Skip to main content
Log in

Mosquito-inspired distributed swarming and pursuit for cooperative defense against fast intruders

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Inspired by the swarming behavior of male mosquitoes that aggregate to attract and subsequently pursue a female mosquito, we study how random swarming motion in autonomous vehicles affects the success of target capture. We consider the scenario in which multiple guardians with limited perceptual range and bounded acceleration are deployed to protect an area from an intruder. The main challenge for the guardian (male mosquito) is to quickly respond to a fast intruder (female) by matching its velocity. We focus on the motion strategy for the guardians before they perceive the intruder, which we call the swarming phase. In the parameter space consisting of the intruder’s speed and guardians’ ability (i.e., maximum acceleration and perceptual range) we identify necessary and sufficient conditions for target capture. We propose a swarming algorithm inspired by the behavior of male mosquitoes to improve the target-capture capability. The theoretical results are illustrated by experiments with an indoor quadrotor swarm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Antoniades, A., Kim, H. J., & Sastry, S. (2003). Pursuit–evasion strategies for teams of multiple agents with incomplete information. In IEEE Conference on Decision and Control (pp. 756–761).

  • Attanasi, A., Cavagna, A., Del Castello, L., Giardina, I., Melillo, S., Parisi, L., et al. (2014). Collective behaviour without collective order in wild swarms of midges. PLoS Computational Biology, 10(7), 1–10.

    Article  Google Scholar 

  • Becco, C., Vandewalle, N., Delcourt, J., & Poncin, P. (2006). Experimental evidences of a structural and dynamical transition in fish school. Physica A, 367, 487–493.

    Article  Google Scholar 

  • Bopardikar, S. D., Bullo, F., & Hespanha, J. P. (2009). A cooperative homicidal chauffeur game. Automatica, 45(7), 1771–1777.

    Article  MathSciNet  MATH  Google Scholar 

  • Butail, S., Manoukis, N., & Diallo, M. (2013). The dance of male Anopheles gambiae in wild mating swarms. Journal of Medical Entomology, 50(3), 552–559.

    Article  Google Scholar 

  • Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., et al. (2010). Scale-free correlations in starling flocks. Proceedings of the National Academy of Sciences USA, 107(26), 11865–11870.

    Article  Google Scholar 

  • Chung, T. H., & Hollinger, G. A. (2011). Search and pursuit–evasion in mobile robotics a survey. Autonomous Robots, 31(4), 299–316.

    Article  Google Scholar 

  • Durham, J. W., Franchi, A., & Bullo, F. (2012). Distributed pursuit–evasion without mapping or global localization via local frontiers. Autonomous Robots, 32, 81–95.

    Article  Google Scholar 

  • Ferrari, S. (2006). Track coverage in sensor networks. In Proceedings American Control Conference (pp. 2053–2059).

  • Ferrari, S., Fierro, R., Perteet, B., Cai, C., & Baumgartner, K. (2009). A geometric optimization approach to detecting and intercepting dynamic targets using a mobile sensor network. SIAM Journal on Control Optimization, 48(1), 292–320.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedland, B., & Park, Y. J. (1992). On adaptive friction compensation. IEEE Transactions on Automatic Control, 37(10), 1609–1612.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghose, K., Horiuchi, T., Krishnaprasad, P., & Moss, C. (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLoS Biology, 4(5), 865–873.

    Article  Google Scholar 

  • Hausman, K., Müller, J., Hariharan, A., Ayanian, N., & Sukhatme, G. S. (2016). Cooperative control for target tracking with onboard sensing. Experimenal Robotics (pp. 879–892). Cham: Springer.

    Chapter  Google Scholar 

  • Hehn, M., & D’Andrea, R. (2011). Quadrocopter trajectory generation and control. IFAC Proceedings, 44(1), 1485–1491.

    Article  Google Scholar 

  • Jung, B., & Sukhatme, G. S. (2002). Tracking targets using multiple robots: The effect of environment occlusion. Autonomous Robots, 13(3), 191–205.

