Skip to main content
Log in

Selective image registration for efficient visual SLAM on planar surface structures in underwater environment

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a computationally efficient approach that can be applied to visual simultaneous localization and mapping (SLAM) for the autonomous inspection of underwater structures using monocular vision. A selective image registration scheme consisting of key-frame selection and key-pair selection is proposed to effectively use visual features that may not be evenly distributed on the surface of underwater structures. The computational cost of the visual SLAM algorithm can be substantially reduced using only potentially effective images and image pairs by applying the proposed image registration scheme. The performance of the proposed approach is demonstrated on two different experimental datasets obtained using autonomous underwater vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bay, H., Ess, A., Tuytelaars, T., & Gool, L. V. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Carlevaris-Bianco, N., & Eustice, R. M. (2014). Learning visual feature descriptors for dynamic lighting conditions. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2769–2776).

  • Carrasco, P. L. N., Bonin-Font, F., & Oliver-Codina, G. (2016). Global image signature for visual loop-closure detection. Autonomous Robots, 40(8), 1403–1417.

    Article  Google Scholar 

  • Elibol, A., Gracias, N., & Garcia, R. (2012). Efficient topology estimation for large scale optical mapping (Vol. 82). Berlin: Springer.

    Google Scholar 

  • Elibol, A., Gracias, N., & Garcia, R. (2013). Fast topology estimation for image mosaicing using adaptive information thresholding. Robotics and Autonomous systems, 61(2), 125–136.

    Article  Google Scholar 

  • Elibol, A., Shim, H., Hong, S., Kim, J., Gracias, N., & Garcia, R. (2016). Online underwater optical mapping for trajectories with gaps. Intelligent Service Robotics, 9(3), 217–229.

    Article  Google Scholar 

  • Eustice, R. M., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 33(2), 103–122.

    Article  Google Scholar 

  • Eustice, R. M., Singh, H., & Leonard, J. J. (2006). Exactly sparse delayed-state filters for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100–1114.

    Article  Google Scholar 

  • Ferreira, F., Veruggio, G., Caccia, M., & Bruzzone, G. (2012). Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intelligent Service Robotics, 5(1), 55–71.

    Article  Google Scholar 

  • Förstner, W., & Wrobel, B. P. (2016). Photogrammetric Computer Vision. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Garcia, R., Puig, J., Ridao, P., & Cufi, X. (2002). Augmented state Kalman filtering for AUV navigation. In Proceedings of the of the IEEE international conference on robotics and automation, Washington, DC (pp. 4010–4015).

  • Gong, Y. & Sbalzarini, I. F. (2013). Local weighted Gaussian curvature for image processing. In Proceedings of the international conference on image processing (pp. 534–538).

  • Gracias, N., Mahoor, M., Negahdaripour, S., & Gleason, A. (2009). Fast image blending using watersheds and graph cuts. Image and Vision Computing, 27(5), 597–607.

    Article  Google Scholar 

  • Grisetti, G., Rizzini, D. L., Stachniss, C., Olson, E., & Burgard, W. (2008). Online constraint network optimization for efficient maximum likelihood map learning. In Proceedings of the IEEE international conference on robotics and automation.

  • Haralick, R. M. (1996). Propagating covariance in computer vision. International Journal of Pattern Recognition and Artificial Intelligence, 10(5), 561–572.

    Article  Google Scholar 

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Hong, S., & Kim, J. (2016). Efficient visual SLAM using selective image registration for autonomous inspection of underwater structures. In Proceedings of the IEEE/OES autonomous underwater vehicles (pp. 189–194).

  • Hong, S., Kim, J., Pyo, J., & Yu, S.-C. (2016). A robust loop-closure method for visual SLAM in unstructured seafloor environments. Autonomous Robots, 40(6), 1095–1109.

    Article  Google Scholar 

  • Ila, V., Porta, J. M., & Andrade-Cetto, J. (2010). Information-based compact pose SLAM. IEEE Transactions on Robotics, 26(1), 78–93.

