Skip to main content
Log in

The Team Surviving Orienteers problem: routing teams of robots in uncertain environments with survival constraints

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We study the following multi-robot coordination problem: given a graph, where each edge is weighted by the probability of surviving while traversing it, find a set of paths for K robots that maximizes the expected number of nodes collectively visited, subject to constraints on the probabilities that each robot survives to its destination. We call this the Team Surviving Orienteers (TSO) problem, which is motivated by scenarios where a team of robots must traverse a dangerous environment, such as aid delivery after disasters. We present the TSO problem formally along with several variants, which represent “survivability-aware” counterparts for a wide range of multi-robot coordination problems such as vehicle routing, patrolling, and informative path planning. We propose an approximate greedy approach for selecting paths, and prove that the value of its output is within a factor \(1-e^{-p_s/\lambda }\) of the optimum where \(p_s\) is the per-robot survival probability threshold, and \(1/\lambda \le 1\) is the approximation factor of an oracle routine for the well-known orienteering problem. We also formalize an on-line update version of the TSO problem, and a generalization to heterogeneous teams where both robot types and paths are selected. We provide numerical simulations which verify our theoretical findings, apply our approach to real-world scenarios, and demonstrate its effectiveness in large-scale problems with the aid of a heuristic for the orienteering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

(Reproduced with permission from NOAA National Weather Service Radar Operations Center 1991)

Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Atanasov, N., Le Ny, J., Daniilidis, K., & Pappas, G. J. (2015). Decentralized active information aquisition: Theory and application to multi-robot SLAM. In Proceedings of the IEEE conference on robotics and automation.

  • Campbell, A. M., Gendreau, M., & Thomas, B. W. (2011). The orienteering problem with stochastic travel and service times. Annals of Operations Research, 186(1), 61–81.

    Article  MathSciNet  MATH  Google Scholar 

  • Chao, I. M., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem. European Journal of Operational Research, 88(3), 464–474.

    Article  MATH  Google Scholar 

  • Chekuri, C., Korula, N., & Pál, M. (2012). Improved algorithms for orienteering and related problems. ACM Transactions on Algorithms, 8(3), 23:1–23:27.

    Article  MathSciNet  MATH  Google Scholar 

  • Chekuri, C., & Pál, M. (2005). A recursive greedy algorithm for walks in directed graphs. In: IEEE symposium on foundations of computer science.

  • Chen, K., & Har-Peled, S. (2006). The orienteering problem in the plane revisited. In ACM symposium on computational geometry.

  • Chen, X. H., Dempster, A. P., & Liu, J. S. (1994). Weighted finite population sampling to maximize entropy. Biometrika, 81(3), 457–469.

    Article  MathSciNet  MATH  Google Scholar 

  • Cros, A., Ahamad Fatan, N., White, A., Teoh, S., Tan, S., Handayani, C., et al. (2014). The Coral Triangle Atlas: An integrated online spatial database system for improving coral reef management. PLoS ONE, 9(6), 1–7.

    Article  Google Scholar 

  • Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Approximation algorithms for the arc orienteering problem. Information Processing Letters, 115(2), 313–315.

    Article  MathSciNet  MATH  Google Scholar 

  • Golden, B. L., Levy, L., & Vohra, R. (1987). The orienteering problem. Naval Research Logistics, 34(3), 307–318.

    Article  MATH  Google Scholar 

  • Golden, B. L., & Yee, J. R. (1979). A framework for probabilistic vehicle routing. AIIE Transactions, 11(2), 109–112.

    Article  Google Scholar 

  • Golovin, D., & Krause, A. (2011). Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42, 427–486.

    MathSciNet  MATH  Google Scholar 

  • Gunawan, A., Lau, H. C., & Vansteenwegen, P. (2016). Orienteering problem: A survey of recent variants, solution approaches and applications. European Journal of Operational Research, 255(2), 315–332.

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, A., Krishnaswamy, R., Nagarajan, V., & Ravi, R. (2012). Approximation algorithms for stochastic orienteering. In ACM-SIAM symposium on discrete algorithms.

  • Haldane, J. B. S. (1932). A note on inverse probability. Mathematical Proceedings of the Cambridge Philosophical Society, 28(1), 55–61.

    Article  MATH  Google Scholar 

  • Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.

    Article  Google Scholar 

  • International Chamber of Commerce: Commercial Crime Services. (2017). IMB piracy reporting centre. https://www.icc-ccs.org/piracy-reporting-centre.

  • Jorgensen, S., Chen, R. H., Milam, M. B., & Pavone, M. (2017). The team surviving orienteers problem: Routing robots in uncertain environments with survival constraints. In IEEE international conference on robotic computing.