    Article  MATH  Google Scholar 

  • Khalil, H., & Grizzle, J. (2002). Nonlinear systems. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Kim, T. H., & Sugie, T. (2007). Cooperative control for target-capturing task based on a cyclic pursuit strategy. Automatica, 43(8), 1426–1431.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolling, A., & Carpin, S. (2010). Multi-robot pursuit–evasion without maps. In IEEE International Conference on Robotics and Automation (pp. 3045–3051).

  • Lee, J., Huang, R., Vaughn, A., & Xiao, X. (2003). Strategies of path-planning for a UAV to track a ground vehicle. In IEEE Conference on Applications, Information and Network Security.

  • Levant, A. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51, 1–20.

    Article  MathSciNet  Google Scholar 

  • Li, W. (2017). A dynamics perspective of pursuit-evasion: Capturing and escaping when the pursuer runs faster than the agile evader. IEEE Transactions on Automatic Control, 62(1), 451–457.

    Article  MathSciNet  MATH  Google Scholar 

  • Manoukis, N. C., & Diabate, A. (2009). Structure and dynamics of male swarms of Anopheles gambiae. Journal of Medical Entomology, 46(2), 227–235.

    Article  Google Scholar 

  • Moon, J., Kim, K., & Kim, Y. (2001). Design of missile guidance law via variable structure control. Journal of Guidance, Control, and Dynamics, 24(4), 659–664.

    Article  Google Scholar 

  • Mueller, M. W., & D’Andrea, R. (2013). A model predictive controller for quadrocopter state interception. In IEEE European Control Conference (pp. 1383–1389).

  • Olberg, R., Worthington, A., & Venator, K. (2000). Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology, 186(2), 155–162.

    Article  Google Scholar 

  • Olfati-Saber, R., & Murray, R. (2003). Flocking with obstacle avoidance: Cooperation with limited information in mobile networks. In IEEE Conference on Decision and Control (pp. 2022–2028).

  • Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking : Taxonomy and survey. Autonomous Robots, 40(4), 729–760.

    Article  Google Scholar 

  • Ruiz, R Mc U, Luis, J., Laumond, M Jp, & Hutchinson, S. (2011). Tracking an omnidirectional evader with a differential drive robot. Autonomous Robots, 31, 345–366.

    Article  Google Scholar 

  • Scott, W., & Leonard, N. E. (2013). Pursuit, herding and evasion: A three-agent model of caribou predation. In Proceedings American Control Conference (pp. 2984–2989).

  • Selvakumar, J., & Bakolas, E. (2016). Evasion from a group of pursuers with a prescribed target set for the evader. In Proceedings American Control Conference (pp. 155–160).

  • Shishika, D., & Paley, D. A. (2015). Lyapunov stability analysis of a mosquito-inspired swarm model. In IEEE Conference on Decision and Control (pp. 482–488).

  • Shishika, D., & Paley, D. A. (2017). Mosquito-inspired swarming algorithm for decentralized pursuit. In Proceedings American Control Conference (pp. 923–929).

  • Shishika, D., Manoukis, N. C., Butail, S., & Paley, D. A. (2014). Male motion coordination in anopheline mating swarms. Scientific Reports, 4, 1–7.

    Google Scholar 

  • Shishika, D., Sherman, K., & Paley, D. A. (2017). Competing swarms of autonomous vehicles: Intruders versus guardians. In ASME Dynamical Systems and Control Conference (pp. 1–10).

  • Shishika, D., Yim, J. K., & Paley, D. A. (2016). Robust Lyapunov control design for bioinspired pursuit with autonomous hovercraft. IEEE Transactions on Control Systems Technology, 25(99), 1–12.

    Google Scholar 

  • Shtessel, Y. B. (2009). Guidance and control of missile interceptor using second-order sliding modes. IEEE Transactions on Aerospace Electronic Systems, 45(1), 110–124.

    Article  Google Scholar 

  • Tian, Y., & Sarkar, N. (2017). Game-based pursuit evasion for nonholonomic wheeled mobile robots subject to wheel slips. Advanced Robotics, 27, 1087–1097.

    Article  Google Scholar 

  • Wei, E., Justh, E. W., & Krishnaprasad, P. (2009). Pursuit and an evolutionary game. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 465(2105), 1539–1559.

