al, 2013), in

this paper the cumulative travel distance is minimized,

as in (Stump et al, 2011). In particular, the Hungarian

algorithm (Burkard et al, 2009) is used. Actually, since

some non-ready robots may be in communication with

the BS when replanning takes place, a new allocation

of robots to vertices is computed taking into account

also these robots and their previous target locations.

This reduces possible path overlaps between ready and

non-ready robots.

6 Readiness and asynchronicity

In this work, a communication protocol able to dynami-

cally discover multi-hop paths between frontiers and BS

is assumed to be in place, such as the Optimized Link

State Routing Protocol (Clausen and Jacquet, 2003).

Accordingly, we now provide a specific definition of

readiness that enables the BS to receive the data from

the robots at the frontiers in minimum expected time,

under the assumptions of sufficient bandwidth along

each communication link and of negligible transmission

times. First, notice that, although Sections 4 and 5 fo-

cus on finding a connected tree on Gt, other links not

explicitly considered in the solution could be available

to transmit data between the vertices Qt. Intuitively,

the robots placed on the vertices of the first forming

path on Gt from a selected frontier to the BS should

remain available for serving as relays until all the fron-

tier data have been transmitted to the BS (possibly, by

taking other routes). Formally, given a deployment πt,

for each frontier f ∈ F t ∩ Qt, call Pf the path con-

necting f and the BS vertex b in Gt that is firstly built

according to the time that each robot r needs to travel

from its current position to ptr. A robot r is defined to

be ready if (a) it has reached its goal vertex ptr, and (b)

for each f ∈ F t∩Qt whose Pf contains ptr, the data of f

have been received at the BS, and every other robot r′

for which ptr′ ∈ Pf is at its goal position. For each fron-

tier f , the corresponding Pf can be conservatively com-

puted right after the computation of πt(·) (thus not con-

sidering possible other links discovered throughout the

plan execution) by means of the following algorithm:

order the robots in increasing order of traveling times;

for each robot r, build a restricted version of Gt con-

taining only the vertices of Qt associated with robots

expected to reach their goal before r; if a path exists,

take the shortest, otherwise examine the next robot.

The reader might have noticed that, in practice, new

deployments could prescribe to simply “append” some

robots to a previously formed connected configuration.
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This happens, for instance, when there are less fron-

tiers than robots, whose corresponding vertices in F t

are directly connected to the BS vertex b. Of course,

such robots can become immediately ready once they

arrive at their goal locations.

As soon as a robot becomes ready, it is available to

receive a new plan from the BS (our asynchronicity no-

tion is built upon this feature). Several options may be

taken in consideration for triggering a new plan com-

putation, e.g., replan when a fixed threshold θ of ready

robots is reached, or as soon as a sufficiently interest-

ing region is discovered. In the experiments described

in the next sections, the effect of choosing different θ –

i.e., of replanning as soon as at least θ robots become

ready – is studied.

7 Simulation experiments

We choose the MRESim simulator (Spirin et al, 2013)

since it focuses on communication and we select three

environments of size 80 m× 60 m (represented by oc-

cupancy grids, whose cell edge length is 10 cm), shown

in Fig. 4. Office and Open are from the Radish repos-

itory (Howard and Roy, 2003) (“sdr site b” and “aca-

pulco convention center”, respectively), while Cluttered

is from the MRESim repository (“grass”). We run sim-

ulations with teams of 6 and 12 TurtleBot-like robots

moving at a constant speed of 0.4 m/s, and equipped

with a depth camera with a maximum range of 5 m,

a 60◦ FOV, and an angular resolution of 1◦. For each

experimental set, 5 runs of 900 s (steps) are executed

for each environment, randomly varying the starting

positions of the BS and robots. For the simulation ex-

periments, we assume that the communication model

robots are endowed with coincides with the actual pos-

sibility of communicating in the simulated world while

ensuring enough bandwidth. Clearly, this assumption

will not hold in the real-robots experiments, which will

thus validate our method in realistic scenarios. In par-

ticular, the disk communication model is used with

maximum distance 15 m for 6 robots (i.e., robots can

communicate if within a given distance), and the limited-

distance line-of-sight communication model with the

same maximum distance for 12 robots. (A more relaxed

communication model for teams of 6 robots is adopted

to avoid to excessively constrain the exploration pro-

cess, especially in the Office and Cluttered environ-

ments.) On top of the BS global grid map, the explo-

ration graph Gt is iteratively built by adding as vertices

the locations representing a sufficiently big cluster of

frontier cells, so that already visited frontiers become

candidate relay locations for future plans. To evaluate

the proposed strategies, three performance metrics are

logged over time: the percentage of explored area, the

average robots’ traveled distance (that can be related

to energy consumption), and the average time a robot is

not in communication with the BS (an indicator of the

situation awareness achieved at the BS). Fig. 2 shows a

snapshot of an experiment running in MRESim on the

Office environment under the limited-distance line-of-

sight communication model with 12 robots.