    Article  Google Scholar 

  • Johnson-Roberson, M., Pizarro, O., & Williams, S. (2010). Saliency ranking for benthic survey using underwater images. In Proceedings of the international conference on control, automation, robotics, and vision, Singapore (pp. 459–466).

  • Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transaction on Robotics, 24(6), 1365–1378.

    Article  Google Scholar 

  • Kim, A., & Eustice, R. M. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733.

    Article  Google Scholar 

  • Kim, J., Yoon, K.-J., & Kweon, I. S. (2015). Bayesian filtering for keyframe-based visual SLAM. International Journal of Robotics Research, 34(4–5), 517.

    Article  Google Scholar 

  • Koning, W. D. (1984). Optimal estimation of linear discrete-time systems with stochastic parameters. Automatica, 20(1), 113–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general framework for graph optimization. In Proceedings of the IEEE international conference on robotics and automation (pp. 3607–3613).

  • Lee, Y.-J., & Song, J.-B. (2010). Autonomous salient feature detection through salient cues in an HSV color space for visual indoor simultaneous localization and mapping. Advanced Robotics, 24(11), 1595–1613.

    Article  Google Scholar 

  • Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011). BRISK: Binary robust invariant scalable keypoints. In Proceedings of the IEEE international conference on computer vision (pp. 2548–2555).

  • Li, J., Ozog, P., Abernethy, J., Eustice, R. M., & Johnson-Roberson, M. (2016). Utilizing high-dimensional features for real-time robotic applications: Reducing the curse of dimensionality for recursive bayesian estimation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1230–1237).

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Luo, Y., Zhu, Y., Shen, X., & Song, E. (2012). Novel data association algorithm based on integrated random coefficient matrices Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems, 48(1), 144–158.

    Article  Google Scholar 

  • Mahon, I., Williams, S. B., Pizarro, O., & Johnson-Roberson, M. (2008). Efficient view-based SLAM using visual loop closures. IEEE Transactions on Robotics, 24(5), 1002–1014.

    Article  Google Scholar 

  • Mallios, A., Ridao, P., Ribas, D., & Hernández, E. (2014). Scan matching SLAM in underwater environments. Autonomous Robots, 36(3), 181–198.

    Article  Google Scholar 

  • Nicosevici, T., & Garcia, R. (2012). Automatic visual bag-of-words for online robot navigation and mapping. IEEE Transactions on Robotics, 28(4), 886–898.

    Article  Google Scholar 

  • Ozog, P., & Eustice, R. M. (2013). On the importance of modeling camera calibration uncertainty in visual SLAM. In Proceedings of the IEEE international conference on robotics and automation (pp. 3762–3769). Karlsruhe, Germany.

  • Qin, H., Li, X., Liang, J., Peng, Y., & Zhang, C. (2016). DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing, 187, 49–58.

    Article  Google Scholar 

  • Ridao, P., Carreras, M., Ribas, D., & Garcia, R. (2010). Visual inspection of hydroelectric dams using an autonomous underwater vehicle. Journal of Field Robotics, 27(6), 759–778.

    Article  Google Scholar 

  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE international conference on computer vision (pp. 2564–2571).

  • Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Sawhney, H., Hsu, S., & Kumar, R. (1998). Robust video mosaicing through topology inference and local to global alignment. In Proceedings of the European conference on computer vision (pp. 103–119). Freiburg, Germany.

  • Williams, S., & Mahon, I. (2004). Simultaneous localisation and mapping on the Great Barrier Reef. In Proceedings of the IEEE international conference on robotics and automation (pp. 1771–1776).

  • Zeisl, B., Georgel, P. F., Schweiger, F., Steinbach, E., & Navab, N. (2009). Estimation of location uncertainty for scale invariant features points. In Proceedings of the British machine vision conference.

  • Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. In P. Heekbert (Ed.), Graphics gems IV (pp. 474–485). Cambridge: Academic Press.

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was a part of the project titled ‘Development of an autonomous ship-hull inspection system’, funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwhan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Kim, J. Selective image registration for efficient visual SLAM on planar surface structures in underwater environment. Auton Robot 43, 1665–1679 (2019). https://doi.org/10.1007/s10514-018-09824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-09824-1

Keywords

Navigation