    Article  MathSciNet  MATH  Google Scholar 

  • Zarchan, P. (2002). Tactical and strategic missile guidance. Progress in Astronautics and Aeronautics (Vol. 176). Reston: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  • Zuo, Z. (2010). Trajectory tracking control design with command-filtered compensation for a quadrotor. IET Control Theory and Applications, 4(11), 2343–2355.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Nicholas Manoukis and Sachit Butail for the valuable discussions related to the behavior of mosquitoes, Luis Guerrero for the discussion related to the proofs, and also the support from Derrick Yeo and Katarina Sherman related to the experimental testbed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daigo Shishika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation of \(\beta ^*\)

Figure 15 depicts the case where the damping term \(b{\mathbf {v}}_{T/P}\) has to be saturated to give \({\mathbf {F}}_P^{\text {(pursuit)}} = u_{max}\). Let \(n = \beta ^*\Vert b {\mathbf {v}}_{T/P}\Vert \), \(m = (1-\beta ^*)\Vert b {\mathbf {v}}_{T/P}\Vert \), \(A = n+m\), \(B = \Vert c{\mathbf {r}}_{T/P}\Vert \), \(C = \Vert c{\mathbf {r}}_{T/P}+b {\mathbf {v}}_{T/P}\Vert \), and \(D = {\mathbf {F}}_P^{\text {(pursuit)}} = u_{max}\). Stewart’s theorem states that

$$\begin{aligned} B^2 m + C^2n = A(D^2+mn). \end{aligned}$$
(30)

Using (30) and \(A = m+n\), we can solve for n to obtain

$$\begin{aligned} n = \frac{E\pm \sqrt{E^2 + F} }{2A}, \end{aligned}$$
(31)

where \(E = A^2+B^2-C^2\) and \(F = 4A^2(D^2-B^2)\). Noting that F is always positive, the solution (31) with \(+\) is the only valid solution. The scaling factor is \(\beta ^* = n/A\), i.e.,

$$\begin{aligned} \beta ^* = \frac{E+\sqrt{E^2 + F} }{2A^2}. \end{aligned}$$
(32)
Fig. 15
figure 15

Computing the saturation factor \(\beta \) to obtain the control law \({\mathbf {F}}_P^{\text {(pursuit)}}\)

Fig. 16
figure 16

Definitions of angles and speeds in the velocity space (Color figure online)

Appendix B: Required \(N_P\) for guaranteed target capture using circling strategy

Consider a circling motion with radius \(\rho _p\). Let \(v_P\) denote the circling speed. Let \(\theta _{T/P}=\cos ^{-1}\left( \frac{{\mathbf {v}}_T\cdot {\mathbf {v}}_P}{\Vert {\mathbf {v}}_T\Vert \Vert {\mathbf {v}}_P\Vert }\right) \) denote the difference between the direction of motion of the target and the pursuer. First, we seek to find the maximum angle \(\theta ^*\) such that \({\mathbf {v}}_P \in B_{v_0}({\mathbf {v}}_T(t_0))\) (see Fig. 16 for the definitions of the relevant quantities). For a given guardian speed \(v_P\), the angle \(\theta ^*\) is the maximum allowable difference in the direction of motion to guarantee target capture. From Fig. 16 and the law of cosines, we have

$$\begin{aligned} \theta ^* = \cos ^{-1}\left( \frac{v_P^2 + v_T^2 - v_0^2}{2v_Pv_T} \right) . \end{aligned}$$
(33)

The angle \(\theta ^*\) is maximized when the limiting \({\mathbf {v}}_P\) is tangent to the circle \(B_{v_0}({\varvec{v}}_T)\), i.e., the blue dashed line in Fig. 16. This geometry is achieved when \(v_P\) satisfies

$$\begin{aligned} v_P = v_P^{(1)} =\sqrt{ v_T^2 - v_0^2} = v_T \sqrt{1- {\varGamma }(1-\alpha )/2}. \end{aligned}$$
(34)

However, because of the centripetal acceleration, the achievable circling speed \(v_P\) is bounded as

$$\begin{aligned} v_P \le v_P^{(2)} = \sqrt{\rho _p u_{max}} = v_T\sqrt{\frac{{\varGamma }\alpha }{2(1+\alpha )}}. \end{aligned}$$