In a first set of experiments, we start by con-

sidering a synchronous setting (θ = 6 and θ = 12 for 6

and 12 robots, respectively) and study the performance

obtained by the three proposed algorithms: the opti-

mal one-stage ILP-based algorithm presented in Sec-

tion 4 (1S-ILP) and the two-stage algorithms described

in Section 5, where configurations are computed opti-

mally (2S-ILP) or approximately (2S-APX).

The GUROBI solver (Gurobi, 2015) is used for solv-

ing the ILPs on a laptop equipped with an i5-4310M

processor and 8 GB of RAM as follows. Initially, the two

ILP models contain all their constraints except for (3)

and (11). Violations of such constraints are checked at

each node of the Branch&Bound tree by means of the

standard separation procedure involving the resolution

of a max-flow problem in the underlying graph, com-

bined with the usage of nested cuts to find more vi-

olated cuts at each node; see (Álvarez-Miranda et al,

2013) for details. The α parameter of 1S-ILP is set to

0.5 after some preliminary experiments, while 2S-APX

is run with δ = 2 for 6 robots and δ = 4 for 12 robots

to obtain a 3-approximation for both team sizes.

First, we show two different views for our results

that we call real time and instant replanning. The real

time view entails an exploration mission that unfolds
in time just like it would be in reality with our im-

plementation: both traveling and planning take some

time. Instead, the instant replanning view filters out

the time spent in computing plans. It shows how the

explored area would grow under an ideal implementa-

tion achieving instantaneous plan computations. This

second view evaluates the goodness of our plans inde-

pendently of the efficiency of our implementation.

Fig. 5 shows the results obtained in the Office and

Cluttered environments with the team of 6 robots in

terms of percentage of explored area as function of mis-

sion time. Bars correspond to the standard deviation.

Results for Open environment are not reported here

as they show a similar trend to those in Office and

Cluttered. With real-time planning, Figs. 5(a),(c), the

one-stage approach shows better performance than the

two-stage ones in both environments, although not sta-

tistically significant. For instance, at the end of the mis-

sion in the Office environment the gap between 1S-ILP

and 2S-APX has p-value= 0.0575 according to one-way
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Office Open Cluttered

Fig. 4 Simulation environments, approximate size 80 × 60 m.

ANOVA. The disadvantage of higher computational time

required to solve a more complicated ILP is compen-

sated by the much higher quality of the solution. More-

over, notice that the performance of 2S-ILP and 2S-

APX are very similar. This can be explained by the

fact that the ILP models obtained in such instances re-

quire just up to a few seconds to be optimally solved.

Further, this shows that the approximation algorithm

performs comparatively well against its optimal coun-

terpart. Of course, the advantage in terms of explored

area between the one-stage and the two-stage planning

approaches is amplified when considering planning in-

stantaneous (Figs. 5(b),(d)), especially in the Cluttered

environment.
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(d) Cluttered, instant replanning

Fig. 5 Comparison of the planning approaches for 6 robots
(θ = 6) in the Office and Cluttered environments.

Fig. 6 shows the results obtained for 12 robots in the

Office and Cluttered environments (again, Open envi-

ronment presents a similar trend). When considering

real-time planning (Figs. 6(a),(c)), 1S-ILP seems to be

only slightly better than the two-stage approaches; as

such it is not clear whether 1S-ILP provides a signifi-

cant advantage. Considering planning instantaneous, it

is also less evident the gain in solution quality when

adopting 1S-ILP. A higher density of robots seems to

be able to alleviate the penalty due to a lower solution

quality of the deployment.
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(d) Cluttered, instant replanning

Fig. 6 Comparison of the planning approaches for 12 robots
(θ = 12) in the Office and Cluttered environments.

In a second set of experiments, we study the ef-

fect of choosing different θ when considering real-time

planning, since the delays due to a high planning time

might turn out to be the bottleneck of the system when

introducing asynchronicity. In particular, our aim is to

investigate (a) if 1S-ILP remains a practical approach to

adopt, given that new plans need to be computed much

more frequently when θ < m, and (b) which replanning

threshold θ should be adopted in the different environ-

ments. Since 2S-ILP and 2S-APX have been shown to

offer comparable performance, only 2S-APX is tested as
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the two-stage approach, in order to have the guarantee

of polynomial worst-case running time. In particular,

we again set δ = 2 for 6 robots and δ = 4 for 12 robots

to obtain a 3-approximation for both the team sizes, re-

gardless of the particular replanning threshold chosen.