  • Kara, I., Biçakci, P. S., & Derya, T. (2016). New formulations for the orienteering problem. Procedia Economics and Finance, 39, 849–854.

    Article  Google Scholar 

  • Krause, A., & Golovin, D. (2014). Submodular function maximization. In L. Bordeaux, Y. Hamadi, & P. Kohli (Eds.), Tractability: Practical approaches to hard problems. Cambridge: Cambridge University Press.

  • Laporte, G., Louveaux, F., & Mercure, H. (1989). Models and exact solutions for a class of stochastic location-routing problems. European Journal of Operational Research, 39(1), 71–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Lynch, N. A. (1997). Distributed algorithms (1st ed.). Los Altos: Morgan Kaufmann.

    Google Scholar 

  • Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of approximations for maximizing submodular set functions-I. Mathematical Programming, 14(1), 265–294.

    Article  MathSciNet  MATH  Google Scholar 

  • NOAA National Weather Service Radar Operations Center. (1991). NOAA next generation radar (NEXRAD) level II base data.

  • Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research, 225(1), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Psaraftis, H. N., Wen, M., & Kontovas, C. A. (2016). Dynamic vehicle routing problems: Three decades and counting. Networks, 67(1), 3–31.

    Article  MathSciNet  Google Scholar 

  • Singh, A., Krause, A., Guestrin, C., & Kaiser, W. J. (2009). Efficient informative sensing using multiple robots. Journal of Artificial Intelligence Research, 34, 707–755.

    MathSciNet  MATH  Google Scholar 

  • Smith, R. N., Schwager, M., Smith, S. L., Jones, B. H., Rus, D., & Sukhatme, G. S. (2011). Persistent ocean monitoring with underwater gliders: Adapting sampling resolution. Journal of Field Robotics, 28(5), 714–741.

    Article  Google Scholar 

  • Stewart, W. R., & Golden, B. L. (1983). Stochastic vehicle routing: A comprehensive approach. European Journal of Operational Research, 14(4), 371–385.

    Article  MATH  Google Scholar 

  • Vaněk, O., Jakob, M., Hrstka, O., & Pěchouček, M. (2013). Agent-based model of maritime traffic in piracy affected waters. Transportation Research Part C: Emerging Technologies, 36, 157–176.

    Article  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009). Iterated local search for the team orienteering problem with time windows. Computers and Operations Research, 36(12), 3281–3290.

    Article  MATH  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A survey. European Journal of Operational Research, 209(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Varakantham, P., & Kumar, A. (2013). Optimization approaches for solving chance constrained stocahstic orienteering problems. In Proceedings of the international conference on algorithmic decision theory.

  • Wagner, S., & Affenzeller, M. (2005). HeuristicLab: A generic and extensible optimization environment. In B. Ribeiro, R. F. Albrecht, A. Dobnikar, D. W. Pearson & N. C. Steele (Eds.), Adaptive and natural computing algorithms. Berlin: Springer.

  • Wei, K., Iyer, R. K., & Bilmes, J. A. (2014). Fast multi-stage submodular maximization. In International conference on machine learning.

  • Zhang, B., Tang, L., & Roemer, M. (2017). Probabilistic planning and risk evaluation based on ensemble weather forecasting. IEEE Transactions on Automation Sciences and Engineering, PP(99), 1–11.

    Google Scholar 

  • Zhang, H., & Vorobeychik, Y. (2016). Submodular optimization with routing constraints. In Proceedings of the AAAI conference on artificial intelligence.

Download references

Acknowledgements

The authors would like to thank Federico Rossi, Edward Schmerling, and Sumeet Singh for their comments and insights which led to tighter analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jorgensen.

Additional information

Partially supported by National Science Foundation Grant DGE-114747, the Office of Naval Research: Science of Autonomy program, and Northrop Grumman Aerospace Systems. This article solely reflects the opinions and conclusions of the authors.

Appendix

Appendix

In the following we prove the technical lemma stated in the background section. We start the proof by considering a sequence of Poisson binomial distributions \(f_0,f_1,\dots \). The parameters of the nth distribution are denoted as \(\{p_{n,k}\}_{k=1}^K\), with \(p_{n,1} \le p_{n,2}\le \dots \le p_{n,K}\). The parameters of the \(n+1\)st distribution are

$$\begin{aligned} \{p_{n+1,k}\}_{k=1}^K = \left\{ \frac{p_{n,1}+p_{n,K}}{2}, \{p_{n,k}\}_{k=2}^{K-1},\frac{p_{n,1}+p_{n,K}}{2}\right\} , \end{aligned}$$

that is, the largest and smallest event probabilities of the nth distribution are averaged to form the \(n+1\)st distribution. Note that we re-sort the parameters after constructing them from the nth distribution, so it is still true that \(p_{n+1,j}\le p_{n+1,k}\) for \(j\le k\).