We choose the circling speed \(v_P\) to be

$$\begin{aligned} v_P = \min \left( v_P^{(1)},\;v_P^{(2)} \right) , \end{aligned}$$
(35)

i.e., use \(v_P^{(1)}\) when it is achievable, otherwise, use maximum possible speed which is \(v_P^{(2)}\). If the guardians are uniformly distributed on the circle, and if the number of guardians N satisfies

$$\begin{aligned} N > \frac{\pi }{\theta ^*}, \end{aligned}$$
(36)

there will be at least one guardian whose direction of motion satisfies \(\theta _{T/P}<\theta ^*\). See Fig. 17 for the illustration of the case with \(N_P=3\). When the target reaches the center, the velocity of the pursuer in the fan-shaped region satisfies \(\theta _{T/P} < \theta ^*\). If the condition (36) is satisfied, then there is always at least one guardian in the fan-shaped region.

Fig. 17
figure 17

Example of circling motion where \(\theta ^*=\pi /3\). Guardians are uniformly spaced and there is always one guardian in the fan-shaped region. When the target reaches the center, the velocity of the pursuer in the fan-shaped region satisfies \(\theta _{T/P} < \theta ^*\)

Fig. 18
figure 18

Sufficient number of guardians to guarantee target capture with circling motion

Figure 18 shows the required number of guardians obtained from conditions (33), (35) and (36). Close to the boundary \(\partial _2\), the angle \(\theta ^*\rightarrow 0\) and the sufficient number \(N\rightarrow \infty \). Close to the boundary \(\partial _3\), the angle \(\theta ^*\rightarrow \pi \) and the sufficient number \(N\rightarrow 2\).

Appendix C: Proof of proposition 3

For a given deflection angle \(\phi \), the magnitude of normal acceleration exerted by the target increases as the time of execution \({\varDelta }t\) reduces. It is easy to see that the worst-case scenario for the guardian who is pursuing the target is when \({\varDelta }t\) approaches 0, i.e., the target makes a sudden instantaneous change in its direction of motion. This corresponds to the target applying a linear impulse with magnitude equal to \(2 v_T \sin (\phi /2)\).

Consider the energy function used in the proof of Proposition 2. Let \({\varDelta }V\) denote the increase in the energy function due to the target maneuver. Then we have

$$\begin{aligned} 2c{\varDelta }V= & {} 2c V(t_2) - 2cV(t_1) \end{aligned}$$
(37a)
$$\begin{aligned}= & {} \Vert {\mathbf {v}}_{T/P} (t_2)\Vert ^2 - \Vert {\mathbf {v}}_{T/P} (t_1)\Vert ^2 \end{aligned}$$
(37b)
$$\begin{aligned}= & {} -{\mathbf {v}}_P \cdot \left( {\mathbf {v}}_T(t_2) - {\mathbf {v}}_T(t_1) \right) \end{aligned}$$
(37c)
$$\begin{aligned}\le & {} \Vert {\mathbf {v}}_P \Vert 2 v_T \sin (\phi /2) \end{aligned}$$
(37d)
$$\begin{aligned}\le & {} (v_T + v_0) 2 v_T \sin (\phi /2). \end{aligned}$$
(37e)

Target capture is guaranteed if the initial energy \(V(t_0)\) is sufficiently small that the distance, \(\Vert {\mathbf {r}} _{T/P}\Vert \), is bounded by \(\rho _a\) even after the energy increase by \({\varDelta }V\), i.e.,

$$\begin{aligned} V(t_0) + {\varDelta }V\le & {} \frac{1}{2}\rho _a^2 \end{aligned}$$
(38a)
$$\begin{aligned} \Vert {\mathbf {v}}_{T/P}(t_0)\Vert\le & {} \sqrt{ c (\rho _a^2 -\rho _s^2)- 2c {\varDelta }V }, \end{aligned}$$
(38b)

which reduces to (10).

For feasibility of the condition, we also require that the right-hand-side of (10) is positive, i.e.,

$$\begin{aligned} \chi ^2 - 2a \chi -2a > 0, \end{aligned}$$
(39)

which reduces to (11).