Note that this means that there are cases in which the

algorithm returns an optimal solution.

To provide a reference comparison, we evaluate the

proposed approach against the one presented by Spirin

et al (2013). This method, that we label as Utility,

represents a communication-aware exploration strategy

where exploration of new areas can be efficiently traded-

off with communication requirements. We compare against

it since it has been shown to complete exploration faster

than the role-based strategy of de Hoog et al (2009) (be-

sides, the strategy is already available in MRESim). In

short (see also Section 2), Utility defines a distributed

strategy where each robot chooses autonomously which

frontier to explore in a greedy fashion and returns to

the BS as soon as the ratio between the area supposed

to be known at the BS and that known by the robot

goes below a predefined value 0 ≤ r ≤ 1. In our ex-

periments, we set r = 0.5 to obtain a balanced, yet

more exploration-prone, behavior. Note that this strat-

egy does not embed the recurrent connectivity con-

straint, so robots can remain disconnected from the BS

for an unpredictably long amount of time and are thus

expected to explore more freely.

Fig. 7 shows the percentage of explored area known

at the BS for 6 robots in the three environments as

the mission unfolds for 1S-ILP with different θ and for

Utility. A low replanning threshold seems to provide a

very limited advantage in the first phase of exploration.
However, towards the end, replanning once for half (in

Office) or whole (in Open and Cluttered environments)

team offers better performance. Nevertheless, the dif-

ference is not statistically significant. For example in

the Open environment, p-value= 0.1072. This is due to

the increasingly high planning time required to solve

the model to optimality, which leads to a congestion

in the computation of new plans. Comparing the per-

formance of 1S-ILP with 2S-APX (Fig. 8), a statisti-

cally significant improvement can be observed at the

end of the mission only in the Cluttered environment

when selecting θ = 1 (p-value= 0.0019). However, no-

tice that the lower planning times required by 2S-APX

are directly reflected in a trend of statistically signif-

icant better performance for decreasing values of θ in

all the environments (for instance, for θ = 1 and θ = 6

in Cluttered, p-value= 0.003). Comparing our recur-

rent connectivity approach with the Utility method, it

can be observed that, in general, the latter offers bet-

ter performance in terms of explored area, but with a

much lower situational awareness at the BS and a much

higher energy consumption; see the results of the Clut-

tered environment in Fig. 9; the results for the other

two environments exhibit similar trends. Fig. 10 shows

some snapshots of a simulation in the Office environ-

ment with 2S-APX and θ = 1.

We now examine the performance with a team of 12

robots. Fig. 11 shows the percentage of explored area

known at the BS in the three environments for 2S-APX

and Utility. As in the previous case, a low replanning

threshold provides a statistically significant advantage

in terms of explored area in all the environments; for

instance, in Office, 2S-APX1 vs. 2S-APX12 has a p-

value= 0.0035.

Again, compared to Utility, our approach allows a

better situational awareness at the BS, while sacrificing

some performance in terms of explored area (actually,

less than in the previous case). The results for 1S-ILP,

partially reported in Fig. 12, confirm the previous in-

sights. In particular, notice how θ = 1, that yields the

best results in terms of explored area with 2S-APX,

now results in a heavy congestion in the computation

of new plans. The situational awareness at the BS and

the distance traveled, whose graphs are not reported

here, show the same trends as in Fig. 9 for 6 robots.

8 Real-world experiments

The proposed methods are also validated in a real sce-

nario, with a laptop (the BS) and 6 TurtleBot 2 mobile

robots1, each one equipped with a netbook and a Mi-

crosoft Kinect (see Fig. 1). An ad hoc network is set

through the WiFi interfaces of the computers and the

Optimized Link State Routing Protocol is run to man-

age a multihop network (Clausen and Jacquet, 2003).

ROS (O’Kane, 2013; Quigley et al, 2009) is used to con-

trol the multirobot system. In such a setup, robots are

able to communicate only if the signal quality is good

enough. It might be possible that a communication

edge in the communication graph does not necessarily

translate into actual communication link. However, in

the experiments, given the conservative way in which

we build the communication graph (explained later),

robots are able to communicate when expected. We use

the “nav2d” stack2 for multirobot (graph-based) SLAM

and path planning. The exploration strategy is imple-

mented as a plugin of the “nav2d exploration” package.