It is easy to verify that this sequence converges to the binomial distribution with parameters K and \(p = \frac{1}{K} \sum _{k=1}^K p_k\). We are interested in showing that the tails of the sequence become heavier as n increases. We begin by making some basic observations:

Lemma 9

Define

$$\begin{aligned} \varepsilon _n := \frac{1}{2}\left( p_{n,K}-p_{n,1}\right) \end{aligned}$$

and

$$\begin{aligned} \bar{p}_n := \frac{1}{2}\left( p_{n,K}+p_{n,1}\right) . \end{aligned}$$

Then

$$\begin{aligned} p_{n,1}p_{n,K} = \bar{p}_{n}^2 - \varepsilon _{n}^2, \end{aligned}$$
$$\begin{aligned} (1-p_{n,1})(1-p_{n,K}) = (1-\bar{p}_{n})^2 - \varepsilon _{n}^2, \end{aligned}$$

and

$$\begin{aligned} p_{n,1}(1-p_{n,K}) + p_{n,K}(1-p_{n,1}) = 2\bar{p}_{n}(1-\bar{p}_{n}) + 2\varepsilon _{n}^2. \end{aligned}$$

Proof

Each of these statements follows from straightforward algebra:

$$\begin{aligned} \bar{p}_n^2 - \varepsilon _n^2&= \frac{1}{4} \left( p_{n,1}^2 +2p_{n,1}p_{n,K} + p_{n,K}^2\right) \\&\quad - \frac{1}{4}\left( (p_{n,K}^2 -2p_{n,1}p_{n,K} + p_{n,1}^2) \right) \\&= \frac{1}{4}(4 p_{n,1}p_{n,K}) = p_{n,1}p_{n,K}\\ (1-\bar{p}_{n})^2 - \varepsilon _{n}^2&= 1 -2\bar{p}_n + \bar{p}_n^2 - \varepsilon _n^2\\&= 1 - (p_{n,1}+p_{n,K}) + p_{n,1}p_{n,K}\\&= (1-p_{n,1})(1-p_{n,K})\\ 2\bar{p}_{n}(1-\bar{p}_{n}) + 2\varepsilon _{n}^2&= -2(\bar{p}_n^2 - \varepsilon ^2_n) + 2\bar{p}_n\\&= -2(p_{n,1}p_{n,K}) + (p_{n,1} + p_{n,K}) \\&= p_{n,1}(1-p_{n,K}) + p{n,K}(1-p_{n,1}) \end{aligned}$$

\(\square \)

It is useful to define an auxiliary sequence of Poisson binomial probability mass functions

$$\begin{aligned} g_n(m) = f(m; \{p_{n,k}\}_{k=2}^{K-1}), \end{aligned}$$

which correspond to the probabilities of m successes excluding the most and least likely “events” of the nth distribution. Note that by definition \(g_n(m) = 0\) if \(m < 0\) or \(m > K-2\). We also define notation for the first and second-order finite difference of \(g_n(m)\), which are crucial quantities in our inequalities below.

$$\begin{aligned} \Delta _{1,n}(m)&:= g_n(m) - g_n(m-1),\\&\text {and}\\ \Delta _{2,n}(m)&:= \Delta _{1,n}(m) - \Delta _{1,n}(m-1)\\&=g_n(m) - 2g_n(m-1) + g_n(m-2). \end{aligned}$$

Using these relationships, we can form a succinct recursive description of \(f_n(m)\):

Lemma 10

For the sequence of probability mass functions above, we have

$$\begin{aligned} f_{n}(m) = f_{n+1}(m) - \varepsilon ^2_{n} \Delta _{2,n}(m), \end{aligned}$$

and for \(F_n(m') := \sum _{m=0}^{m'}f_n(m)\),

$$\begin{aligned} F_n(m') = F_{n+1}(m') - \varepsilon ^2_n \Delta _{1,n}(m'). \end{aligned}$$

Proof

By definition of the probability mass function and \(g_n(m)\),

$$\begin{aligned} f_{n}(m)&= p_{n,1}p_{n,K}g_n(m)\\&\quad + (p_{n,1}(1-p_{n,K}) + p_{n,K}(1-p_{n,1}))g_n(m-1)\\&\quad + (1-p_{n,1})(1-p_{n,K})g_n(m-2)\\&= \bar{p}_n^2 g_n(m) + \bar{p}_n(1-\bar{p}_n) g_n(m-1) + (1-\bar{p}_n)^2 g_n(m-2)\\&\qquad - \varepsilon ^2_n ( g_n(m) - 2g_n(m-1) + g_n(m-2))\\&= f_{n+1}(m)-\epsilon ^2_n \Delta _{2,n}(m). \end{aligned}$$

The second equality follows from the identities in Lemma 9, and the second equality follows by definition of \(f_{n+1}(m)\) and \(\Delta _{2,n}\).