Appendix D: Proof of Remark 1

For notational simplicity, let \({\mathbf {r}} \triangleq {\mathbf {r}}_{T/P}(t)\) and \({\mathbf {v}} \triangleq {\mathbf {v}}_{T/P}(t)\). Consider a Lyapunov function

$$\begin{aligned} V = 2bc\Vert {\mathbf {r}}\Vert ^2 + b\Vert {\mathbf {v}}\Vert ^2 + 2 c{\mathbf {r}} \cdot {\mathbf {v}}, \end{aligned}$$

which is positive definite if

$$\begin{aligned} 2b^2>c . \end{aligned}$$
(40)

Assuming that the control is never saturated, i.e., \(\beta = 1\) (sufficient condition for this assumption is given later), the time derivative is

$$\begin{aligned} 0.5 \dot{V}= & {} -c^2 \Vert {\mathbf {r}}\Vert ^2 - (b^2-c) \Vert {\mathbf {v}}\Vert ^2 + b {\mathbf {v}} \cdot {\mathbf {a}}_T + c {\mathbf {r}} \cdot {\mathbf {a}}_T \end{aligned}$$
(41)
$$\begin{aligned}\le & {} -c^2 \Vert {\mathbf {r}}\Vert ^2 {-} (b^2{-}c) \Vert {\mathbf {v}}\Vert ^2 {+} b \left( \frac{b}{2}\Vert {\mathbf {v}}\Vert ^2 {+}\frac{1}{2b} \Vert {\mathbf {a}}_T\Vert ^2\right) \nonumber \\&+\, b \left( \frac{b}{2}\Vert {\mathbf {v}}\Vert ^2 +\frac{1}{2b} \Vert {\mathbf {a}}_T\Vert ^2\right) \end{aligned}$$
(42)
$$\begin{aligned}= & {} -\frac{c^2}{2} \Vert {\mathbf {r}}\Vert ^2 - \left( \frac{b^2}{2}-c\right) \Vert {\mathbf {v}}\Vert ^2 + \Vert {\mathbf {a}}_T\Vert ^2 \end{aligned}$$
(43)
$$\begin{aligned}\le & {} -\frac{c^2}{2} \Vert {\mathbf {r}}\Vert ^2 - \left( \frac{b^2}{2}-c\right) \Vert {\mathbf {v}}\Vert ^2 + u_T^2 \end{aligned}$$
(44)

Let \(\sigma _1 = \frac{c^2}{2}\), \(\sigma _2 = \frac{b^2}{2}-c\), and \(D = u_T^2\). For \(\sigma _2\) to be positive, we require

$$\begin{aligned} b^2>2c, \end{aligned}$$
(45)

which is stronger than (40). Also let \({\mathbf {z}} = [\Vert {\mathbf {r}} \Vert ,\; \Vert {\mathbf {v}}\Vert ]^T = [r,\;v]^T\). Then we have \(\dot{V}\le 0\) for \({\mathbf {z}} \notin B_e = \{[r,v]\in {\mathbb {R}}^2\; |\; \sigma _1^2r^2+\sigma _2^2v^2\le D\}\), where \(B_e\) is an ellipsoid centered at \({\mathbf {z}} = 0\), with axis length \(\rho _1 = \sqrt{D/\sigma _1}\) and \(\rho _2 = \sqrt{D/\sigma _2}\). Figure 19 depicts \(B_e\) with other relevant regions.

Fig. 19
figure 19

Definition of the regions for the proof of ultimate boundedness

If a compact set \({\varOmega }\) is such that \(V\le \omega \) for \({\mathbf {z}} \in {\varOmega }\), and also \(B_e \in {\varOmega }\), then by ultimate boundedness (Khalil and Grizzle 2002), we know that there exists \(T>0\) such that \({\mathbf {z}} \in {\varOmega }\) for all \(t > T\) (see Lemma 1 in Shishika et al. 2016).