The Swearingen Engineering Center at the Univer-

sity of South Carolina is used as testing ground for

the proposed approach; Fig. 13 shows one of the floors

1 http://www.turtlebot.com
2 http://wiki.ros.org/nav2d
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Fig. 7 Explored area for 6 robots: 1S-ILP with different replanning thresholds (θ = 1, 3, 6) and Utility method with r =
0.5 (Spirin et al, 2013).
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Fig. 8 Explored area for 6 robots: 2S-APX with different replanning thresholds (θ = 1, 3, 6) and Utility method with r =
0.5 (Spirin et al, 2013).
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Fig. 9 Time not in communication with the BS (a) and
traveled distance (b) for 6 robots in Cluttered: 2S-APX
with different replanning thresholds (θ = 1, 3, 6) and Utility
method (Spirin et al, 2013).

where robots have been deployed. The size of the por-

tion of the environment is approximately 90 m× 65 m.

There are two long corridors, with some other intersect-

ing corridors/halls, and a looping corridor, thus requir-

ing the robots to form a chain to guarantee communica-

tion with the BS. After some preliminary tests, we as-

sumed that two locations can communicate if they are

within 15 m range. Experiments involved running 1S-

ILP and 2S-APX with θ = 1 and θ = 6. For θ = 6, ini-

tially two coalitions of robots are formed, each one going

towards the frontiers of the corridors. Fig. 14 shows the

partial map known by the BS (and the robots) at some

time step using 1S-ILP, with θ = 6. It is possible to ob-

serve that some noise is introduced, due to perception

and motion errors. One immediate consequence is that,

in order to let the exploration proceed, a relaxed version

of the communication model has to be adopted: given

the current known map, two locations can communicate

if they are in line of sight, with some tolerance. With-

out this relaxation, many goal locations for the robots

could not be connected, resulting in a premature end

of the exploration task. Such a relaxation is realistic, as

WiFi signal can be received even in presence of some

obstacles that obstruct the view.

When the robots in one branch of the corridor can-

not proceed further without violating the communica-

tion constraint, they become ready and are allocated to

the other branch of the corridor to form a longer chain.

Note that, with real robots, recovery mechanisms are

necessary. For instance, some of the robots could not

actually move to the assigned goal because of the noise

in the map. In such cases, the robot aborts the motion

to the location, notifying the BS. To guarantee that the
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(a)

(b)

(c)

(d)

Fig. 10 Exploration example (6 robots, 2S-APX, θ = 1, Of-
fice environment). (a) All the robots are initially close to the
BS and in the ready status (red). (b) The exploration pro-
ceeds along several directions in parallel. (c) After some time,
the robots focus on mapping the left part of the environment.
All the robots become ready at once due to the fact that the
robot closest to the BS, required to connect to it with all
the other robots, is the last to reach its goal. (d) Once large
part of the environment has been mapped, and the mission
approaches its deadline, the graph link topology starts to re-
semble a tree.

communication topology always contains a tree, all the

robots belonging to the branches to which the aborted

robot belongs are preempted and become ready for a

new assignment. Fig. 15 shows the trend of the explored

area during the mission. After some time, we observe

that the robots basically do not move. This can be ex-

plained by two facts. One is that the BS is computing

a new plan for the robots. The second cause is that,

with a noisy map, several frontiers could be generated

in non-reachable areas, leading to a sequence of plan

re-computations. In this case, a proper filtering of the

frontiers should be adopted in such a way that planning

time, that is typically the bottleneck, is not wasted. It

is possible to observe that 1S-ILP6 is the strategy that

outperforms the rest. Compared to 2S-APX, the qual-

ity of the solution found by 1S-ILP is higher, confirm-

ing the insights from the simulation results, presented

in the previous section. In contrast to the simulation re-

sults, setting θ = 1, while initially provides some bene-

fits, eventually worsens the performance. With frequent

replanning, robots tend to interfere in the motion of

each other: this possibly results in collisions that can

degrade the quality of the map, leading to situations

in which many locations are not valid. Notice that the

bandwidth is not an issue during the experiments, as

robots and base station are not sharing very intensive

data.

9 Discussion of the experimental results

In this section, we make some general observations from

the results obtained in simulations and in real-robots

experiments. In general, we cannot say that one ap-

proach performs better than another. However, we think

that the following key points will be of help in guiding

a practitioner in deploying a multirobot system for ex-

ploring an initially unknown environment under recur-

rent connectivity constraints.