Now taking the summation gives us the second statement:

$$\begin{aligned} F_n(m')&= \sum _{m=0}^{m'} f_{n+1}(m) - \varepsilon ^2_n(g_n(m) - 2g_n(m-1) + g_n(m-2))\\&= F_{n+1}(m') \\&\quad -\,\varepsilon ^2_n \left( \sum _{m=0}^{m'}g_n(m) - 2\sum _{m=0}^{m'-1}g_n(m) + \sum _{m=0}^{m'-2}g_n(m)\right) \\&= F_{n+1}(m') - \varepsilon ^2_n (g_n(m') - g_n(m'-1))\\&= F_{n+1}(m') - \varepsilon ^2_n \Delta _{1,n}(m'). \end{aligned}$$

\(\square \)

This lemma gives us an exact characterization of the difference between successive distributions in our sequence. Specifically, \(f_n(m) \le f_{n+1}(m)\) if and only if the second order finite difference, \(\Delta _{2,n}(m)\), is non-negative, and \(F_n(m') \le F_{n+1}(m')\) if and only if the first order finite difference, \(\Delta _{1,n}(m')\) is non-negative. In the following lemma, we give a sufficient condition on m to ensure that \(\Delta _{1,n}(m) \ge 0\).

Lemma 11

Let \(\{p_{n,k}\}_{k=1}^K\) and \(\mu \) be defined as in Lemma 1, and \(\Delta _{1,n}(m)\) defined as the first order finite difference of \(g_n(m)\), the Poisson binomial distribution with parameters \(\{p_{n,k}\}_{k=2}^{K-1}\). Then for \(m \le (1-p_{1,K})(K-2)\frac{\mu }{1-\mu } + p_{1,K}\), \(\Delta _{1,n}(m) \ge 0\).

Proof

We start by expressing \(g_n(m)\) using the recursive characterization of the Poisson binomial probability mass function given by Chen et al. (1994):

$$\begin{aligned} g_n(m) = \frac{1}{m} \sum _{i=1}^m (-1)^{i-1} g_n(m-i) T_n(i), \end{aligned}$$

where \(T_n(i) = \sum _{k=2}^{K-1} \left( \frac{p_{n,k}}{1-p_{n,k}}\right) ^i\). Note that for \(i \ge 2\), we have \(T_n(i) \le T_n(i-1) \frac{p_{1,K}}{1-p_{1,K}}\). The case \(\Delta _{1,n}(m+1) \ge 0\) is equivalent to saying that \(\frac{g_n(m+1)}{g_n(m)} \ge 1\). Using the recursive expression above,

$$\begin{aligned} \frac{g_{n}(m+1)}{g_{n}(m)}&= \frac{T_n(1)}{m+1} - \frac{\sum _{i=1}^{m}(-1)^{i-1} g_n(m-i)T_n(i+1) }{(m+1) g_n(m)}\\&\ge \frac{T_n(1)}{m+1}-\frac{\sum _{i=1}^m (-1)^{i-1} g_n(m-i)T_n(i)\left( \frac{p_{1,K}}{1-p_{1,K}}\right) }{(m+1)g_{n}(m)}\\&\ge \frac{T_n(1)}{m+1} - \frac{m}{m+1}\left( \frac{p_{1,K}}{1-p_{1,K}}\right) \\&\ge \frac{K-2}{m+1} \frac{\mu }{1-\mu } - \frac{m}{m+1}\frac{p_{1,K}}{1-p_{1,K}}. \end{aligned}$$

Solving for \(m+1\) we have that \(\Delta _{1,n}(m+1) \ge 0\) if

$$\begin{aligned} m+1 \le (1-p_{1,K})\left( (K-2)\frac{\mu }{1-\mu }\right) + p_{1,K} \end{aligned}$$

\(\square \)

Combining Lemmas 10 and 11 completes the proof for Lemma 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorgensen, S., Chen, R.H., Milam, M.B. et al. The Team Surviving Orienteers problem: routing teams of robots in uncertain environments with survival constraints. Auton Robot 42, 927–952 (2018). https://doi.org/10.1007/s10514-017-9694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9694-1

Keywords

Navigation