Since it is not easy to visualize \({\varOmega }\), we introduce two compact sets \({\varOmega }_{min}\) and \({\varOmega }_{max}\) with the property \({\varOmega }_{min}\in {\varOmega }\in {\varOmega }_{max}\). Noting that \(V = {\mathbf {z}}^T P {\mathbf {z}} \) where

$$\begin{aligned} P = \left[ \begin{array}{c c} 2bc &{} c \\ c &{} b \end{array} \right] , \end{aligned}$$
(46)

we obtain \({\varOmega }_{min}\) and \({\varOmega }_{max}\) to be discs with radii \(\rho _{min} = \sqrt{\omega /\lambda _{max}\{P\} }\) and \(\rho _{max} = \sqrt{\omega / \lambda _{min}\{P\}} \), where \(\lambda _{min}\{P\}\) and \(\lambda _{max}\{P\}\) are the smallest and largest eigenvalue of P.

Conditions \(B_e\in {\varOmega }_{min}\) and \({\mathbf {z}}(t_0) \in {\varOmega }_{max}\) guarantee that \({\mathbf {z}}\in {\varOmega }_{max}\) for all time \(t>t_0\). If \(\rho _{max} = \rho _a\), then \({\mathbf {z}}\in {\varOmega }_{max}\) guarantees target capture, i.e., \(\Vert {\mathbf {r}}\Vert \le \rho _a\). The latter condition determines the value of \(\omega \), which defines \({\varOmega }\), as follows:

$$\begin{aligned} \omega = \rho _a^2 \lambda _{min}\{P\}. \end{aligned}$$

For \(B_e\in {\varOmega }_{min}\), it is sufficient if \(\max \{\rho _1, \rho _2\} \le \rho _{min}\), which gives

$$\begin{aligned} u_T \le \rho _a \sqrt{\frac{\lambda _{min}\{P\}}{\lambda _{max}\{P\}}} \big / \sqrt{2}\max \left\{ \frac{1}{c}, \frac{1}{\sqrt{b^2-2c}}\right\} . \end{aligned}$$
(47)

Equation (47) corresponds to condition (i), sufficiently small \(u_T\), in Remark 1. Note that (40) guarantees that the right-hand side is positive.

Next, \({\mathbf {z}}(t_0)\in {\varOmega }_{max}\) is true if the initial condition satisfies \(V(t_0)\le \omega \), which is equivalent to

$$\begin{aligned}&2bc\rho _p^2 + b\Vert {\mathbf {v}}(t_0)\Vert ^2 + 2c{\mathbf {r}}(t_0) \cdot {\mathbf {v}}(t_0)\le \omega \nonumber \\&b\Vert {\mathbf {v}}_{}(t_0)\Vert ^2 + 2c{\mathbf {r}}_{}(t_0) \cdot {\mathbf {v}}_{}(t_0) \le \rho _a^2 ( \lambda _{min}\{P\} - 2\alpha bc) \end{aligned}$$
(48)

Since \({\mathbf {r}}(t_0) \cdot {\mathbf {v}}(t_0) \le 0\) for the close encounter to occur, a conservative version of the above condition is

$$\begin{aligned} \Vert {\mathbf {v}}_{}(t_0)\Vert ^2 \le \frac{\rho _a^2}{b} ( \lambda _{min}\{P\} - 2\alpha bc) \end{aligned}$$
(49)

Equation (49) corresponds to condition (iv), sufficiently small \(\Vert {\mathbf {v}}_{T/P}(t_0) \Vert \), in Remark 1. By explicitly calculating \(\lambda _{min}\{P\}\), one can prove that the right-hand side of (49) is positive if

$$\begin{aligned} c \le \frac{1}{2\alpha }\left( 1 - \frac{1}{4(1-\alpha )}\right) . \end{aligned}$$
(50)

Conditions for the gain selection, which corresponds to (ii) in Remark 1, are thus (45) and (50).

For this proof, we assume that the pursuer control is never saturated, which is true if

$$\begin{aligned} u_{max}\ge \rho _{max}\max \{b,c\} = \rho _a \max \{ b,c\}, \end{aligned}$$
(51)

which corresponds to (iii), sufficiently large \(u_{max}\), in Remark 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishika, D., Paley, D.A. Mosquito-inspired distributed swarming and pursuit for cooperative defense against fast intruders. Auton Robot 43, 1781–1799 (2019). https://doi.org/10.1007/s10514-018-09827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-09827-y

Keywords

Navigation