1. ILP-based algorithms are (relatively) fast, but some-

times not enough for real-world settings.

In all the experiments, we are always able to solve the

ILP models of the one-stage and two-stage approaches

to optimality in a few seconds on average, rarely reach-

ing 1 minute or more of computation (this usually hap-

pens towards the end of the mission, when the underly-

ing graph is large and the number of variables and con-

straints is large, too). For 6 robots, this computational

disadvantage is compensated by the higher quality of

the computed plans. However, for larger team sizes, an

ILP-based algorithm could turn out to be the bottle-

neck of the system when replanning happens frequently

(see, e.g., the performance of 1S-ILP for small values of
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Fig. 11 Explored area for 12 robots: 2S-APX with different replanning thresholds (θ = 1, 3, 6, 9, 12) and Utility method with
r = 0.5 (Spirin et al, 2013).
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Fig. 12 Explored area for 12 robots: 1S-ILP with differ-
ent replanning thresholds (θ = 1, 3, 6, 9, 12) and Utility
method (Spirin et al, 2013).

Fig. 13 Part of the third floor at the Swearingen Engineering
Center for some of the experiments with real robots (blue)
and base station (green), whose initial poses are indicated on
the map.

θ in Fig. 12). This could also happen when exploring

very large environments.

2. Optimality of configurations does not necessarily

imply best performance.

Due to the online nature of the exploration problem,

it is not surprising that locally optimal decisions that

Fig. 14 Partial map built by 6 TurtleBots and known by the
BS using 1S-ILP, θ = 6.
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Fig. 15 Area explored by the real TurtleBot 2 robots.

return the best possible configurations (as defined in

the one-stage approach) are not necessarily translated

into a globally optimal performance. For example, in

Fig. 6(c), the curves of 1S-ILP, 2S-ILP, and 2S-APX

are almost overlapped. Moreover, from what observed

before, the usage of the one-stage approach does not

remain a viable option for very large teams when a small

replanning threshold is adopted.

3. The choice of the replanning threshold should de-

pend on the team size and on the chosen approach.
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From our experiments both in simulation and on real

robots, it seems that a high replanning threshold θ

should be preferred for small team sizes using the one-

stage approach. This might be due to the fact that,

with few robots, the system has less chances to “re-

cover” from an erroneous myopic decision based on par-

tial information (that might have taken some time to

be produced).

4. Real-world implementations must be accompanied

by backup procedures, whose activation negatively im-

pacts on the performance.

In general, exploration with real robots proceeds at a

much slower pace compared to the one in simulation

(which is error-free). In our current implementation,

when one (or more) robot(s) cannot reach the assigned

goal location(s), all the robots depending on it (them)

are preempted, and a new configuration is computed.

This introduces a non-negligible delay with respect to

an error-free setting, which seems to be minimized when

replanning for the whole team, i.e., when θ = 6. The

reason is that, with θ = 1, robots tend to interfere more

frequently in the motion of each other.

10 Conclusions

Recurrent connectivity is a way for introducing commu-

nication constraints in multirobot exploration missions

by requiring that robots must communicate with a base

station whenever they reach goal locations from which

new knowledge can be acquired. In this work, we de-

fined and extensively evaluated two planning techniques

for efficient exploration under recurrent connectivity

constraints. First, we proposed a single-stage strategy

based on an ILP whose objective function accounts for

both exploration costs and information gains. Then, we

defined a two-stage strategy, separating the problem of

locations selection from that of the robot-location as-

signments. The experimental analysis showed that the

proposed methods can be effectively applied to multi-

robot exploration missions, because they provide per-

formance comparable with that of a state-of-the-art

method that leaves more freedom to explore.

Future work will improve the selection of the lo-

cations for the graph (for example, in an indoor envi-

ronment, it would be possible to use the Generalized

Voronoi Graph (Zhang et al, 2014)), and fast detec-

tion of frontiers, building on the work of (Keidar and

Kaminka, 2014). Furthermore, our method could be ex-

tended to allocations that consider shared resources

such as space (Nam and Shell, 2015). Currently, we

are also investigating the possibility of adopting a more

speculative link-detection mechanism to build the set

of communication edges, like resorting to a dedicated

subteam of robots to build a “communication map”

by means of an online learning method such as Gaus-

sian Processes (Banfi et al, 2017), which are particu-

larly suitable for learning spatial phenomena. Finally,

this development would also entail the need for backup

plans to be used in the presence of false-positives in

predicted links.
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